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Abstract—The Internet of Musical Things is an emerging
field of research that intersects the Internet of Things, human-
computer interaction, ubiquitous music, artificial intelligence,
gaming, virtual reality and participatory art through device
multiplicity. This paper introduces a paradigm whereby data
points and variable parameters can be strategically mapped or
bound using aliases, data types and scoping as an alternative to
flat address-structured mapping. The ability to send and/or access
complex data types as complete entities rather than lists of pa-
rameters promotes data abstraction and encapsulation, allowing
greater flexibility through modular architecture as underlying
data structures can change during the lifestyle or evolution
of a computer based composition. Additionally, the facility to
define data accessibility, and the ability to reuse human readable
names based on a variable’s scope is a common feature of most
programming languages. This paradigm has been extended in
that scoping a variable can be dynamically bound or addressed
to specific objects, class types, devices or globally on an entire
network. We describe the evolution of this paradigm through its
development via various project requirements.

I. INTRODUCTION

The Internet of Musical Things (IoMusT) is an emerging
field of research that intersects the Internet of Things (IoT),
human-computer interaction, ubiquitous music, artificial intel-
ligence, gaming, virtual reality and participatory art through
device multiplicity [1]. Artists are creating spatial and portable
media experiences that exploit the capability afforded by smart
devices to interact and coordinate with one other [2]. In
addition to devices sending sensor information to one another
in the IoT domain, networks become scalable in that devices
can be added or removed from them [3]. As a result, composers
are changing the way they deal with works that contain
multiple devices. In the same way that a graphic designer might
consider drawing to a display as a single entity rather than a set
of pixels, composers using multiplicities are choosing to treat
multiple devices as a collective unified entity, or as groups of
entities, within the whole structure.

The invention and evolution of the microprocessor has
resulted in chips containing multiple cores, capable of running
a large number of concurrent independent threads of execu-
tion, with separate “logical processors sharing the execution
units of each core” [4, p. 10]. Moreover System on a Chip
(SoC) devices are now available that combine CPU, memory,
Graphical Processing Units (GPUs) and I/O on a single device
[4]. Coupled with the development of operating systems,
where each process can behave as its own virtual device—
each containing its own stack, program counter and memory
partition—these processes effectively function as logically sep-
arate entities [5]. As opposed to a physical multiplicity, where

separate devices work together to form a unified function, we
define these as “logical multiplicities” because separate threads
of execution or processes—although coexisting on the same
physical device—are logical entities that function together as
a multiplicity. Extending this concept further, one could argue
that two or more sketches running on the same device—
similar to multiple patches concurrently running within the
same instance of the program Max/MSP—could be consid-
ered as separate logical entities, and when communicating
with one another, function as a logical multiplicity. Logical
multiplicities are therefore abstract—they must be realised as
either physical multiplicities, where the collective logic exists
on more than one device; as purely logical multiplicities, in
that one device performs all the work through separate threads
of execution; or as a combination of the two.

One of the challenges of composing for multiplicities is de-
ciding how to map data across multiple devices while treating
the collection of devices as a single entity. The ability to simu-
late physical multiplicities through the use of logical multiplic-
ities can significantly speed up the composition life-cycle. With
the advent of the Internet of Things (IoT), however, there are
a plethora of different device types of various computational
power and connectivity capabilities. This in turn increases
the level of complexity that increases the likelihood of errors
due to protocol incompatibility, insufficient resources—such
as computational power, energy supply or network bandwidth.
Coupled with this, IoMusT devices are sometimes limited in
their ability to access the internet due poor network coverage
or firewall restrictions enforced by hosting institutions such as
universities and public museums. The ability for composers
to switch from purely logical multiplicities to physical ones
without having to modify code to accommodate network based
inter-device communication reduces frustration and promotes
creative flux [6].

This paper introduces a mapping paradigm whereby shared
variables can be mapped or bound using an object oriented
strategy rather than a flat address-structured method; and
how we implemented it in three separate creative works—
an interactive planetarium software control interface [7], an
interactive participatory tangible artwork [6], and an interface
for capturing complex hand and finger movement during
embroidery [8].

II. CONTEXT OF RESEARCH

Many composers today are utilising the facilities afforded
by network technologies that have enabled them to create
agglomerate media artworks that involve multiple devices
interacting with one another over networks. These works often
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requiring device intercommunication as well as sharing state
information with one another, with composers often having to
constrain their designs based on choices about how the work
is distributed [9]. For example, choices are often made about
whether computation is distributed among devices or managed
on a central server, whether there will be network bandwidth
reliability or bandwidth issues, and whether actual hardware
will be available for a sufficient period of time beforehand to
test and evaluate designs [2]. Although simulating a hardware
device can be valuable for designing patches and testing they
perform as an individual instrument [10], simulating multiple
devices can be very challenging when considering that one
would probably need to simulate device intercommunication
as a part of this.

The research conducted in this paper has been as a part
of the HappyBrackets platform [2]. HappyBrackets is a Java
based creative coding environment where composers create
sketches in Java, which are then compiled and sent to one
or more Distributed Interactive Audio Devices (DIADs) for
execution and performance. The DIAD was first introduced
in 2014 as “an experimental design for creative sound and
music performance and interaction using multiplicities of net-
worked, portable computers” [11, p. 604]. DIADs contained a
Raspberry Pi and an inertial measurement unit (IMU), and
when handled by the audience and incorporated into the
environment, they not only responded to user manipulation, but
they also responded to one another. The focus of the project
was the development of a reusable platform that allowed
creators to easily develop interactive audio and easily deploy
it to other devices [12].

