
Solution Management for Current Temporal Aspect
using Tuple Versions

Michal Kvet

University of Žilina
Žilina, Slovakia

Michal.Kvet@fri.uniza.sk

Abstract— The current temporal paradigm is based on the
validity, which delimits each data tuple by the time frame. The
uni-temporal solution extends the object identifier with the
validity interval inside the primary key. It can be used on various
granularities (object, attribute, and group), however, it cannot
store individual versions for existing data corrections. This paper
references temporal architectures highlights current challenges
for dealing with data versions and proposes own solution
replacing transaction time frame forming transaction reliability
concept. It deals with the referential integrity in the temporal
environment and proposes a model for covering references and
ensuring the integrity of the processed data using signature hash
values, two-level indexes formed by the object and individual
states with corrections.

I. INTRODUCTION

Data stored in the database cover a significant part of the
processing. Current database systems are robust and must
maintain the whole spectrum of the data with emphasis on the
structure, evolution management, and velocity. Security and
reliability are the main key spectra to be highlighted, as well.

In the past, data were commonly stored in the files
managed by the file systems and accessed sequentially. In the
sixties of the 20th century, first database approaches were
developed forming a transparent layer between application and
data. The most relevant concept is based on relations covered
by the mathematical relational algebra [2]. The conventional
paradigm as the most complex relational data stream deals
with only current valid data [6]. Future valid data are not
present in the main structure, as well as historical data. The
temporal paradigm was formed in the eighties of the 20th
century, by extending object identification using the time
definition [6] [7] - oriented temporal approach, which was
later improved using various approaches. In that solution, each
object is formed by the unlimited number of individual states
delimited by the validity frame – begin and end point of the
validity [7]. Attribute-oriented approach dealing with column
granularity was proposed in 2014 [10]. Each update in such a
solution is divided into separate attribute changes and
managed separately. In 2017, the hybrid solution was
proposed [8] [13]. In that case, the background layer of the
attribute-oriented solution is extended by the synchronization
processes. Thanks to that, if some data portions are always
synchronized, the detector automatically evaluates such a
situation and it is maintained similar to the attribute itself. The

synchronization group can be composed either by attribute
itself or by the group. Internally, each attribute is managed as
the group with the set volume.

Limitations of the previously mentioned solutions are just
the maintainability if the existing state must be corrected. If the
state exists in the system but must be corrected, there is no
robust solution. In principle, current systems offer two ways –
the existing state is updated with no reflection the history, thus,
information about the original state is lost [13]. The second
principle is based on correction rejection [4]. Both approaches
are, however, limiting. To solve the problem, we propose a
reliability extension module for dealing with versions and
management of existing data corrections in this paper. It is
based on signature hash values management.

II. RELIABILITY ASPECT OF THE TEMPORAL MODEL

Existing solutions do not cover the complexity of existing
data changes, the reflection of data corrections. Previously
mentioned models are based on validity. They replace the
conventional definition by adding validity borders. Thanks to
that, each data tuple can be placed on the timeline and ordered
[3] [5]. On the other hand, there is no complex module for
dealing with data corrections. Imagine, it is not the only
problem of replacing existing state due to some mistakes or
improper data updates. The problem is much deeper, whereas
the environment is fully temporal and deals with future valid
data, which can be modified based on changed characteristics
and environment. However, there is still a necessity to have
relevant information about the upgrade. For such purposes, we
propose our own solution, which is data resistant. Thanks to
the usage of superstructures, our solution can be connected to
any temporal data architecture. Moreover, it finds its place in
the conventional paradigm ensuring consistency in distributed
and parallel systems. As a consequence, secure, robust, but the
most reliable solution is produced. Any data change is stored.

