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Abstract—Driving a vehicle is an indispensable part of their 
everyday life for many people. However, sometimes this everyday 
life does not go as expected, as a lot of accidents happen on the 
public roads, and most of these accidents are due to inattentive 
driver behavior. Modern driver monitoring systems evaluate 
driver behavior by means of distinctive sensor technology and, if 
necessary, indicate undesirable driving behavior. However, many 
roadworthy vehicles do not have the possibility to implement 
such systems. Therefore, it seems to be interesting to investigate 
the implementation of such systems based on commodity 
hardware, e.g., smartphones, because nowadays almost every 
driver has a powerful smartphone equipped with many sensors at 
hand in the vehicle. Furthermore, recent advances in Machine 
Learning (ML) made it possible to analyze large amounts of data 
and to generate new outcomes. In this work we discuss how ML 
can be used for driver behavior recognition by improving an 
already existing threshold-based driver monitoring system with 
different ML-based techniques, Neural Networks and Random 
Forests, and evaluate their performance. We propose to use 
Microsoft Azure platform to analyze data generated by a Driver 
Monitoring System (DMS). Our results indicate ML as a useful 
technique for learning and adapting threshold-based reasoning 
about individual drivers’ states. 

I. INTRODUCTION 

The task of driving is coupled with the everyday life of 
many people around the globe. Being for a means of 
transportation or in the context of everyday work, driving can 
be seen as omnipresent in our society. This raises special 
concerns when it comes to safety, because driving is dangerous 
and can lead to fatalities. According to the statistics of traffic 
fatalities for 2018 in the United States, a total of 36,560 people 
died in motor vehicle traffic crashes [1]. Worldwide, the 
number of people killed totals up to 1.35 million per year. 
These figures make road traffic fatalities the eighth largest 
cause of death for people of all ages [2]. 

The societal desire to reduce the number of deaths leads to 
increased funding, research, and opportunities to improve the 
given situation. Hence, making traffic of the future safer leads 
to less crashes and accidents und ultimately safes lives, as it is 
well-known from related work, that the driving behavior is a 
critical role for traffic safety [3–5]. Analyzing and evaluating 

the behavior of drivers takes a mandatory role for the newly 
emerging opportunities within the transportation domain, 
which is driven by the digitalization. This latter includes not 
only new ways of dealing with data, but also the sheer amount 
of data that is being produced and captured. Ultimately, it is 
possible because there is a rise in vehicle sensors, which leads 
to new data about vehicles and driving performance [6]. This 
development is further enhanced by the upcoming use of Cloud 
technologies and along with advanced ways of analyzing, 
communicating, and storing data. These domain opportunities 
can be tackled with a wide range of methods and algorithms. 

An upcoming field, which seems promising for the task of 
driving behavior analysis, is the Artificial Intelligence (AI) 
domain. With the increase in the availability of driver’s data, 
their driving styles, and their trips, enhanced conclusions can 
be made about how the identified driver behavior is related to 
safe and unsafe driving. Thus, identifying the driving behavior 
can lead to an increase in overall traffic safety. In order to 
achieve this goal, the evaluated driver’s behavior should be 
used to warn each individual driver (and probably his/her 
environment, as well) about his/her condition and give 
reasonable recommendations towards getting the desired safe 
way of driving [7]. 

Another topic that should be mentioned is the accessibility 
of such systems. It is only in recent years that vehicle 
manufacturers have cautiously begun to integrate interfaces for 
data into the vehicles. A range of sensors (e.g., cameras 
detecting the driver status) and interfaces are only available in 
certain modern vehicles, with the number of sensors will 
continue to steadily increase, as an example when considering 
automated driving functions (e.g., RADAR and LiDAR 
sensors).  This leads to a mix of differently equipped vehicles 
on the road. Sadly, owners of older vehicles cannot use 
innovations based on vehicle’s sensor data at all. Due to this, it 
would be purposeful to decouple the vehicle and the data 
acquisition infrastructure. A clever way of doing that is to take 
what is already in use, e.g., commodity hardware. Hence, a 
smartphone, which is widely popular and accessible, can be 
used for this task, since it combines a wide range of sensors 
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applicable for this task, and provides the communication 
infrastructure for sharing data [8]. 

Based on smartphone data, this paper introduces an extended 
architecture model for a given threshold-based driver behavior 
detection system, denoted as “Drive Safely” [9]. It incorporates 
the use of Machine Learning (ML) techniques for learning and 
adapting the threshold-based reasoning about the individual 
driver´s state. For this study, the following research questions 
(RQs) are considered: 

RQ1: How can ML techniques be implemented for driver 
behavior recognition? 

RQ2: What are the most relevant features for driver behavior 
recognition? 