Unlike many other embedded programming environments,
such as Arduino, HappyBrackets facilitates running multiple
sketches concurrently, allowing one to layer sketches on top
of one another. Additionally, the HappyBrackets environment
has a simulator feature, where it is possible to simulate a
DIAD on the creative-coder’s computer, send coded sketches
to it, and run them as though they were physical DIADs. It
is possible to simulate accelerometers and gyroscopes using
sliders and text boxes. The ability to layer sketches on top
of one another meant that it was theoretically possible to
simulate more than one device, creating a logical multiplicity
within a single virtual device. Communication between the
devices in a physical multiplicity would require some sort
of network communications, however, when the sketches run
on same device as a purely logical multiplicity, then no
network communication is required. Moreover, the concept
of a multiplicity we were attempting to address is that the
creative-coder should not need to be thinking about how to
map messages across a network. Instead, they should be able
to consider devices on the network as part of the multiplicity
and being able to treat them as though they were all one big
device, and unless the actual device specifics were pertinent to
the application as a whole, this should be completely abstracted
away from the coder. This, in turn, allows them to focus on
the broader scope of the work. We approached the problem
by providing a higher layer of abstraction where the creative
coder could think in terms of logical relationships rather than
physical ones.

III. NETWORK COMMUNICATION

Communication between devices is performed via some
sort of network. Information is passed from one entity to
another using a set of standards or rules that each party
involved agrees to use during the communication process—this
agreement is known as the protocol. For example, I cannot plug
my Ethernet cable into a telephone socket and expect it to work
because the protocols—physical, electrical, and software—are
not compatible [13]. This requirement for compatibility of
protocols is not limited to data communications, but any time
two or more entities are required to cooperate for a common
goal. An example of a physical protocol incompatibility would
be attempting to plug the laptop computer power cable from
Australia into the general power output socket in north Amer-
ica. Although the voltages are different, manufactures made it
possible to use the 120V from North America in place of the
240V from Australia. However, although the different voltages
are compatible, the physical connection protocols are different
between the two, and so an adapter—a device that converts one
protocol to another—is required to use it in the other country.

MIDI was introduced as a standardised method of sending
data between musical devices in the 1980s [14]. The mapping
paradigm was roughly based on the technology used by
western electronic music composers. The channel addressing
scheme was similar to sixteen channels of a mixing desk, with
control messages generally sent to a particular channel. For ex-
ample, each channel could be sent a message to play or stop a
note, change the current instrument to play, or to send a control
to modify the way a sound was playing. Additionally, some
global message types were provided to facilitate synchronisa-
tion between devices [15]. Moreover, another feature provided
in MIDI was the System Exclusive Message (SYSEX), which
facilitated transmission of any other type of data that did not fit
into the channel or global paradigm—a mechanism often used
to develop complex patch editors for modifying configurable
parameters in synthesis sound engines. Although MIDI became
ubiquitous in the arts and entertainment industries, with “every
PC from the early 1980s ... [having] either built-in or third-
party MIDI interfaces available” [14, p. 67-68], the complexity
of transmitting high-speed, high-resolution data over networks
led to the development of Open Sound Control (OSC) in 1997
[16].

OSC introduced three significant paradigm shifts: an ex-
pandable and intuitive address space, the ability to provide
more than one parameter or data type to a mapped point,
and the ability to schedule a change of value some time in
the future. Sadly, the last feature, which was “one of OSC’s
most important and interesting features had not been widely or
correctly implemented....Three different and mutually incom-
patible uses of timetags have been employed over the years”
[17, p. 116]. These three concepts can be abstracted away
from the programmatic implementation employed by the OSC
developers, in particular, the data structure used for OSC com-
munication. These paradigm shifts effectively changed the way
data was mapped and sent over networks. For example, a triple
axis accelerometer no longer required three separate messages,
but could be encapsulated in a single message. For example,
sending the x, y and z values of an accelerometer could be
done with OSC message /accel x, y, z. Similarly, if an
additional device was added, one could just add to the OSC
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address. For example, two accelerometers—/accel/1 and
/accel/2—could send their values shown in Fig. 1.

/accel/1 x, y, z
/accel/2 x, y, z

Fig. 1. Differentiation of physical accelerometers through the OSC address

Although these paradigm shifts have provided significant
advantages to media art composers, artworks that require
complex mapping by virtue of physical multiplicity [3] or
by deep nested constructs means that these paradigms may
no longer be adequate on their own. Difficulties can arise
when mappings cannot be accommodated through a linear
hierarchy or when addresses become complex. For exam-
ple, a point from a Leap Motion frame capture might be
/leap1/hands/left/fingers/ring/metacarpal. Moreover, many re-
searchers have noted that “different projects utilizing OSC
are rarely protocol-compatible” [18], and consequently, have
attempted to stretch the addressing structure to map the
complex underlying data structures with implementations that
include building OSC address trees [19], [20] and OSC address
translation libraries [21], [22], [19].