Temporal databases generate complex data environment
covering the intelligence of the current information systems,
propose data storage and manipulation methods for evaluating,
creating prognoses, reactions, decision making, and
predictions. Temporal aspects and requirements are constantly
improved based on the current requirements and situation.
Development characteristics and requirements for temporal
models were presented in [3] [5] [6] [10], based on the aspect
of usability (easily manageable methods – systems should be
able to cover and solve most of the problems automatically

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

without user intervention necessity) and aspect of performance
(there should be no significant slowdown of the system if the
conventional approach is replaced by temporal). An aspect of
performance also covers the interconnection necessity –
existing systems must be able to work without the necessity to
rebuild or recompile solutions [7]. It is mostly ensured by the
architecture itself (e.g. in attribute oriented granularity, current
valid states are stored in the first layer using conventional
database principle) or by using views.

In this paper, we extend defined aspects by the requirement
of the data structure. It focuses on architecture optimization
based on the object data, which should be covered. We propose
a categorization of the data tables and attributes themselves:
Conventional – it is not necessary to monitor data changes over
time, the only current valid data image is necessary to be
accessible. Static – it presents specific subcategory of the
conventional model, data do not change their values over time,
at all, thus no evolution can be evaluated and presented. In
general, particular data updates are prohibited using triggers or
access privileges. Temporal – data must be monitored and
stored over time. With regards to the security and GDPR
politics, some historical data must be anonymized or replaced
after the defined time interval. It is ensured by the job
functionality, in our solution.

The attribute-oriented solution with a hybrid aspect covers
all of the previously mentioned categories.

The last added aspect of this paper is based on reliability
and security. Data must be managed in a complex manner to
hold the tuples with the address of the changes and corrections
of existing states. To address the time definition and future
valid states, we propose four temporal definitions to solve the
conflicts of the data states, whereas each object cannot be
defined by more than one valid state anytime. Future valid
states, with emphasis on the data architecture, must be
automatically transformed into the current if the beginning
point of the validity appears. Reflecting the state of the art, our
solution uses internal database jobs [1] [2], which ensure, that
updates are precise with no delays. Vice versa, although
solutions based on operating systems have less system
resource demands, they do not ensure, that the transformation
is executed in a strictly defined time point. Simply, it cannot
be sooner but can be later. In temporal systems with
nanosecond granularity, any delay can cause really significant
system degradation.

Let have one planned state Splanned of the object O delimited
by the time frame BDplanned and EDplanned by using closed-open
data interval representation (transformations between
individual interval types can be found in [7]). And let have
another state Snew, which is going to be loaded into the system.

Our proposed access rules are the following:

 Complete reject. This rule is based on the
impossibility to create a collision with existing states
(Splanned), either current or planned. Simply, if there is
the collision, the transaction is aborted and the new
state (Snew) cannot be inserted, at all – Fig. 1.

Splanned
BD ED

Snew
BD ED

Result
BD ED

Splanned

Fig. 1.Complete reject

 Complete approve. In that case, state Splanned is
canceled and replaced by Snew. This rule can be used, if
there is no validity interval collision between states, as
well. This option can be even divided into two
categories regarding the collisions, which are delimited
by the parameter collision_only, which can hold true or
false value. If the true value is set, planned states are
not influenced, if there is no validity collision. Vice
versa, if the false option is set, all states, which begin
point of the validity is greater than actually inserted, are
removed from the current image, respectively are
signed as invalid – Fig. 2.

Splanned
BD ED

Snew
BD ED

Result
BD ED

collision_only=false

BD ED ED
collision_only=true

Snew

Snew Splanned

Fig. 2.Complete approve

 Partial approve. This approach principle is based on
the shortening validity interval of the new state Snew.
The validity end point of the state Snew is delimited by
the planned state Splanned, which is signalized by the
collision detector – Fig.3.

Splanned
BD ED

Snew
BD ED

Result
BD ED ED

Snew Splanned
Fig. 3. Partial approve

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 102 --

 Reposition. It is based on the principle of remaining
the new state original (as defined). Planned state Splanned
validity is either shortened, or the whole state is shifted
starting at the ED of the inserted object state (Snew) – fig.4. The
difference between Complete approve rule is based on the
validity time frame. In case of using Reposition, original
validity is retained, just the state is shifted in time, whereas
Complete approve rule challenges by shorting the validity.