The paper is organised as follows. In Section II related 
works are presented, while Section III describes the 
architecture model. Section IV explains data preparation steps, 
followed by the proposed ML-oriented model in Section V. 
Experimental results regarding the implementation of the 
proposed AI-based technique is presented in Section VI, 
followed by a discussion in Section VII. Finally, in Section 
VIII conclusions are provided. 

II. RELATED WORK

In the following, some scientific findings which have already 
been published in order to be able to base our research on them, 
are analysed. In particular, a literature review was carried out, 
regarding the usage of smartphone sensor data and ML 
methods for the identification of the driver behavior [7]. In the 
following we summarize ten relevant papers we found on 
scientific databases of SCOPUS and ScienceDirect, which are 
selected through inclusion and exclusion criteria.  

The work of Ferreira et al. considers driver classification 
with different Android-based smartphone sensors [10]. In 
detail, they investigate which sensor and method assembly 
return the highest performance: accelerometer, linear 
acceleration, magnetometer, and gyroscope are smartphone 
sensors, and the classification task is done with different ML 
algorithms like Artificial Neural Networks (ANNs), Support 
Vector Machines (SVMs), Random Forest, and Bayesian 
Network. The results show that Random Forest ranks first 
followed by ANNs. Furthermore, authors in [10] investigate 
how the sliding window size for data accumulation influences 
the performance. To this end, they showed, that larger time 
windows perform better, and that gyroscope and accelerometer 
are the best sensors for their classification task. 

In [4], an investigation of driving skill classification by 
analyzing the skill at maneuvering in curve driving scenes, is 
presented. ML-oriented methods are used to classify the driver 
according to these driving capabilities, with the overall aim to 
create a framework in order to make driving more comfortable 
and safer. The driver model is trained from sensor data 
gathered from a driving simulation related to the driving 
environment, vehicle response, and driving behavior for driver. 
Once the model is trained, novel driving situations can be 
classified automatically. Moreover, in [4] the k-nearest 
neighbor (k-NN) classifier and SVM are used, thus taking 

different curve driving scenes as the basis of the classification 
in order to tag the drivers in different driving skill levels. Then, 
relevant features include: steering angle, speed, longitudinal 
acceleration, lateral acceleration, yaw rate, accelerator control, 
brake control, lateral displacement, longitudinal displacement, 
accelerator control speed, and brake control speed. 

TABLE I. LITERATURE REVIEW SEARCH QUERIES. 

Search Query 

“machine learning” AND (“driving behaviour” or “driving behavior”) AND 
(smartphone OR mobile) AND (safety OR accident) 

“driver classification” AND (behaviour OR behavior) AND “machine 
learning” 

“driver behavior” AND classification AND “machine learning” 

Finally, authors in [4] conclude that SVM performs better 
than k-NN algorithm for the chosen mode, since for the 
classification in full curve scenes, SVM reaches an accuracy of 
95.7%, while for classification in segmented curves, the 
average accuracy scored 89%. 

A framework for delivering personalized and quantified 
driving policies implemented with the use of smartphone 
sensors data is shown in [10], Where Q-learning is used as a 
representative of reinforcement learning techniques. The inputs 
for the Q-learning algorithm consist in the number of harsh 
events per kilometer, speeding and mobile usage, which are 
derived from the motion and position sensors such as 
accelerometer, gyroscope and magnetometer. Their findings 
confirm the necessity of a personalized approach of quantifying 
driver behavior.  

In [11] the driving behavior with regard to the respective air 
pollutants emissions, is investigated. In detail, authors use a K-
means clustering algorithm on a large database of 4156 trips to 
cluster those trips in three profiles, namely driving as usual, 
harsh driving, and eco-friendly driving. In this case, the 
smartphone acts as an embedded sensor platform for this 
approach and the accelerometer, gyroscope and magnetometer 
represent the data sources. 

Authors in [12] study anomaly recognition algorithms to 
detect aggressive driving. In detail, they use vehicle motion 
data collected from smartphone sensors (such as accelerometer 
and gyroscope) and analyze data with Gaussian mixture model, 
partial least squares regression, wavelet transformation and 
Support Vector Regression (SVR). They conclude that these 
algorithms can recognize aggressive driving behavior, with 
Gaussian mixture model and SVR being superior with respect 
to the other two algorithms. The anomaly detection with the 
help of acceleration data is more recognizable than those 
derived from the gyroscope data. Finally, they find out that 
small changes to the range of thresholds does not impact the 
results which leads to the finding, that correctly selected 
threshold values can still come with small changes in the 
environment and consequently the performance of the 
algorithm. 

