
Evolutionary Optimization of Drone Trajectories
Based on Optimal Reciprocal Collision Avoidance

Alex Bojeri, Giovanni Iacca
University of Trento

Trento, Italy

alex.bojeri@studenti.unitn.it, giovanni.iacca@unitn.it

Abstract—In recent years, the advent of new hardware and
software technologies for navigation and control has made
Unmanned Aerial Vehicles (UAVs) ever more autonomous and
efficient. As a consequence, it is now possible to have drones
moving within complex environments, such as cities or indoor
areas. One of the main requirements for intelligent mission
planning in such environments is the ability to correctly and
efficiently detect and avoid obstacles. For this reason, various
libraries have been created for the simulation of UAV navigation
in virtual environments, in order to test algorithms for automatic
obstacle detection and collision avoidance before deploying the
drones in the real world. Usually, the performance of these
algorithms depends on various parameters as well as specific
application settings. However, while different parameter config-
urations can be easily tested in simulation, their number can
be too large to allow a complete exploration of the parameter
space or a manual tuning. Furthermore, a full analytical model
of the parameters’ influence on the algorithmic performance
can be hard to obtain. Yet, it is extremely important to find
their optimal values to allow collision-free navigation. In this
direction, we propose here a thorough exploration, based on
an Evolutionary Algorithm (EA), of the parameter space of the
Optimal Reciprocal Collision Avoidance (ORCA) algorithm. Our
results show that the proposed EA is a viable solution for finding
optimal parameter settings that can be generalizable to different
scenarios characterized by different complexity levels.

I. INTRODUCTION

One of the most important aspects in Unmanned Aerial

Vehicle (UAV) applications is path planning, i.e. the generation

of a trajectory between the initial drone’s location and its

desired destination. In general, path planning can be formu-

lated as a trajectory optimization problem, where the goal is

to find an optimal trajectory w.r.t. one or more application-

specific metrics, e.g. accuracy to reach the target position,

obstacle/collision avoidance, energy consumption, etc., subject

to physical constraints related to the environment and the

properties of the drones themselves.

As highlighted in [1], searching for optimal paths is a

difficult problem since: a) in most cases the search itself

requires an excessive computational time and b) in some

cases even the computation of just one path can be a rather

complex task. These difficulties have been further exacerbated

by the fact that with the constantly reducing cost and volume

of drone hardware, coupled with improved performances in

terms of e.g. speed/acceleration, drone applications can now

be characterized by a large number of small-scale, highly

dynamic drones which might be deployed in cluttered envi-

ronments. In these scenarios, trajectory optimization becomes

even harder, for instance because the number of possible

collisions increases with the number of drones, and because

avoiding collisions becomes harder as drones move faster.

Among the various optimization techniques available in the

literature, Evolutionary Algorithms (EAs) [2] and other bio-

inspired algorithms have shown a great potential for solving

trajectory optimization problems. In fact, these algorithms

allow to optimize a given objective function (in the evolution-

ary jargon, called “fitness” function) in a black-box manner:

they only require to evaluate the objective function on any

new candidate solution generated during the search, without

using any gradient information. As such, EAs are gradient-free

(zeroth-order) optimizers which can be used as metaheuristics

for solving global optimization problems when gradient in-

formation is unknown or a mathematical formulation of the

objective function is not even available. Furthermore, EAs are

deemed generally quite robust in terms of convergence and

optimization performance, and their complexity is affordable.

In recent years, bio-inspired computation –and especially

EAs– have been applied to various aspects of UAVs [3],

including path planning. For instance, in [4], an offline/online

path planner for UAV navigation was presented, where an

EA optimizes a curved path line in a 3-dimensional setting.

The same problem, yet with a multi-objective optimization

approach based on NSGA-II [5] configured for minimizing

the trajectory length while maximizing the margin of safety,

was proposed in [6]. Multi-objective problem formulations

of trajectory optimization were also considered in [7], [8],

and [9]. Single objective trajectory optimization was instead

tackled in [10] and [11], where the authors used Differential

Evolution to optimize 2-D trajectories described by successive

way-points (in [10]) or B-spline curves (in [11]) in order

to allow the UAVs to reach their destination while avoiding

collisions. In [12], an EA was used to optimize navigation in

a field of obstacles at uncertain locations. An EA hybridized

with Particle Swarm Optimization (PSO) was instead used in

[13], to solve a multi-UAV formation reconfiguration problem.

More recently, as an alternative to EAs Multi-colony Ant

Colony Optimization (Multi-ACO) was applied to trajectory

optimization in [14]. Another recent study [15] considered

the energy needed by drones to communicate with a ground

terminal as primary objective for the evolutionary optimization

of the UAV trajectories.
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One common aspect of these studies is that they usually

tackle the trajectory optimization problem as the problem of

searching for the optimal parameters describing the trajectories

themselves, such as way-points or B-spline curves, rather than

optimizing the way those trajectories are actually generated.