Hunt, Wanderley and Paradis noted that mapping of control
parameters through to synthesis is quite complex, and in order
to perform other than simple one-to-one mappings, a separate
abstraction layer is required between them. Moreover, they
note “Now that we have the ability to design instruments
with separable controllers and sound sources, we need to
explicitly design the connection between the two. This is
turning out to be a complex task” [23, p. 438]. This problem
becomes more challenging when attempting to develop a
strategy that facilitates both divergent and convergent mapping,
facilitating one-to-many and many-to-one-relationships [24].
When examining the OSC example in Fig. 1, it is evident that
although there is an intuitive name called accel for both,
each point must be further defined through the addition of
1 or 2 in the OSC address in order to discriminate between
the two bindings. This effectively means that the address has
multiple semantic layers embedded into it. This addresses an
additional layer of abstraction that was not evident when only
looking at OSC messages in terms of simply address and
data—data is actually passed from source to destination, which
occurs at a lower layer in the OSI communications stack [25],
[26]. Malloch, Sinclair and Wanderley have noted that “simple
mappings in the semantic layer are in fact already complex
and multi-dimensional” [24, p. 406], which resulted in the
development of Libmapper—a software protocol that attempts
to facilitate dynamic mapping by providing a separate semantic
layer using OSC on a separate network port that provides a
translation portal between devices on that network. Libmapper
acts as a moderator between real-time OSC streams, nego-
tiating mapping between input and outputs streams, such as
sensors and synthesiser outputs [21]. The current developers
of Libmapper are developing modifications to facilitate greater
performance of communication between points on the same
device by using memory pointers instead of the loopback port,
with one developer stating: “Later we can optimize to avoid
building the OSC messages at all but this would involve a lot
of hacking since the handler deals with coordinating signal
instances” [27].

The flat address model can also be restrictive when
attempting to perform a single semantic function that might
address multiple physical or logical parameters. For example,
one of the features OSC provides to increase efficiency
is the addition of address pattern matching in the OSC
address [16]. For example a message to control a robot
dancer /dancer/lead/left/* would match any address
that starts with /dancer/lead/left. For example, the
following two OSC addresses would both match that message:

/dancer/lead/left/hand
/dancer/lead/left/foot

The logical mapping is that of the left side
of a single object—dancer/lead. A message of
/dancer/*/left/foot, however, is different in that
it controls the left foot of all dancers. A challenge occurs
when we want to perform complex mapping coupled with an
increased number of devices. If for example, the choreography
required a particular three dancers to raise their left foot, the
mapping would be somewhat more complex. The number of
combinations required to target a single OSC address for every
possible group of dancers is (2n−1), where n is the number of
dancers. Table I displays the number of address combinations
required to target every combination of n number of dancers
in /dancer/n/left/foot. It becomes obvious that
as the number of devices and control points increase, the
requirement for composers to map intuitive grouping name
patterns becomes impractical. Although string comparisons
are computationally expensive, with various developers
attempting to improve the inefficiency of OSC address
decoding through various techniques such as compressing the
address length [28], adding new characters to indicate that
an address can use a hashed lookup table [29] or embedding
integers into addresses to increase lookup efficiency [30]; the
real problem is the algorithmic inefficiency of encoding n in
the flat address model. Algorithmic performance, also know
as the “rate of growth, or order of growth” [31, p. 28], is the
determining factor in how an algorithm’s run time grows as
the number of inputs increases, and is usually expressed using
Big O notation [32]. The the algorithmic decoding complexity
to create an intuitive name for each combination has a Big
O value of O(2n), probably rendering it unsuitable for all
but the smallest multiplicities. An alternative would be to use
an integer as a parameter that defines which set of dancers
to select—e.g. /dancer/left/foot 0 ⇒ (2n − 1)—
reducing the complexity to O(n), which would allow 32
dancers and require only 32 logical tests to account for 4 294
967 295 possible combinations.

TABLE I. NUMBER OF ADDRESS COMBINATIONS

Number Dancers Number Combinations

2 3

3 7

4 15

8 63

10 1 023

20 1 048 575

32 4 294 967 295

Examination of an OSC message reveals that its semantic
structure is almost identical to functions in the C programming
language—they consists of a unique name and any number of
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parameters. Although the C programming language facilitates
encapsulation through the use of the struct keyword [33], it
does not use object-oriented programming (OOP) constructs.
“OOP isn’t a language; it’s the practice of architecting and
the thought process behind it that leads to applications and
languages being object-oriented” [34, p. 1]. This OOP method
of thinking has resulted in various object based data exchange
protocols being developed, such as XML [35] and JSON [36].
Instead of referencing every target address back to a root, sub-
addresses were encapsulated as elements, referenced only to
their immediate parent by containment. Moreover, omission of
an element did not require padding for missing elements, as
would be required by the array or list based encapsulation—
similar to the message arguments implemented in OSC.

Similarly, we propose a new method of looking at shared
parameters, treating them as objects rather than addressed
functions. In the same way objects can have aliases, scope
and behaviour within a program, we have attempted to treat
data parameters across a networked multiplicity the same
way. Rather than developing a new protocol, we developed
a concept that strategically maps data parameters using aliases
and scoping instead of a flat address-structure. Although we
have implemented this strategy using text-based patching in
Java using the HappyBrackets creative coding platform [2], the
principles we propose could be also applied to graphical based
programming languages. We will cover our implementation,
focusing on the problems we found using Java based code,
and how we addressed them.

IV. DYNAMIC CONTROLS

We have implemented an event based API called Dynamic
Controls that enables sharing of parameter values and events
throughout the multiplicity using a single, simplified interface
[37], whereby the same simple name can be used in multiple
instances without clashing with other Dynamic Controls. This
identical interface enables the composer to think in terms of
the multiplicity as a single instrument regardless of where the
code is running. Although initially created as a mechanism
to pass a variable’s state information to a graphical display,
Dynamic Controls are extremely powerful in that they function
as a message interconnection mechanism with other Dynamic
Controls, whether on the same device or across a network [2],
and can effectively function as shared parameters. Moreover,
code is never translated to a streamed or packet based protocol
unless it required to reach another device on the network
(Libmapper developers are currently addressing how they may
still be able to use the OSC addressing scheme, while at the
same time, avoid the overhead of encoding and decoding OSC
packets [27]).