In [13], driving behavior analysis is performed. In detail, 
asystematic literature review on the topic with a special 
emphasis on ML approaches is presented, thus identifying an 

______________________________________________________PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 117 ----------------------------------------------------------------------------



interpretive framework incorporating multiple dimensions 
influencing the driver’s behavior and summarizing the 
available evidence of the ML techniques for constructing driver 
behavior estimation models. Furthermore, authors in [13] 
compare ML approaches with non-ML models and the 
accuracy between the ML models as well. They conclude that 
ML models outperform non-ML models in general. 
Additionally, they give recommendation for researchers to 
carry out future research on driver behavior analysis using ML 
techniques. 

In [14], the possibility to detect and predict an impaired 
driver state, such as drowsiness, by developing an ANN for 
those tasks, is investigated. Furthermore, the information 
provided to the algorithm is collected from different data 
sources ranging from physiological, behavioral, to 
psychological data about the driver, as well as performance 
information from the vehicle. Different datasets from different 
data sources were evaluated in order to determine the most 
optimal success in detecting and predicting impairment. Data 
are collected from participants in a driving simulator. The 
generalization and inter-individual variability is viewed as a 
challenging task in order to evaluate drivers whose data is not 
trained beforehand. 

Authors in [15] proposed a model for detecting sudden 
braking and aggressive driving behaviors with data collected 
from smartphone sensors. A dynamic time warping technique 
is used for classification purposes in mobile devices with 
constrained resources. The proposed algorithm has an 
accuracy of 100% for detecting braking events, 97% for 
detecting left and right turns, and 86.67% for detecting 
aggressive turns.  

In [16], a personalized driving state recognition system, 
taking into account not only personalized driving 
characteristics, but also considering contextual information, 
such as the road type, is proposed. This leads to an 
improvement in accuracy of the driving state recognition for 
individual drivers. As the classification algorithm, authors 
compare discriminant analysis, decision tree, k-NN, SVM and 
Random Forest, and they found that the latter outperforms the 
other techniques. 

Authors in [17] proposed a fine-grained abnormal driving 
behavior detection and identification system using smartphone 
sensors (in particular acceleration and orientation) in order to 
train both a SVM and neuron network with empirically 
grounded data from real driving situations. The identification 
of abnormal driving events distinguishes between weaving, 
swerving, side slipping, fast U-turns, wide-radius turning and 
sudden breaking. Furthermore, they investigate different 
impacts on the results such as training set size, traffic 
condition, road type, smartphone placement and the sensors 
sampling rate. 

The reviewed papers face challenges about the 
implementation and configuration of ML algorithms for driver 
behavior recognition for driver of vehicles. They propose 
different algorithms. The most promising algorithms are 
identified in [7] and consequently the neural network and 

random forest algorithms are chosen to be compared against 
each other. 

Based on the findings from preliminary works, in the 
following the proposed ML algorithm is presented and 
discussed. In order to do this, we collect data from the 
smartphone sensors, feed them into the ML-oriented 
infrastructure and derive results. The latter shall be executed in 
a Cloud service. In the next section we will go into more detail 
about the architecture model. 

III. ARCHITECTURE

The architecture of the driver monitoring system (Fig. 1) 
derives from the aim of this paper to analyze and classify 
driving data for behavior recognition. In detail, there are two 
distinctive analyzing components: 1) a mobile application 
analyzing the data live on the smartphone via thresholds, and 
2) a Cloud service to learn from user feedback and update
thresholds.  

For the application analyzing the data live, a threshold-
based detection scheme running on the smartphone is chosen. 
It analyses smartphone sensor data and creates events when 
thresholds are exceeded. As humans behave individually, we 
use the data analysis service running in the Cloud to update the 
thresholds for each individual user. This adjustment is based 
on the sensor data and feedback from the user, e.g., if the user 
confirms or denies the event that says he was driving drowsy. 
For this classification task, different ML techniques are 
utilized. 

In more detail, the procedure is the following. Regarding 
the mobile app running inside the smartphone, in order to 
collect data, the driver places the smartphone in his/her driver 
cabin and starts the logging application. While driving, the 
smartphone application collects smartphone sensor data about 
the driving behavior of the driver. The threshold-based 
detection system performs both online and offline a dangerous 
state detection and, according to these thresholds, different 
dangerous states can be identified. Based on that, the 
recommendation module raises a suitable alert for the driver. 
Additionally, recorded data are uploaded to the Cloud in order 
to perform the data analysis (as shown in Fig. 1). The ML 
component acts as an enhancement to the threshold-based 
system, which raises alerts, based upon predefined thresholds. 
This is done by taking confirmation of the dangerous events 
by the driver into account. This way, the ML classification 
gains extended knowledge about abnormal driving to update 
the current thresholds of the drive safety system iteratively. 
Different driving styles and overall driving behavior might be 
perceived differently for varying drivers. If each driver labels 
its recorded data as correct or incorrect and proposed behavior 
identification, then the system should find better fitting 
thresholds for the identification of distraction and drowsiness. 