Splanned

BD ED

Snew
BD ED

Result
BD ED ED

SplannedSnew

Fig. 4. Reposition

In the previous part of this section, we proposed solutions
for dealing with future valid states, to solve the collisions with
emphasis on the defined access rules. The management is
based on the fact, that new inserted state influences only future
plans, states, which validity will start later in the future. This
sub-section proposes techniques for dealing with states, which
has been valid either completely (historical state) or partially
(current). In that case, solution management is a bit more
complicated, due to the necessity to ensure extended integrity.
Antidating problem definition is based on the fact of
influencing the existing, non-planned state. Therefore, it is
almost always necessary to solve not only states themselves
but also configured and calculated outputs. If they are stored
directly in the database, they can be distinguished and marked
as non-actual. If the output result set or report is stored outside
the database, it is not possible to message it. For such reasons,
API functionality has been defined by us, which checks the
relevance and appropriate values to be processed in the
functions. Thanks to that, if the data portion or structure is
changed, it is clear, that the calculated results are not based on
current data image (delimited by the time interval or by the
object region) and output does not need to produce correct
data sets. However, the point is, how to detect it without the
necessity or recalculation, without the necessity to execute
such functionality once again and compare result-sets. Reflect
the situation, that the processing can be really resource-
demanding lasting too much time, thus it is not convenient,
even possible in some conditions, to recalculate results just to
detect, whether produced data from the previously executed
function are the same as current or not. Therefore, in the past,
antidating – changing data valid in the past – was prohibited.
As a consequence, it was not possible to change any state
inserted in the past, if the validity has already started. The
reliability of the solution was lowered, whereas it was not
possible to correct the state if the new conditions occurred.
Some solutions used auxiliary data structures to store data
about corrections, however, the main storage does not have

information about corrections [4] [16]. As a consequence, it
can be said, that the main system stores incorrect data. It is not
reliable and secure, isn’t it?

For the purposes of the change and correction detection, our
proposed solution uses signature hashes, which are calculated
for each object, each state, and the time spectrum, as well.
Result set of the function stores a signature hash for the data
set evaluated inside. Thanks to that, if the signature hash is
changed later, it is just necessary to check and compare the
database signature hash and a hash of the data provided as the
input for the data object function. Principles and performance
impacts are later described in chapter 3.

III. DATA HASH AND POINTER

Detection and correlation of the existing state changes
executed later is a core part of the processing forming a
reliable solution. The security aspect is delimited by the
correct data image provided to the other systems as result sets.
Evaluation of the particular states and identification of
individual attribute changes can be a really complicated
process. First of all, data can use various granularity types,
from objects, up to attributes, respectively groups. If the object
architecture is used, the original value can be copied multiple
times to the new images, if no change of the particular
attribute occurs. Another problem arises if the data from the
sensorial network are collected periodically. In that case, the
new value is produced, however, it does not need to express
and reflect a real change. Therefore, it is necessary to evaluate
and distinguish real and significant changes, even after using
Epsilon techniques [8] [9]. Data attribute does not need to be
size - small or atomic, it can be defined as a compound value
with references or objects, which shift the problem deeper. A
comparison of the attribute values themselves does not provide
sufficient power, whereas it could be really extensive
referencing other objects, large files, and structures. Therefore,
in our proposed solution case study, a hash value for each
relevant category is produced. The hash value can be
calculated either for the whole state, for the attribute group,
object or the whole image of the database, while being
ensured, that any change causes generating the different value
of the hash (security aspect of the solution). Thanks to that,
change of the object, attribute or group can be detected easily.
Moreover, if the object state is fluctuating and their values are
the same with its historical image, the same hash values are
produced, thus periodicity can be detected, as well. As
a consequence, data can be compressed pointing to the cyclical
sequence by highlighting only anomalies. However, as it may
not seem at first glance, our proposed solution must encounter
and solve many problems, which are described in the
following sub-sections.