Interaction between Dynamic Controls and their behaviour
is defined through their Value type, Name, Parent, Control
Scope and Time, shown in Fig. 2. The Control Scope attribute,
which can be unique, sketch, class, device, global, or tar-
get scope, influences the communicative influence Dynamic
Controls have on one another. In attempting to explain the
various concepts, we will first provide analogies using simple
Java code examples that illustrate the problem followed by
conceptual solutions.

Fig. 2. Dynamic Control Model

A. Names and Aliases

One way of defining an entity is by giving it a sym-
bolic lexical name. Effective variable or function names are
often intuitive and consistent, making it easier for a person
to understand its function and perform an operation on it.
This, however, often results in identical names used in many
different parts of a program, which would cause ambiguity if
the entity being referenced was not specifically qualified. The
ability to use the same name in various places is accomplished
through the use of name spaces and scoping. Consider the
following code:

class Gain{
float val = 0;
void setValue (float vol){val = vol;}

}
Gain g1 = new Gain();
Gain g2 = new Gain();

g1.val = 1;
g2.setValue (0.5);

There are two variables named val, one in each instance of
the Gain objects—g1 and g2. Although the value of val can
be accessed directly from within the instance of the class—as
shown in the function setValue—it cannot be accessed from
outside the specific Gain object without first qualifying the
instance of Gain to which is being referred. Changing the value
of g1.val will have no effect on the value of g2.val and
vice versa. This paradigm qualifies a data point at a single
address in hierarchical terms, and the particular val referred
to must be qualified by the Gain object that contains it.

It is, however, possible to create an alias of an object, and
in this way, many different lexical names can be used to access
the same object.

class Amplifier(){
Gain gain;
Amplifier(Gain g){ gain = g; }
void setGain(float val){gain.setValue(val);}

}

Gain g1 = new Gain();
Gain g2 = g1;
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Amplifier a1 = new Amplifier(g1);
Amplifier a2 = new Amplifier(g2);

a1.setGain(2); // everything is changed

In this example, the variables named g1 and g2 refer to the
exact same object. Moreover, Amplifiers a1 and a2 share
the same Gain object, and so changing a1.gain.val will
also change a2.gain.val, g1.val and g2.val simulta-
neously. All of the variables are bound together through their
association in that they share the same physical memory space
because all the Gain objects are the same object throughout the
code fragment. Also, although g1 was created first, its state
or ability to be assigned or propagated holds neither more
nor less weight than the other three variables. The mapping
between these variables is both convergent and divergent. In a
sense, the Name attribute of the Dynamic Control functions as
the variable name in the two code examples. Identical named
controls can exist as disparate objects; or alternatively, they
can function as aliases of one another, mirroring one another’s
actions. This relationship is based on the common association
they have with a parent object, their control scope attribute,
and the data type they present.

B. Association and Control Scope

In the same way the Amplifier objects from the earlier
code example could modify each other’s gain by virtue of their
association to a common Gain object, Dynamic Controls are
not only bound to one other through their common association
with objects, but also by the type of relationship they share.
The Parent attribute of the Dynamic Control functions as one
of the association factors that determines whether controls are
aliased or not. Dynamic Controls also have an attribute called
Control Scope, which influences the communicative influence
it has on other Dynamic Controls. We defined these scopes as
unique, sketch, class, device, target, and global.

The unique scope treats each control as a disparate entity
whose value is not shared with other Dynamic Controls. Re-
trieving values from a remote device, known as telemetry [10],
is not a novel concept for musical instruments and has been
employed in synthesizer patch editors for decades using MIDI
system exclusive messages [38]. Although HappyBrackets is a
text based programming environment, the ability for composers
to set and read values using familiar interfaces like sliders,
check boxes, buttons and text boxes can provide significant
service to composers during composition or debugging a
work [2], [39]. Unique scope controls allow users to create
GUI interface that do not require communication with other
Dynamic Controls.

Sketch scope enables controls to communicate with other
controls with the same name and type that are linked to a
specific instance of an object. If, for example, two floating
point Dynamic Controls were both named “Pitch” and shared
the same oscillator object as a parent, changing the value of
one control would change the value of the other. Sketch control
is particularly effective when layering sketches on top of one
another, which can be extremely useful for simulating multiple
devices in a multiplicity on a single computer.

Class scope associates controls based on the class type
of the parent, creating a singleton association. In the same

way that OOP languages like C++ and Java have static class
members, where a single variable is shared by all objects of
a class, class scope controls are associated based on the class
type of the parent and not the instance. An example of where
this type of control could be as a global setting on a device
for a particular type of instrument. For example, if a class
scope control named “grain size” was used to set the grain
size of a specific type of granular synthesizer, varying the
grain size would adjust the grain size on all instances of it.
If another granular synthesizer type was created, one could
create other class scope controls called “grain size” linked to
this instrument, and the controls would not conflict with one
another even though they share the same control name.

Device scope associates a control based on the device the
sketch is running on, sending it to all matching controls on all
sketches. An example for use of this type of control might be
as a global pitch reference for all instruments on a particular
device.