Regarding the Cloud-oriented component, the 
corresponding sensor data is sent to the Cloud CSV-formatted 
for further analysis. Within the ML component, stored data are 
prepared for the purpose of the following classification task, 
with the help of a Python script. A detailed description of the 
data preparation is provided in Section IV. Prepped data are 
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fed to the classification model of Microsoft Azure, which 
performs the classification of the labeled events. A more 
detailed view on the classification model is provided in 
Section V. According to deviations to the existing thresholds, 
the particular driver gets assigned to a driver group which is 

more fitting to his provided feedback of the detected 
dangerous situations. Based on those driver groups, the 
personalized driver preferences are derived concerning the 
thresholds for the individual driver. 

Fig. 1. Architecture of the driver monitoring system

Afterwards, the updated thresholds are sent to the driver’s 
smartphone and will replace the old thresholds for a more 
personalized detection scheme, so far this is not considered to 
update the thresholds live, because the user gives his/her 
feedback (accept or deny dangerous states) after a recorded 
trip. The main area of work for this paper is the ML 
component with the data preparation and the classification 
model. The processes behind the driver grouping, personal 
driver preferences, and the updating of the threshold-based 
detection system is out of the scope of this paper. 

IV. DATA PREPARATION

A. Acquisition 

The raw data was recorded using an already existing 
threshold-based system for the driving style recognition [18]. 
Then the driving style of the participants was recorded and 
labeled in the same way these thresholds have been made 
previously labeled. Ultimately, the domain experts in this 
field, i.e., the drivers should continue to give feedback to the 
findings by labelling the recognized critical data themselves, 
how they perceived their driving style and therefore confirm or 
correct the label for the particular event. 

B. Raw Data 

The raw data comes in two datasets, one containing the pure 
records of all the trips except the labels, called pure, and the 
other dataset contains the recognized critical driving data, 
called critical. 

Both datasets contain extensive information about the 
driving events. The necessary data for the classification task 
do including all the miscellaneous data which can be found in 
those source datasets. In order to have one dataset which 
includes all the necessary data, a join task needs to be 
conducted. For a successful join with critical and pure data, 
the timestamps in both datasets are extracted, thus serving as 
primary keys for the join task. In the case of the pure dataset 

each row represents a snapshot of that time, the critical dataset 
sums up all driving snapshots which are related to a particular 
recognized driving style event, e.g., drowsy driving. The new 
dataset contains, after the join task, all data from all critical 
events such as distracted or drowsy driving with their 
respective label, and the associated feature columns. 

C. Data Cleaning 

The raw data was not uniformly, having some missing values 
or mislabeled columns which required it to be cleaned. 
Consequently, all rows which contain missing values got 
dropped. This applies to NaN values but also to those where 
the feature columns are all equal to zero. Hence, this implies a 
recording error for that corresponding event and therefore it 
gets dropped as well. This means in practice that the face of 
the driver was not in the target area of the camera and could 
not be measured. 

D. Data Selection 

The joined dataset contains the label column, i.e., the 
dangerous driving behavior state, as well as the features that 
are important for the classification of the driving events. The 
head angle, the mouth openness ratio, as well as the eye 
openness are considered to be important in the threshold-based 
detection system for both drowsiness and distraction detection 
[18]. In order to cope with the existing threshold-based system 
concerning comparability, the respective columns have been 
chosen as features. Consequently, features about the openness 
of both eyes individually, as well as information about the 
head concerning the yaw and pitch angle and lastly, the 
openness ratio of the mouth while driving are considered. This 
dataset builds the ground knowledge for the classification task. 
Within the ML model, some additional data are added for 
evaluating the results; these are newly gathered information by 
the threshold-based system from a newly recorded trip. It gets 
alighted to the shape of the joined dataset, which means it 
contains the same columns. This is done to simulate the real-
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world use case, where an already trained ML algorithm takes 
new data from a new trip and performs its classification task 
accordingly. 

The described feature columns represent the data, which are 
used to determine the dangerous state in the threshold-based 
system, described in [18] for various dangerous states, and, 
according to that approach, the corresponding features are 
used in the ML classification as well. Besides those features 
the ML algorithms can take additional data as input. It is tested 
how the classification task improves when additional data is 
added as features, this results in different data configurations 
and should ultimately lead to a recommendation on what data 
should be used in order to improve classification results. The 
underlying threshold-based detection system detects dangerous 
states based upon a predefined time window of 1,5 seconds. A 
similar approach is a sliding time window concept used to 
aggregate features. Consequently, for each event in the dataset, 
a time window detects every event which is relevant and 
performs calculations on them. The following table shows the 
different baselines (data configurations), which will be 
compared using the Neural Network and Random Forest ML 
approaches. We use these four baseline variations to find the 
best min required events as well as time window. 