An Indexing and distribution sorting

Our produced hash values are obtained by the effective, but
also mathematically sophisticated methods, to ensure unique
value for any object, state or group. Thus, they can be used as
row identifiers or locators. Moreover, whereas data type of the
hash is RAW, data manipulation and comparison is really fast
[15] [16]. On the other hand, the robustness of the hash

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 103 --

function causes approximately uniform values distribution
over the whole set, whereas each hash function result set is
delimited by the range bordered by the function Mod (the
remainder after division). Any, even a small change of the
value, should generate a completely different value. It means,
that the states and corrections of the individual objects are
distributed across the whole set. Therefore, the changes are not
interconnected in any way. On the one hand, this is perfect
from the point of the changes, on the other hand, obtaining
individual images and producing object monitoring over time
is difficult, whereas object images are difficult to be located in
the database - they are widespread. To sharpen the problem,
consider the index to locate data. If the hash is used for the
individual states of the object, the data location is based on
traversing the B+tree (as the default index structure for the
database). Thus, if only one object state is used, the Index
Unique Scan method is used, based on the precondition of
storing unique hash values. If we want to get the states during
the defined time interval, the optimizer must be based on the
prediction, statistics, and pre-calculations, decide, how to
access data. If only one state is produced, the solution is clear
– defined index provides the perfect solution to locate data.
However, if there are (or can be) several state modifications,
the system must predict its number and decide, whether
multiple time index access is more optimized in comparison
with accessing the whole table consisting of all states of the
object. Based on our previous computational studies [8] [9],
we came to the conclusion, that such a solution is not fair.
Although the index access and data location can be done in
parallel, it does not provide sufficient power due to resource
consumption and the necessity to synchronize data to the
output packages. Therefore we create and compare several
techniques to improve the state of the art. The current solution
is based on multiple time scanning of the index. If three states
are defined for the particular object, all of them are distributed
with no pointer to the consecutive state. Thanks to that, the
defined index is scanned as many as the number of states, we
want to get.

B Pointer stitching

Index access using hash values is not optimal, whereas the
index traversing must be done multiple times. It can be
partially eliminated by the parallel data access, however, there
is still point of the synchronization of the result set and index
locking. Therefore, we extend the B+ tree definition by using
stitchers across the whole structure, thus, individual hashes are
not linked together in the leaf layer, whereas its sorting does
not provide any benefit/hash values do not provide direct data
information. Instead, pointers are directed to the consecutive
state of the object. Thus, data are not interconnected using
hash values are an identifier, but another layer consisting of
pointers to individual states of the object is used. These states
are sorted in the time interval position manner. If the state is
corrected, a particular object is locked inside the index and
arrows are recalculated. Thus, historical (original) states,
which were later changed (corrected) are not part of the index.

If the object composition is present, additional pointers to
the other group set members are present.

Bi-temporality can be modeled using the already described
solution, as well. Timestamp expressing insert date is added to
the system expressing the transaction layer (the first layer is
validity, the second temporal layer is a transaction – bi-
temporal approach). Individual corrections are stored
separately sorted by the transaction frame, but connected to
the main index structure using the pointers. In general, pointer
correction originate is the object itself.

C Object grouping

The limitation of the last described solution is just the
heterogeneity and distribution of the data across the index.
One object is split into individual states and managed
separately. On the one hand, the structure is relatively easy to
be managed, on the other hand, states for all objects are
present in one index structure. Although the B+tree index does
not degrade with the number of blocks and levels, the
important side is just the size and severity of the stitching.
Therefore, inspired by the Index Skip Scan access method, we
introduce index in index access pointers. The architectural
solution is based on the master index managing only object
headers, not the specific data states for them. Each object is
identified by its own unique signature hash, which is part of
the index. Thus, on the leaf layer of the index, there are not
only data locators inside the database, but we also put their
signature hash. Individual states themselves are then
connected via a secondary index, similar as described in
section 3.2. The interconnection between these two layers is
done using a nested table structure consisting of individual
object state hashes. Thanks to that, identification of the state
changes across the defined time interval can be done directly
at the master level (if some change even occurred). The details
of the change itself, respectively attribute images of the object
are then in the second layer. Fig. 5 shows an overview of the
architecture.