In addition to sharing variable parameters on a single
device, Target and Global control scopes facilitates sharing
values across the network to other devices. Global scope
controls share their value with all devices, such as a global
performance state. There can be unintended side effects when
a large quantity of data is being shared over a network. An
example of this was in a work where multiple roller skaters
carried DIADs in their backpack in a live performance [40]. On
the night of the performance, it was very difficult to hear the
DIADs at the actual venue, so it became necessary to transmit
the accelerometer and gyroscope values from the DIADs
to another computer running similar patches so the sound
could be synthesised based on the sensor values and played
through a loudspeaker system. When global scope messages
were used, the DIADs in backpacks were overloaded with
incoming network messages, severely impacting on the ability
of the DIADs to execute the required synthesis algorithm,
rendering the sound unacceptable. On the night, data had to be
transmitted using OSC messages directed only at the intended
target. This limitation was resolved though the use of Target
scope messages, where network messages can be directed to
a specific set of devices instead of broadcasting the message.

Target scope controls are similar to global scope with the
exception that specific devices can be targeted. For example,
consider five DIADs all with target scope controls identically
named “IMU”, shown in Fig. 3. The controls in top three
DIADs all target the bottom two DIADs, and consequently,
setting a value in one of these top three will cause values
to propagate to the bottom two. However, a message would
not be sent to any of the top ones—not even on the same
device. On the bottom left DIAD, setting a value in the left
control would cause the value to be sent into itself, and to the
DIAD to the right. Setting the value into the right hand control
of that DIAD, however, would not propagate to any other
controls because it does not have any targets set. Similarly, the
control in the bottom right DIAD will not send its values to
any other controls. One significant advantage of target scope
controls is their ability to address devices specifically, thus
preventing interruption to nodes for which messages are not
intended. Target scope messages were used alongside global
scope messages to implement a subscribe and push mechanism
used in hand capturing interface.
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Fig. 3. Target Scope Controls

In addition to the control scope and the common parent
association, the final mapping factor is the type of value being
shared.

C. Value Type

One of the main paradigm shifts provided by OSC was
the ability to map multiple data values and types to a single
address. This concept is very similar to that of C program-
ming language variadic functions, where they have a unique
name—analogous to the OSC message name or address—and
an indefinite number of arguments—analogous to the OSC
message arguments [41]. One of the powerful advantages of
this is that the user is not required to define the number of
or types of arguments in advance. Whereas in General MIDI,
the parameters for a note on message must be 4 bits, defining
the MIDI channel, and 7 bits each for the note number and
velocity. In OSC this restriction is removed completely—you
can send whatever type or number of parameters that you
want. This, however, is potentially problematic in that there is
very high coupling between the sender and receiver due to a
reliance on encoding and decoding the parameters concurrently
on sender and receiver, and low cohesion due to universal data
types.

Although the OSC namespace has a level of intuitive-
ness, this is lacking with OSC arguments. In the example
/accel/1 x, y, z, the order of arguments—i.e. x, y, z—
is not necessarily intuitive. Logically, the absolute order of
the arguments is irrelevant so long as both the encoding and
decoding algorithms agree on the order and format of the data.
This can result in cascading changes when the parameters are
added, removed or re-ordered, resulting in the requirement to
modify an unintuitive array index [42]. For example, consider
a section of code where three parameters of an accelerometer
are passed as a message.

// transmitter *******************
float x = 0, y = 0, z = 0;
OSCMessage message = new OSCMessage("/accel",

new Object[]{x, y, z});

// receiver *******************
float rx = (float) message.getArg(0);

The developer, after experimenting and refining their require-
ments, decides to add the accelerometer model number as the
first parameter.

// transmitter *******************
String device = "LSM6DS33";
OSCMessage message = new OSCMessage("/accel",

new Object[]{device, x, y, z});

// receiver *******************
float x = (float) message.getArg(0); //

The receiver code is no longer valid, which means that the
developers would need to find and modify all occurrences in
the receiver code. The second problem is that the message
arguments are not type safe. In this example, by virtue that the
first argument is a String and not a float, the program would
yield “runtime errors, which are difficult to detect and handle
on distributed environments” [43, p. 45]. Our original API was

Fig. 4. Original Dynamic Control API

based on the traditional event and listener paradigm, where the
coder creates the control and adds a listener to it as shown in
Fig. 4. The program is also able to access the variable directly
from the control using the getValue function. Rather than
providing an undefined number of variables as parameters, we
only afford the user a single data parameter value, allowing a
simple get and set facility. This parameter could be one of five
primitive data types—Trigger, Integer, Boolean, Double and
Text—or a complex Class data type for values or structures that
cannot be defined using one of the primitives. In the example
in Fig. 4, setting the value of textControl1 causes its
listener to execute its handler code, as well as setting the value
inside variable textControl2. These two controls therefore
effectively mirror one another. The problem with this API was

Fig. 5. Code showing get and set values are not type safe

twofold. First, although it was possible to access values directly
from the controls themselves, notification of change required
a listener—a separate entity to the control, resulting in high
coupling between the control and the listener. This is evident
by virtue of a required typecast to a string in the handler code.
Second, there was no type safety facilitated with the value
store in the control. Examination of the code in Fig. 5 reveals
that it was possible to send a boolean message to the control,
which will cause a run time error when cast to a string type.
In a sense, this was equivalent to the existing paradigms—the
user sends a universal data type value to an address and it
is converted and actioned by a delegate. This can be resolved
utilising function overloading within a composite pattern using
type safe algorithmic skeletons [44], [43], [37].