The proposed classification model (Fig. 2) is implemented 
through Microsoft Azure designer, since it provides a stable 
platform and offers a suitable testing ground, with the 
possibility to deploy models for the real world use case as 
well. The model is organized in logical modules and they may 
or may not be depend on another, the dependency is modelled 
via the arrows, which link the corresponding modules. 

All starts with the import of the dataset, which is firstly 
cleaned in the data preparation module, in the depicted case 
the Baseline 3 dataset is given as an example. It contains both 
the target-labels and the features for every entry. The next 

module, Clean Missing Data, is a preconstructed Microsoft 
Azure Module. Its whole purpose is to have error resistant data 
by performing one last data cleaning process on the source 
data, to ensure its compatibility with the Microsoft Azure 
environment by sorting out any data that is, in any way, not 
applicable to the following classification task. 

In the upper left corner of the model is the ML algorithm 
located. This particular model represents a Multiclass Neural 
Network classification module, a promising ML approach 
derived from the literate review [7]. Other ML algorithms like 
Random Forests take the place of the Multiclass Neural 
Network-module when they are tested. There are two separate 
modules, because afterwards two classification tasks are 
performed, both taking a single ML algorithm module as 
input. The first classification task, which is positioned on the 
left side of the model, is a Cross Validate Model. It is used to 
access both the variability of a dataset and the reliability of a 
model. This is done by dividing the dataset into K-folds and 
performing K classification tasks: each one takes a different 
fold as the validation set. In the end, the evaluation metrics are 
performed on the averages of the K folds in order to test the 
model with different train and testing data each time. This 
leads to stable and less variable results. The evaluation is done 
by the Evaluate Model-module and evaluation metrics such as 
Accuracy, Precision, F1-score, AUC and Recall are given. The 
second classification task mimics the appearance of new and 
unseen data. In reality this can be a new trip or a new driver 
using the application. This new data is consequently used as a 
validation set. In order to bring both the source dataset, in this 
case Baseline 3 and the validation set Scoring Dataset in a 
compatible shape, both datasets are passed to an Edit 
Metadata-module where the datatype of the columns are set 
uniformly. 

 

TABLE II. DATA CONFIGURATION 

Baseline Features Feature-Aggregations Min Req. Events Time Window 

1 
Eye openness, head angle pitch, 
head angle yaw, mouth openness, 
speed  

custom PERCLOS, mean eye openness, max eye 
openness, min eye openness, mean head angle pitch, mean 
head angle yaw, min head angle pitch, min head angle 
yaw, max head angle yaw, max head angle pitch 

10 1,5 sec 

2 
Eye openness, head angle pitch, 
head angle yaw, mouth openness, 
speed  

custom PERCLOS, mean eye openness, max eye 
openness, min eye openness, mean head angle pitch, mean 
head angle yaw, min head angle pitch, min head angle 
yaw, max head angle yaw, max head angle pitch 

14 1,7 sec 

3 
Eye openness, head angle pitch, 
head angle yaw, mouth openness, 
speed  

custom PERCLOS, mean eye openness, max eye 
openness, min eye openness, mean head angle pitch, mean 
head angle yaw, min head angle pitch, min head angle 
yaw, max head angle yaw, max head angle pitch, mean 
mouth openness, min mouth openness, max mouth 
openness 

10 1,5 sec 

4 
Eye openness, head angle pitch, 
head angle yaw, mouth openness, 
speed  

custom PERCLOS, mean eye openness, max eye 
openness, min eye openness, mean head angle pitch, mean 
head angle yaw, min head angle pitch, min head angle 
yaw, max head angle yaw, max head angle pitch, mean 
mouth openness, min mouth openness, max mouth 
openness 

12 1,5 sec 
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Fig. 2. The proposed ML model 

The training set Baseline 3 is then passed to the module 
Train Model and the validation set gets passed to the Score 
Model Task. The Train Model also takes a ML algorithm as 
input. The model is trained based on the Training-Data using 
the exemplary Neural Network and afterwards the trained 
Neural Network will be passed to the Score Model Task where 
it gets tested on the validation set which contains the new data. 
In the last step, the model gets evaluated based on Accuracy, 
Precision, F1-score, AUC and Recall. 