This is the focus of the present work: here, we tackle a rather

different problem since we assume that the trajectories are

generated by means of the well-established Optimal Recipro-

cal Collision Avoidance (ORCA) algorithm [16], and our goal

is to find the optimal parameters of ORCA itself. In fact, the

performance of ORCA depends on a number of parameters

which make manual tuning a rather hard and tedious task.

Yet, to the best of our knowledge a systematic exploration of

the ORCA parameter space has not been conducted so far,

and EAs might represent a valuable tool for performing this

parameter search.

In order to achieve our goal, we use a customizable EA

available in the Python library inspyred1 and we couple it

with a collision avoidance simulator, namely the Reciprocal

Velocity Obstacle (RVO2) C++ library [17]2, and its related

Python bindings3. To apply the EA to the specific trajectory

optimization problem, we define a specific fitness function

by taking into account various aspects of the simulations,

including the number of collisions and the accuracy to reach

the target, and then we evaluate a large number of parameter

ORCA combinations by measuring their effect on the RVO2
simulation. To summarize, our main contributions are:

• We implement a fully customizable, open-source Python

pipeline coupling an EA with the RVO2 simulator4.

• We conduct a systematic exploration of the ORCA pa-

rameter space in four different scenarios characterized by

different environments and numbers of obstacles.

• We investigate the generalization capability of the optimal

parameters from one scenario to the other.

The rest of the paper is structured as follows. In Section

II, we introduce the background concepts regarding collision

avoidance and EAs. In Section III, we describe the imple-

mentation details of the simulator and the EA configuration.

Finally, in Section IV and Section V we present our experi-

mental results and give the conclusions of this work.

II. BACKGROUND

As we introduced in the previous section, our goal is to

optimize the parameters of the Optimal Reciprocal Collision

Avoidance (ORCA) algorithm [16]. ORCA consists in the

management of n agents, each of which moves in a given

space taking into account the other n − 1 agents, estimating

at each timestep their velocities to avoid collisions. Of note,

the calculation of the velocities does not assume any type

of communication between the n agents involved. Instead, it

considers the position of each drone and the respective velocity

1Available at: https://github.com/aarongarrett/inspyred.
2Available at: https://github.com/snape/RVO2.
3Available at: https://github.com/sybrenstuvel/Python-RVO2.
4Available at: https://github.com/ABojeri/ORCA-EvOp.

for the definition of the set of velocities that allow avoidance

of collisions.

ORCA is nowadays widely adopted in various applications,

not only in drone navigation but also in robotics [18], [19]

and multi-agent navigation for video games [20]. In [21],

a 3-dimensional improved version of ORCA was presented,

which includes the possibility to handle dynamic constraints.

Another modified version of ORCA has been proposed in

[22], which works also with speed constrained aircrafts. One

particularly interesting application of ORCA has been recently

proposed in [23], where a modified version of ORCA was

applied in simulation to a large swarm of drones for continuous

surveillance of an urban environment.

In the following, we briefly summarize the formal definition

of Reciprocal Collision Avoidance and how this is applied in

the ORCA algorithm.

A. Reciprocal Collision Avoidance

Reciprocal Collision Avoidance is defined as follows. Given

two agents, A and B, the set of velocities V Oτ
A|B is defined

as the set of relative velocities of A compared to B such that

a collision between A and B will result before a certain time

instant τ [24]. By introducing the following notation:

D(p, r) = {q|‖q− p‖ < r} (1)

in which D represents a circular space with origin p and radius

r, V Oτ
A|B can be written as:

V Oτ
A|B = {v|∃t ∈ [0, τ ] :: tv ∈ D (pB − pA, rA + rB)} .

(2)

A graphical representation of V Oτ
A|B is shown in Fig. 1.

Given the velocities of the agents A and B, respectively vA

and vB , the goal of Reciprocal Collision Avoidance is to find

a solution {vA,vB} /∈ V Oτ
A|B that guarantees collision-free

navigation between A and B at least until time τ .

In order to do that, considering a generalization of V Oτ
A|B

according to the Minkowski sum, it is possible to define

the set of velocities that guarantee the collision avoidance

CAτ
A|B (vB) for the agent A with respect to the agent B,

given vB , as:

CAτ
A|B (vB) =

{
v|v /∈ V Oτ

A|B ⊕ vB

}
, (3)

thus deducing the respective velocity of mutual collision

avoidance as: vA ⊆ CAτ
A|B (vB) and vB ⊆ CAτ

B|A (vA).