One of the most significant changes from the C program-
ming language to C++ was the addition of overloaded function
names, whereby the same function name could be used with
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different signatures, to perform different operations [45]. This
is different to variadic functions or those that use a universal
or undefined data types in their signature. Prior to function
overloading, where the exact variable type is not known, the
value passed down a chain of tests until it was handled [37].
In the following example, the value can be set using the
function name setValue using either a float or an integer—
the handler detects the data type and actions it.

class Gain {
float value = 0;
void setValue (Object param) {
if (param instanceof Float) {
value = ((float) param);

} else if (param instanceof Integer) {
value = (Integer) param;

}
}

}

Gain g = new Gain();
g.setValue(0.2f);
g.setValue(1);
g.setValue("0.4"); // this will do nothing
g.setValue(0.3); // this will do nothing
g.setValue(true); // this will do nothing

The problem with this method is that the API demands that
the users implement every case that is required work. In
the example given, although the first two calls will work,
the last three will not because the implementation of the
function setValue does not handle string, double or boolean
types. Moreover, there is no error or warning given that the
parameters are not valid for this function. A technique to
overcome this is through syntactic overloading, which allows
the same name to be used for variants of the same function
[46]. Overloading the class function allows the user to call
setValue with a string or numeric value.

public class Gain {
float value = 0;
void setValue(double val){value = (float)val;}
void setValue (String val){doConvert(val);}

}

Moreover, boolean values would be rejected by the compiler
as there is no overloaded function that would accept them.
We address this through the use of algorithmic skeletons [44],
shown in Fig. 6, whereby specialised classes handle only
a single data type. In the code example shown in Fig. 7,
textControl_1 can only accept a String value. No typecast
is required using the getValue function. Moreover, type
safety is enforced in that it is not possible to set the control
with a non-string type, shown when attempting to set its value
to a boolean type.

Finally, we are able to use the same control name,
MyControl, for multiple data types by using a different
control type, as shown in Fig. 8. Even though the TextControl
and BooleanControl share the same name and have matching
control scope, they remain completely independent of one
another. Moreover, by using a different parameter type we have
practically overloaded the control name. In the same way vari-
ables are able to use the same variable name by using different
scopes or associations, we are able to use different control
scopes and associations to differentiate between controls with
identical names throughout the multiplicity.

Fig. 6. Type safe algorithmic control skeleton

Fig. 7. Enforcing type safety with parameters

D. Time

When two or more sections of code are required to produce
time based deterministic outputs, such as playing sound at
the same moment in time, a mechanism of synchronisation is
required between two sections of code. Latency is the amount
of time between a cause event, such as excitation or input
stimulation, and the output from that event; whereas Jitter is
the variability of latency [47]. Latency can be a fixed amount
of time. For example, moving a sound source 3–4m away
from a listener will introduce approximately 10ms of latency
[48]. Latency, however, is also accumulative, whereby each
input to a serial signal chain, such as DSP, adds additional
latency. Research indicates that artists are generally better
able to deal with higher fixed predictable latency far better
than unpredictable lower ones [49], and that “it is generally
possible to trade jitter for added latency” [48, p. 4]. Artists
have generally conceded that there will be some sort of
latency and jitter in real-time network based performances due
to factors including network congestion, traffic, bandwidth,
routing, propagation medium and processing time [50], [48],
[26]. Similarly, although variables may share the same memory
address on the one device, all sections of code that reference
it—either directly or through an alias—are not necessarily
able to action that change at the exact same moment in time.
Although they are not impacted by the network latencies,
they can be impacted by factors including threads waiting
on locks, executing time based code and message queuing
[7]. When setting a global or target scope control value, the
latency between the control having its value set and it being
read will appear greater when propagated across a physical
network than those received on the same device, primarily due
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Fig. 8. Overloading the “MyControl” name with BooleanControl

to the addition of network latencies and jitter. Moreover, the
unpredictable nature of network jitter exacerbates the problem
of cross-device variable sharing synchronisation [51], [52]. To
effect an API that is agnostic to whether parameters are on
a local device or over a network, an identical interface must
be presented to the coder whether the control is local or over
the network. One solution to create a more deterministic rela-
tionship between device-shared variables to hide the difference
in latency by triggering or scheduling changing variable states
and overlapping network jitter within the scheduled time [53].

1) Variable Event Triggering: The value of a Dynamic
Control can be accessed directly through a getter function,
eg myval = control.getValue();, or through event
notification. “Although event-based software integration is one
of the most prevalent approaches to loose integration, no
consistent model for describing it exists.” [54, p. 378]. One of
the most common methods of describing it is through the event
and listener metaphor. In this metaphor, an object receives a
message, however, the responsibility for acting on that change
is delegated to another object. Research indicates that the event
listener metaphor is not intuitive, with one researcher stating
that the “listening metaphor is false” [55, p. 76]. In our original
API, shown in Fig. 4, separate listener was responsible for
performing an action when the value of textControl1 was
changed. A limitation with this pattern is that the semantic
relationship between these two are not contained and manipu-
lated as a single unit [56]. A significant change from functional
to OOP was the treatment of objects as separate entities that
could only be accessed by sending them messages, resulting in
the object executing the method associated with that message
[57]. In the given example, however, control was passed to
the listener, using the control as a parameter. A more cohesive
solution would be to have the objects perform the function
directly. We implemented this inside the type safe skeleton,
where there is no separate listener. If the user requires the
object to perform some action as a result of the value being
changed, they can overload the valueChanged function as
shown in Fig. 9. In the code example, one can see that although
the top control returns no assigned variable when created, it
is modified by the textControl_1 having its values set,
which causes “Hello World” to print via the valueChanged
handler.