VI. EXPERIMENTAL RESULTS

A comparative approach between different ML techniques 
allows to choose the most suitable algorithm. In [19] the 
concern that ML experiments rely heavily on the data is raised, 
the interpretation if it and are hard to reproduce which is of 
special interest in the research field. Previous researchers 
showed that for similar classification tasks, Neural Networks, 
Random Forest, and SVM are widely used, these are 
consequently chosen as algorithms to compare against each 
other [7]. The Microsoft Azure classification model has some 
parameters for tweaking the ML algorithms. Each different 
algorithm has its own parameters. For the Neural Network the 
number of hidden nodes in the Neural Network, as well as the 
learning rate and the number of iterations, are taken into 
account when optimizing the algorithm. Initial testing revealed 
that 100 hidden nodes perform well, lowering the number of 
hidden nodes decreases performance, and with an increase 
above 100 nodes that does not have a big impact on the results. 
Consequently, that parameter is fixed to 100 nodes. The 
parameter for the SVM is the number of iterations and lambda, 
which denotes the degree of importance for misclassifications, 
with bigger lambdas the misclassifications are more important 
and less allowed. The Random Forest has the number of 
individual trees, their maximum depth, and the minimal 
number of samples per leaf node as parameter. Each model 
parameter configuration is attached to one evaluation row. 

With reference to Table II, the described data 
configurations resemble the most prevalent use case of the 

proposed system which can detect and distinguish multiple 
different dangerous states, such as distraction and drowsiness 
at once. Configuration 1 and 2 include, as features, the custom 
perclos, the speed, the openness of both the left and the right 
eye, the head pitch, the head yaw and the openness of the 
mouth. Furthermore, additional features are the mean, the 
minimum and maximum values of the eyes, the head yaw and 
the head pitch. The configuration 3 and 4 extend the three 
described configurations with aggregations about the openness 
of the mouth, in particular the mean, the minimum and the 
maximum of the mouth openness. The approaches vary in 
their different time windows with regards to the length of the 
time window as well as the minimum required events within a 
time window. The configuration of the described approaches 
can be seen in Table III – Table X. 

The evaluation of the four tested approaches reveals that, 
for the first configuration, both the Neural Network and 
Random Forest perform very similar to each other. When the 
time window is extended for the second approach, the Random 
Forest can greatly outperform the Neural Network. Both the 
Random Forest algorithm and the Neural Network can further 
improve with added aggregated features for the third and 
fourth configuration. While the fourth configuration raises the 
minimum required event count and scores the best F1-Score 
for all the different configurations with a Random Forest 
approach. 

TABLE III. NEURAL NETWORK CONFIGURATION AND EVALUATION (1) 

# of Hidden 
Nodes 

Learning 
Rate 

Iterations Macro F1 
Score 

100 0,1 100 0,421671209
100 0,2 100 0,692872142 
100 0,4 100 0,49980675
100 0,1 20 0,389434236
100 0,2 20 0,404154329
100 0,4 20 0,408630991
100 0,1 160 0,424437618
100 0,2 160 0,481973432
100 0,4 160 0,510131702
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TABLE IV. RANDOM FOREST CONFIGURATION AND EVALUATION (1) 

# of Trees Max Depth Min Leaf Samples Macro F1 Score 
8 32 1 0,469416976
2 32 1 0,609198354
32 32 1 0,700695199 
32 8 1 0,489023857
8 8 1 0,510131702
2 8 1 0,540695199
2 32 4 0,596979449
8 32 4 0,615180637
32 32 4 0,625025178
2 8 4 0,539904192
8 8 4 0,558837421
32 8 4 0,566706585

TABLE V. NEURAL NETWORK CONFIGURATION AND EVALUATION (2) 

# of Hidden Nodes Learning Rate Iterations Macro F1 Score 
100 0,1 100 0,42917322
100 0,2 100 0,4430901
100 0,4 100 0,513136
100 0,1 20 0,51614831
100 0,2 20 0,43837494
100 0,4 20 0,4289338
100 0,1 160 0,43087189
100 0,2 160 0,45317711
100 0,4 160 0,51899583 

TABLE VI. RANDOM FOREST CONFIGURATION AND EVALUATION (2) 

# of Trees Max Depth Min Leaf Samples Macro F1 Score 
8 32 1 0,72581615 
2 32 1 0,610908
32 32 1 0,70992889
32 8 1 0,59023321
8 8 1 0,57078645
2 8 1 0,51899583
2 32 4 0,60129555
8 32 4 0,63963819
32 32 4 0,63128689
2 8 4 0,55471677
8 8 4 0,55855759
32 8 4 0,566706585

TABLE VII. NEURAL NETWORK CONFIGURATION AND EVALUATION (3) 

# of Hidden 
Nodes 

Learning 
Rate 

Iterations Macro F1 Score 

100 0,1 100 0,42152261
100 0,2 100 0,50116839
100 0,4 100 0,50559143
100 0,1 20 0,44251563
100 0,2 20 0,41031938
100 0,4 20 0,41584999
100 0,1 160 0,50229158
100 0,2 160 0,51476433
100 0,4 160 0,52495679 

TABLE VIII. RANDOM FOREST CONFIGURATION AND EVALUATION (3) 