D Locating change inside the hash value

The hash value itself does not have any specific structure,
by which individual attributes with changed values can be
identified and consecutively located. From the object outside
point of view, it is evident, that particular change occurred,
however, it is not possible to determine, which attributes have
different values in comparison with previous states. In this
evolution step, it is necessary to split the state into individual
attributes and compare individual attributes to each other.
Moreover, if one attribute changed its value also others could
change them, thus the whole attribute set must be scanned,
either sequentially, or by using parallel techniques. Moreover,
conventional and static attributes must be taken care of.

For the optimization of the locating change process,
signature hash values are extended. We propose a multi-
module solution. Signature identification consists of three
parts:

 the calculated hash value of the state, the calculated
hash value of the object (for the reference of the master
index),

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 104 --

 nested table structure holding identifiers of the
attributes, which values were changed reflecting the
direct previous change.

Thanks to the defined structure, consecutive changes can be
identified and located relatively easily. If two independent
states are to be compared, sequential attribute scanning is
necessary. However, how does the nested table structure look
like?

We have developed three solutions, which are compared in
the performance section, as well:

 Nested table stores list of identifiers of the attributes,
which were changed (model A). It means, that the size
of the nested table depends on the number of changed
attributes. As a consequence, the size of the structure is
variable, thus each database block can consist of a
different number of nested structures, which must be
scanned sequentially, whereas there is no order. The
size of the structure is not constant resulting in free
space in the block.

 The second proposed solution (model B) is
characterized only by the number of changed attributes
for the state. It stores only one integer number.
Internally, individual attribute scanning is ordered
based on the statistics and prediction of the attribute to
be changed. These extensional statistics are obtained in
the maintenance windows periodically. The relevance
and effectivity are the same as ordinary statistics – if
huge data are changed or loaded, statistics are
inevitable to be recalculated to represent the current
situation. Our own extensional statistics management is

connected to the standard types using internal database
jobs.

 The last proposed solution (model C) uses the attribute
change identifier (chID). The first part of the chID is
calculated from the attribute values, which are unique
and deterministic from the definition. The second part
is the link to the attribute identifiers, which hold
changes. It is represented by the integer value, the
transformation and denotation itself are stored in the
code list database table. Thus, the size of the structure
is always the same, regardless of the number of
changed attributes. On the other hand, originally, there
was a significant disadvantage, if the new attribute of
the object is added to the temporal system, code list
values must be recalculated. In our solution, however,
it is done online by using temporal evidence and
managing transformation automatically without user
intervention necessity. Therefore, any user mistakes
resulting in incorrect transformation and expression are
removed.

Own proposed solutions in this paper are based on the
validity management and monitoring. In chapter 2, reliability
and collision management rules were proposed forming
another layer controlling data to be inserted and indeed
accepted states. In the future, our research in this area will
focus bi-temporal architecture evaluating data corrections.
Change identifier is significant for the consecutive processing
in calculations, function results, reports, etc. We will extend
these techniques with the aspect of data correction. By using
it, we suppose more robust solution identificating specific
change and reflection to pre-calculated and pre-processed
outputs.