Fig. 9. Integrated event notification

2) Scheduled parameter value changes: Synchronisation of
two or more devices that each operate with an internal clock
generally require some sort of synchronisation. Various syn-
chronisation techniques and algorithms have been developed
throughout the years that enable various devices to determine
a common point of time reference. In our API, the method of
synchronisation is not important—there is no requirement for
an absolute reference time outside the domain of the network
and the code running it. Our API uses a double precision point
time representing the number of milliseconds from a set epoch.
To set when the value is meant to change, the control value
is set using the time the change is supposed to occur. Fig. 10
shows two FloatControl objects with global scope. The top
section of code could be running on any number of DIADs,
whereas the bottom section of code symbolised code that is
meant to set these controls 10s into the future. Fig. 11 displays
the sequence of events that take place. First, the user sets the
value of the control, however, a scheduled time for the event is
added as a parameter. The control on the local device registers
with the scheduler on the local device to call back at the set
time. Next, the message is passed across the network to any
other matching controls, which notify the scheduler on that
device to notify them when the defined time has arrived. When
the time has arrived—10s after the user code made the call—
the schedulers on each device fire simultaneously, causing all
matching Dynamic Controls on that device to set their value,
triggering the valueChanged event if overridden. A notable
feature is that the only change in the API between scheduled
and non-scheduled parameter changes is the addition of the
optional time parameter in the setValue function.

Fig. 10. Global scheduled message

Fig. 11. Scheduled value sequence
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E. Underlying Network

Although the underlying communication protocol between
devices on the network is outside the scope of the API, we
feel it is relevant to briefly describe what actually occurs.
The underlying protocols are not important so long as the
encoding and decoding algorithms compliment one another.
Although we are using OSC as our underlying protocol, this
is merely for convenience. Instead of using the OSC address
as a mechanism for addressing data or parameters, we using it
to address the functionality required of the message. There are
four message types for communicating between DIADs using
the API—update value message, global scope message, target
scope message and device name message. All the parameters
that define the control value are packed as OSC message
parameters. Similarly, we are able to graphically display the
controls by sending messages to GUI interface based on a
unique numerical key that matches a control on a device,
similar to the way a program accesses an underlying device
through a handle. The messages are: 1) a control exists, 2)
a control has been removed, or 3) a request from the GUI
to send all control handles. In short, the OSC addresses only
act as a short group of function names. Some of the OSC
parameters, however, act as virtual function pointers within the
Dynamic Control code. OSC could be quite easily replaced
as the underlying communications protocol as the API is
not dependent upon it. The new intercommunication facilities
provided with MIDI-2.0 facilitate property exchange and two
way communication between devices and include features such
as compression and complex parameter encoding [58]. If we
decide to change the underlying protocol, this would not
affect the API we developed because this is delegated to the
underlying layers and is invisible to the API user.

V. EXAMPLE USAGES

We briefly describe how three separate creative works
made use of various features of the Dynamic Control API—
an interactive planetarium software control interface [7], an
interactive participatory tangible artwork [6], and an interface
for capturing complex hand and finger movement during
embroidery [8].

A. Planetarium Software Interface

The first implementation of our API was used to control
planetarium software from a DIAD. This was first realised
as a interactive sonified virtual spacecraft simulator game,
where the goal was for players to navigate to various planetary
or stellar objects by manipulating a DIAD, which in turn
controlled a planetarium software display on a computer. The
DIAD, a battery powered Raspberry Pi Zero running only
HappyBrackets, contained an IMU for input and a speaker for
audio output. The computer, however, ran both HappyBrackets
and Stellarium planetarium software. When the user manipu-
lated the DIAD, IMU data was sent via a global control—e.g.
z–axis shown in top part of Fig. 12 as “LR Movement”—to
the computer running the receive sketch, shown at the bottom.
During the development stages, it was easier to manually
modify the values with the HappyBrackets GUI than it was
to hold the DIAD and change the value, shown in Fig. 13,
enabling us to see how the planetarium software would respond
to simulated values. Switching between DIAD control and

GUI control required no changes to the code whatsoever—
the DIAD sketch could be stopped and restarted in less than
a second, enabling us to maintain creative flux. Moreover, it
was also possible to view the live values being sent by the
DIAD in the GUI, again without changing any code. The
effect was control addresses never required changing when
when switching between development and running with the
DIADs.

Fig. 12. Global control message between DIAD and Computer

Fig. 13. Manipulating control values in GUI

B. Participatory Artwork

The next example of Dynamic Control usage was a work
that used thirteen DIADs, where ten of the DIADs ran identical
sketch code [6]. Three of the DIADs were interactive sonic
balls, while the remaining ten were stationary devices. First, a
global scope control was used to share the global state of the
performance [6]. In the work, there was no master controller
that determined what the current performance state should
be. In one performance state, for example, two balls were
independently rolled by members of a participatory audience.
When one of the balls determined that the ball had been rolled
sufficiently, it changed the performance state for the whole
multiplicity by sending the global scope message.

It is often convenient to simulate embedded devices on the
computer used for composition rather than uploading code to
the embedded device. The device simulator in HappyBrackets
is a virtual DIAD that runs identical code to a physical DIAD,
however, it facilitates simulation of sensor devices, such as
accelerometers and gyroscopes, by using sliders [2]. Using the
simulator would eliminate the necessity to upload code to the
DIAD and physically roll it when performing various tests
during the composition refinement stage. Moreover, it reduced
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the number of times the composer would need to recharge
batteries on each of the devices during the composition stage.
Although HappyBrackets does not enable one to run more
than one virtual device of the computer, it is possible to
simulate multiple devices by layering sketches on top of
one another, creating a pure logical multiplicity. Instead of
sending a single sketch to thirteen different DIADs during
the composition phase of the work, the required sketches
were sent multiple times to simulator—three sketches that
utilised IMUs and ten for static sonification—thus simulating
the entire multiplicity [6]. Global scoped controls facilitated
communication between all sketch instances, with no changes
required to any of the code when changing to sketches running
on the networked devices. Moreover, it was possible to add or
remove more DIADs to the multiplicity without requiring any
address mapping changes.