# of Trees Max Depth Min Leaf Samples Macro F1 Score 
8 32 1 0,74347624 
2 32 1 0,63608707
32 32 1 0,71681175
32 8 1 0,57639503
8 8 1 0,57193689
2 8 1 0,54447684
2 32 4 0,62142392
8 32 4 0,62958668
32 32 4 0,630966
2 8 4 0,53782808
8 8 4 0,55429013
32 8 4 0,56321058

TABLE IX. NEURAL NETWORK CONFIGURATION AND EVALUATION (4) 

# of Hidden 
Nodes 

Learning 
Rate 

Iterations Macro F1 Score 

100 0,1 100 0,42231288
100 0,2 100 0,49577651
100 0,4 100 0,49710717
100 0,1 20 0,32834959
100 0,2 20 0,32834959
100 0,4 20 0,41455286
100 0,1 160 0,51472129
100 0,2 160 0,50998433
100 0,4 160 0,516294 

TABLE X. RANDOM FOREST CONFIGURATION AND EVALUATION (4) 

# of Trees Max Depth Min Leaf Samples Macro F1 Score 
8 32 1 0,75287793 
2 32 1 0,63763463
32 32 1 0,73417818
32 8 1 0,58773432
8 8 1 0,57711517
2 8 1 0,55175332
2 32 4 0,62253607
8 32 4 0,64804026
32 32 4 0,64321045
2 8 4 0,55076006
8 8 4 0,57988178
32 8 4 0,57678061

VII. DISCUSSION

In this work we have developed a Cloud-based ML algorithm 
aiming to detect dangerous driving behaviors. The Microsoft 
Azure platform was used to test the proposed ML algorithms 
against each other. Data sets collected within the drive-safely 
application were used as data basis for developing a threshold-
based system for the detection of dangerous driving behaviors. 

The development process has been divided into 3 phases. First, 
it was necessary to understand the existing threshold-based 
classification procedure. Second, it was important to extract 
added value from existing data in order to enrich the 
classification and possibly achieve better results. Whether this 
is possible, had to be found out in the course of the extensive 
experiments. Third, the results showed how to handle the data 
in order to achieve the best possible results. 

It can be concluded that the processing of the data is of 
central importance. Once the data is enriched with 
information, better results can be achieved. Classification tasks 
that involve a variety of aggregated features, such as mean 
values of eye openness that take into account the past of the 
given time window are performing better than those who do 
not utilize aggregated features as much. We plan investigate it 
in further research. To this point a variety of different 
classification models were tested. Both the configurations of 
the algorithms themselves as well as the data were mixed up in 
order to find suitable results for the classification of dangerous 
states. 

The comparison of the two investigated ML approaches 
revealed that Neural Networks and Random Forests performed 
very similar to each other with a slight advantage for Random 
Forests. In addition, it has been recognized that the 
performance of the classification algorithms improved when 
additional data were attached to the dataset. In addition, the 
testing reveals that the sliding window concept for aggregated 
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features improved the performance of the classification when 
additional aggregations, such as minimum, maximum, and 
mean values of features are considered. The best performing 
approach includes aggregated features about the head angles, 
the mouth openness and the eye openness and is achieved with 
the Random Forest configuration (Table XI), which has a 
moderate processing time compared to random forest 
configurations with 32 individual trees. The corresponding 
confusion matrix is shown in Fig. 3. 

The results are thus based on commodity hardware, in this 
case smartphones’ sensor data. In order to further improve the 
algorithms or extend the feature set, it would be possible to 
add further data sources via sensor fusion. There are also 
recent works on this subject (e.g., [20]) that describe how they 
combine data from a Mixed Reality (MR) headset (Microsoft 
HoloLens), a smart-watch, a smartphone, and a data logger 
that logs data from the vehicle’s on-board-diagnostics (OBD) 
interface. Apart from the fact that it is not allowed in road 
traffic in many countries, a Mixed Reality headset could 
provide precise data on head rotations, thereby complementing 
and making more robust the existing distraction and 
drowsiness detection based on video data explained in this 
work. Smart Watches, in turn, can provide data such as the 
pulse, but also arm movement data to detect distractions where 
the driver may be looking at the road but is mentally focused 
on something else, e.g., while changing the radio station, 
digging around in the pocket looking for something, or typing 
a text message. 

Hence, this would contribute again to distraction detection, 
but also to drowsiness detection, e.g., as a reduced arm 
movement, which is typically necessary to keep the vehicle on 
track, can indicate fatigue [20]. 

While the data sources mentioned before primarily provide 
data about the driver and his status, data from the vehicle, on 
the other hand, can provide information on how the vehicle is 
used. In [21] the term Quantified Vehicle, which captures 
sensor data about itself (vehicle usage data) and its 
environment is introduced. Vehicle usage data could give 
insights on how risky the vehicle is used, e.g., whether it is 
often at risk of slipping off the road due to enormous lateral 
accelerations in curves, or how often and for how long wheels 
spin. Such events are considered to be part of an aggressive 
driving style, and this is, as mentioned in Section I, one of the 
causes of many deaths in road traffic. However, unfortunately 
such data is currently only available in test vehicles that read 
the data directly from the vehicle’s bus system (e.g., CAN 
bus). 