75 613

12 HASH POINTER

OBJECT HEADER INDEX

150

250

123 HASH POINTER

197 HASH POINTER

222 HASH POINTER

44 HASH POINTER

56 HASH POINTER

93 HASH POINTER

96 HASH POINTER

121 HASH POINTER 255 HASH POINTER

697 HASH POINTER

714 HASH POINTER

949 HASH POINTER

253 HASH POINTER

254 HASH POINTER

State of the object 12

44 ROWID 96 ROWID 197 ROWID 254 ROWID 714 ROWID

56 ROWID 121 ROWID 222 ROWID 255 ROWID 949 ROWID

613

12 ROWID 93 ROWID 123 ROWID 253 ROWID 697 ROWID

150

75 250

150

75

197 ROWID 254 ROWID 714 ROWID

56 ROWID 121 ROWID 222 ROWID 255 ROWID 949 ROWID

250 613

12 ROWID 93 ROWID 123 ROWID 253 ROWID 697 ROWID

State of the object 44

44 ROWID 96 ROWID

44 ROWID 96 ROWID 197 ROWID 254 ROWID 714 ROWID

56 ROWID 121 ROWID 222 ROWID 255 ROWID 949 ROWID

250 613

12 ROWID 93 ROWID 123 ROWID 253 ROWID 697 ROWID

State of the object 56

75

150

Fig. 5.Approach illustration

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 105 --

IV. PERFORMANCE

Experiment results were provided using Oracle Database
11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production;
PL/SQL Release 11.2.0.1.0 – Production. Parameters of used
computer are processor: Intel Xeon E5620; 2,4GHz (8 cores),
operation memory: 16GB, HDD: 500GB.

Environment characteristics are based on a real
environment consisting of 1000 sensors producing data ten
times for one minute. 10 percent of the provided data is
consecutively replaced (corrected) by newer ones using
versions. Three models described in chapter 4 are used for the
evaluation. Model A stores pointer to the attribute changes in
the linked array. Model B stores the number of changed
attributes, which are then accessed. Thanks to the number of
changed attributes, searching can be stopped, if the requested
amount is reached. Improved model (model BB) stores the
attributes in the sorted list based on the frequency of the
changes covered by the prediction techniques and statistics).
Model C uses chID and references code list. Fig. 6 shows the
performance represented by the processing time, resource
consumption and size demands. Individual solutions are
compared with the pure existing solution Model X with no
validation characteristics of the change using hash (reference
model – 100%). For the evaluation, results are expressed in
percentage.

Performance evaluation can be done in three layers. When
dealing with processing time, the best solution reached model C
and model A with the processing time improvements using 20%
(reference model X). Model B reached improvement using 5%,
model BB using 8%. In models B and BB, it is necessary to
evaluate the whole nested table, regardless of the defined
attribute group to be evaluated, whereas it has no specific
order, nor the access index can be defined. When dealing with
resource consumption, the best solution provided model C
(improvement 36%) and model A (35%). The principle of the
requirement is ensured by the direct access to the attributes,
which values were changed. In model A – it is done using
nested table array, model C uses a pointer to the code list
managing the attribute change itself. The last evaluated
criterion is size demands. Whereas for each proposed solution,
additional structure is added, size requirements must be higher.
For model B and model BB, it reflects the change using 2% -
only one integer value is added. For model C, also code list is
stored in the file system providing all data attribute
combinations. It requires an additional 5%. Model A stores the
whole list for each object state, therefore the requirements are
increased using 70%.

Fig. 6.Performance characteristics - results

V. CONCLUSIONS

The conventional paradigm is based on storing only current
valid data. Although historical images can be partially
obtained by using log files, it is a really complicated process
requiring huge resources and processing time. The temporal
extension can manage data during the whole life cycle of the
object storing all states. In the past, several approaches have
been proposed to deal with the temporal paradigm using the
validity aspect modeled by the time frame. The object,
attribute and synchronization group granularity can be used.
The limitation of such a solution is just the state changes
identification and location. If the attribute value is obtained
periodically, or object granularity is used, the same values
characterizing an object or its part can be reached. In that case,
particular data are not stored (if possible) – existing value
validity is shifted or duplicate value is stored. Anyway, if the
object state changes and evolution must be obtained, such
states must be excluded by highlighting only significant
changes. For such purposes, we propose a hash definition,
which can be placed for object, attribute, group, defined
database image during the defined time frame. Thanks to that,
change identification can be done easily, it is possible to
ensure reliability and security aspect, as well. Using
extensions proposed and described in this paper, the solution
provides an efficient approach locating changes up to attribute
granularity. Thus, transaction validity can be reached by using
a master and secondary index based on the pointer layer and
object grouping, as the best solution defined by the
performance relevance. At the same time, we have solved the
issue of hash value distribution inside the index, so that the
individual object states are linked using two directional linked-
lists.