Fig. 14. Device and Sketch ControlScope

Fig. 15. Device and Sketch ControlScope

Simulating the three balls would require three sets of
gyroscopes, however, the virtual device simulator only has
one set of gyroscope controls. It is possible, however, to
simulate these as separate controls for each device by using
the gyroscope average values through a SketchScope control.
Sensor simulator controls would have a DeviceScope, in that
the values are transmitted to all sketches on the device.
The SketchScope control only transmits its value to other
DynamicControls in that same sketch. This effectively enables
one to individually simulate an independent IMU for each
sketch on the virtual device by connecting the DeviceScope
control to the SketchScope control, shown in Figure. 14. Fig. 15

shows how the three interactive DIADs were simulated in the
HappyBrackets GUI.

C. Complex Hand Movement Interface

The final work we present using our Dynamic Control
API was for collecting complex hand and finger movements
during embroidery. The primary focus of the research was to
capture the complex hand gestures of traditional crafts, which
often take a lifetime to acquire, to gain new perspectives
on complex hand skills and ways of sharing the traditional
wisdom embodied in these practices through development of
a digital audio-visual interface [8]. The capture technique
involved collecting synchronised multi-modal data consisting
of three PixiCam cameras, a LeapMotion detector, and raw
video capture. Each PixiCam captured continuous frames of
the embroiderer’s individual finger positions effected through
the use of coloured nail polish on their hands, mapping
various colour combinations to fingers. The three PixiCams,
facilitating three axes, were all connected to the one Raspberry
Pi through an I2C bus and grouped as a timestamped three
dimensional frame. The LeapMotion detector uses a stereo
infra-red camera to capture a three dimensional image of the
person’s hands, and using the LeapMotion software, able to
determine pitch, roll and yaw, as well as finger extensions
and positions. Similarly, the LeapMotion data was collated and
timestamped as frames of data. At no time with the PixiCam
or LeapMotion would it be possible to predetermine how much
data would be in any frame, shown in Fig. 16.

Fig. 16. Embroidery Data Frames

The Raspberry Pi had to poll all three PixiCam devices
and send the data to the capturing computer approximately
every 20ms. Instead of using a global control to send the data,
coupled global and target scope pair were used in a publish-
subscribe pattern [37, p. 293]. The computer required to collate
all the data subscribes by sending a global text message called
“SendPixy” with it’s device name, shown in the top section of
Fig. 17. In the bottom section of the code, the device connected
to PixiCam receives the subscription message, adds the device
name as a target to the pixyBlockSender ClassObject-
Control with control name of “pixycam.PixyBlock”. The code
simply has to call setValue with the PixyCam data, located
in the variable pixyMessage. In the top section of the code,
the control named “pixycam.PixyBlock” receives the code and
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actions it. Using the Target Scope control prevents the Pi from
receiving messages from itself, only directing them to where
they are required.

Fig. 17. PixiCam messages sent via TargetScope control

The data is joined with LeapMotion frames as JSON data
and stored to disk. Our intention is to synchronise the data with
the raw video and then enter into a machine learning algorithm
to learn various stitching patters. With the API, there is no
requirement to encode or decode the complex data structure
as it is completed in the lower layers, outside the scope of
what the creative coder is required to do.

VI. CONCLUSION

We presented an alternate paradigm of sharing parame-
ters throughout a multiplicity whereby variables are treated
objectively rather than functionally. The existing models of
defining parameters were based on a flat addressing scheme,
and although were suitable to procedural or functional pro-
gramming paradigms, we treated parameters as objects that
can have scope, aliases, and could be manipulated based on
their logical placement rather than their physical location.
Instead of moving outside the OSC specification, we have
altered the way we view and implement OSC messages in
our software, while still maintaining OSC 1.0 compatibility
when communicating between devices over the network. The
ability to provide different scopes for parameters or functions
could be potentially employed to other programs. For example,
the send and receive pair in Max allows passing of messages
between patches without requiring patch cables [59]. They
currently facilitate sending messages globally based on a
single name, although it can be restricted to a single device
through a generated ID using Live [60]. Opening two patches
in Max that have the same send and receive names could
cause unintentional cross communication between the two. The
facility to assign a level of scope and association would prevent
this type of cross-talk, while allowing greater flexibility in
mapping.

The ability to send and/or access complex data types as
complete entities rather than lists of parameters promotes
data abstraction and encapsulation, allowing greater flexibility
through modular architecture as underlying data structures
can change during the lifestyle or evolution of a computer
based composition. Additionally, the facility to define data

accessibility, and the ability to reuse human readable names
based on a variable’s scope is a common feature of most
programming languages. This paradigm has been extended in
that scoping a variable can be dynamically bound or addressed
to specific objects, class types, devices or globally on an entire
network.

Finally, we presented three works that utilised this new
mechanism of parameter sharing throughout the multiplicity,
showing how implementing control scope and unified data
enabled composers to think about their parameters as logical
entities, agnostic to the network, and treated as though they
existed on the same device.
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