Services on the market so far mainly use the above 
mentioned OBD interface, which was actually not developed 
for this purpose. Theoretically, this interface should provide a 
lot of interesting data, but in practice with several tested 
vehicles of different manufacturers, there were only 10-15 
relevant signals like vehicle speed, revolutions per minute 
(RMP), or oil temperature each, which allows driving style 
analyses, but only to a very limited extent. Recently, however, 
more and more vehicle manufacturers are discovering their 

interest in retaining customers with services, which 
increasingly creates the technical possibilities for third party 
service developers to gain access to their customers' vehicle 
data. Even marketplaces have already been created (e.g. 
caruso-dataplace.com), which offer data from several 
manufacturers in a uniform data format. This in turn shows 
that sensor fusion between smartphone sensor data and vehicle 
data can become a relevant topic, and that there is a clear trend 
towards turning vehicle and driver data into a business model, 
as described for example in [22]. In Table XII, we summarize 
a preliminary list of interesting events we think of extending 
our solution to in the future. 

TABLE XI BEST PERFORMING CONFIGURATION  

# of Trees Max Depth Min Leaf Samples Macro F1 Score 
8 32 1 0,75287793

Fig. 3. Confusion matrix for the best performing algorithm 

TABLE XII. PARAMETERS FOR THE PROPOSED MODEL EXTENSION 

Interesting Events w.r.t risky 
driving 

Data Source 

Head movements related to 
distraction or drowsiness 

Smart Glass / Mixed Reality 
Headset: head rotation sensor 

Arm movements that are not 
intended for driving

Smart Watch: 
acceleration sensor 

Individual arm movement on the 
steering wheel to keep the vehicle 
on track, and unusual deviations 

therefrom

Smart Watch: 
acceleration sensor 

Individual driving style like typical 
rpm usage and gear change 

behavior per road segment, to 
detect unusual behavior 

Vehicle OBD interface data 
(limited set of vehicle sensor 

data) 

Wheel speed per wheel to detect 
wheel spinning or locking tires 

Vehicle CAN bus data (access 
to more vehicle sensors): 

wheel speed 
Harsh braking, harsh accelerating, 

harsh cornering 
Vehicle CAN bus data (access 

to more vehicle sensors): 
vehicle acceleration sensor 

Distances to other vehicles and 
vulnerable road users 

Vehicle CAN bus data (access 
to more vehicle sensors): 

RADAR/LiDAR/video sensor 
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VIII. CONCLUSION

The goal of our paper is to present an approach based on 
ML to extend the existing system with a component that 
enables learning and adapts to the individual needs of the 
driver. The long-term vision is to learn from the collected data 
and make the previously rigid thresholds more flexible. This 
will be achieved by using ML techniques to establish 
correlations between the observed behavior and the underlying 
data and to gain new insights. These findings should be 
evaluated and can be integrated into the threshold-based 
system afterwards in order to increase the performance 
regarding the correct recognition of dangerous situations for 
the individual driver. In order to meet this requirement, 
extensive experiments were carried out with the help of the 
data to determine how an implementation can be done.  

The experiments show how important the handling of time 
series data is with regards to performance and accuracy of the 
models. Especially when dealing with variable sized time 
windows problems occur which can skew the resulting 
classifications. As [15] notes that dynamic time warping, as a 
representative of a time series analysis methods, can 
automatically cope with time deformations it seems interesting 
to test the data analysis step with time series analysis methods. 
So, we would like to mention that the computation time in the 
cloud is not critical for the proposed system since it is post 
processing of the data. 

In the future the user confirmed dangerous event 
information is implemented as additional input besides the 
captured data by the threshold system. As a starting point it is 
planned to have questionnaires about the confirmation of 
dangerous events. That data can afterwards be used to have a 
more precise classification. Let us assume the cases where the 
driver denies the proposed dangerous state by the threshold-
based system all have certain unknown criteria. These 
unknown criteria can be linked by the ML component to those 
cases where the threshold-based system does not perform as 
well as intended and propose different dangerous states 
accordingly. This way the ML component of the system can 
improve on user feedback and give improving 
recommendations to the threshold-based system regarding its 
thresholds. 

We believe that the research we present is useful for both 
science and practice to further facilitate the development of 
smartphone-based vehicle information systems (see e.g., [23] 
for more details on vehicle IS). Our research indicates that ML 
technologies such as Neuronal Networks and Random Forests 
as promising approaches for learning and adapting threshold-
based reasoning about individual drivers’ states. 
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