Many times, database management requires a distributed
environment and balancing of the individual nodes. In the
recent future, we would like to extend our solution in a
distributed environment manner to cover the complexity of
data distribution. Each data tuple is then located on at least
two data nodes to ensure data access in case of node or sub-net
failure. Surviving data nodes take care of the management and
redistribute data, so the data are available on at least two nodes
then, again. A similar principle will be used for adding new
nodes to the system, as well. Dealing with the transaction
management inside the temporality, it requires to locate data
on the particular nodes and ensure data corrections, if the
existing state is to be modified. For such purposes, signature
hash values with pointers to individual nodes would
be used.

ACKNOWLEDGMENT

This article was created in the framework of the National
project IT Academy – Education for the 21st Century, which is
supported by the European Social Fund and the European
Regional Development Fund in the framework of the
Operational Programme Human Resources.

The work is also supported by the project VEGA

1/0089/19 Data analysis methods and decisions support tools

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 106 --

for service systems supporting electric vehicles and Grant
system UNIZA.

"PODPORUJEME VÝSKUMNÉ AKTIVITY NA SLOVENSKU
PROJEKT JE SPOLUFINANCOVANÝ ZO ZDROJOV EÚ"

REFERENCES
[1] Ahsan, K., Vijay, P., 2014. Temporal Databases: Information

Systems, Booktango.

[2] Ashdown, L., Kyte T., 2015. Oracle database concepts, Oracle Press.

[3] Avilés, G., et al., 2016. Spatio-temporal modeling of financial maps
from a joint multidimensional scaling-geostatistical perspective. In
Expert Systems with Applications. 60, 280-293.

[4] Doroudian, M., et al., 2016. Multilayered database intrusion detection
system for detecting malicious behaviours in big data transactions,
IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM).

[5] Erlandsson, M., et al., 2016. Spatial and temporal variations of base
cation release from chemical weathering a hisscope scale. In
Chemical Geology. 441, 1-13.

[6] Johnston, T., 2014. Bi-temporal data – Theory and Practice, Morgan
Kaufmann.

[7] Johnston, T., Weis, R., 2010. Managing Time in Relational Databases,
Morgan Kaufmann.

[8] Kvet, M., Matiaško, K., 2017, 5.7. – 7.7.2017. Temporal Data Group
Management, IEEE conference IDT, 218-226.

[9] Kvet, M., Matiaško, K., 2014, 18.6. – 21.6.2014. Transaction
Management in Temporal System, IEEE conference CISTI,
868-873.

[10] Kvet, M., Matiaško, K., 2014, 20.11 – 22. 11.2014. Uni-temporal
modelling extension at the object vs. attribute level, IEEE
 conference UKSim, 6-11.

[11] Kuhn, D., Alapati, S., Padfield, B., 2016. Expert Oracle Indexing
Access Paths, Apress.

[12] Kumar, N., 2019. Efficient data deduplication for big data storage
systems, In Advances in Intelligent Systems and Computing, 714,
 351-371.

[13] Li, S., Qin, Z., Song, H., 2016, A Temporal-Spatial Method for
Group Detection, Locating and Tracking, In IEEE Access, 4.

[14] Li, Y., et al., 2016, Spatial and temporal distribution of novel species
in China, In Chinese Journal of Ecology, 35, 7,
1684-1690.

[15] Yu, C., et al., 2019. A fast LSH-based similarity search method for
multivariate time series, In Information Sciences, 476,
337-356.

[16] Zhang, K., et al., 2019, Efficient public-key encryption with equality
test in the standard model, In Theoretical Computer Science, 755,
65-80.

__PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

-- 107 --