B. Optimal Reciprocal Collision Avoidance

Among all the possible pairs of values for the velocities

vA and vB , respectively in CAτ
A|B (vB) and CAτ

B|A (vA),
ORCA seeks to find the closest ones to optimal velocities

vopt
A and vopt

B [16]. Denoted ORCAτ
A|B such velocity for A

and ORCAτ
B|A for B, it results that:

ORCAτ
A|B =

{
v|

(
v −

(
vopt
A +

1

2
u

))
· n ≥ 0

}
, (4)

where n is the normal direction at the boundary of V Oτ
A|B at

the point
(
vopt
A − vopt

B

)
+ u. The minimum relative velocity
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change between A and B to avoid any collision within a time

τ is then:

u =

(
argmin

v∈∂V Oτ
A|B

∥∥v − (
vopt
A − vopt

B

)∥∥)− (
vopt
A − vopt

B

)
.

Symmetrically, the velocity set ORCAτ
B/A is defined for the

agent B. For illustration purposes, a graphical representation

of ORCAτ
A|B is shown in Fig. 2.

Fig. 1. Graphical representation of Reciprocal Collision Avoidance: in (b)
the geometric construction of V Oτ

A|B for the agents A and B in (a) [16].

Fig. 2. Graphical representation of ORCAτ
A|B [16].

C. Evolutionary Algorithms

Evolutionary Algorithms (EAs) mimic the process of nat-

ural evolution by evolving a “population” of “individuals”

(i.e., candidate solutions to a given optimization problem) by

means of selection and genetic operators (mutation and/or

crossover, also called recombination). As discussed in the

introduction, the only information used during the search is the

evaluation of the fitness function calculated on the individuals

generated along the evolutionary process, i.e. no gradient

information is assumed. The overall effect of the selection

and genetic operators is to guide the population towards the

more promising regions of the search space (i.e., those with

better individuals w.r.t. the fitness function), although there is

no guarantee to converge to the global optimum if not under

specific conditions of the fitness landscape and the population

[2]. As an additional note, while the evolutionary metaphor is

clear and inspiring it should be remarked that there are some

obvious differences between natural evolution and EAs. In

particular, in the former fitness is measured a posteriori as the

reproductive success (number of offspring) of an individual,

which in turn depends on how that individual is adapted to

the environment. On the contrary, in EAs fitness is measured

a priori as the evaluation of each individual with respect to the

given fitness function, which then affects how many offspring

that individual will generate. Another substantial difference is

that natural evolution does not foresee any “goal” (it is not

an optimization process, although it resembles one) and it is

open-ended, while in the case of EAs there is a clear goal

(the optimization of the fitness function) and as such they

are usually closed-ended, i.e. they are executed until a certain

stop criterion is met, e.g. on the number of generations, the

execution time or a desired fitness level reached.

III. IMPLEMENTATION

As explained before, in order to optimize the ORCA param-

eters we used the RVO2 simulator for testing ORCA, coupled

with the inspyred library for executing the EA. In this section

we will describe the main settings of the two tools.

A. RVO2 Configuration

The RVO2 library includes a full implementation of the

ORCA algorithm, as described in Section II, and allows the

simulation of multiple agents navigating in a 2-dimensional

space. Furthermore, the library allows the user to have a

complete control over several simulation parameters, as well

as the properties of the agents and the layout of the obstacles.

The main parameters we focused on in our experimentation are

listed in Table I. In particular, five of them were considered in

the evolutionary optimization process, namely: {neighborDist,
maxNeighbors, timeHorizon, timeHorizonObst, maxSpeed}.

These play a fundamental role in performance of the ORCA

algorithm, enabling the agents to be more or less efficient in

the collision-free navigation. As for the other two parameters,

timeStep and radius, we kept their default values, respectively

1/60 and 0.1. In fact, these parameters do not depend on

the ORCA algorithm itself but rather on the accuracy of the

simulator (i.e., the timestep used in its internal numerical

integrator) and the size of the agents, which in turn depends

on the specific application and available hardware. Therefore,

we chose to fix these two parameters instead of taking them

into account in the optimization process.

In order to evaluate the optimization of the ORCA pa-

rameters under different environment conditions and test the

generalization of the parameters across different environments,

we devised four different test-cases of increasing complexity

in terms of layouts and numbers of obstacles. In each scenario,

we considered the presence of four UAVs, that start from the

environment’s four vertices, whose coordinates are indicated in

the second column of Table II. Once the simulation starts, each
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TABLE I. RVO2 CONFIGURATION: MAIN SIMULATION 
PARAMETERS

Parameter Type (unit) Meaning
timeStep float (time) Timestep of simulation

radius float
(distance)

Maximum proximity
(center-to-border)

neighborDist float
(distance)

Maximum proximity
(center-to-center) w.r.t. other
agents

maxNeighbors size t
Maximum number of other
agents taken into account for
the ORCA algorithm

timeHorizon float (time)
Minimum amount of time
for safe navigation w.r.t.
other agents

timeHorizonObst float (time)
Minimum amount of time
for safe navigation w.r.t.
obstacles

maxSpeed float
(distance/time)

Maximum speed of agents

TABLE II. RVO2 CONFIGURATION: PROPERTIES OF THE 
AGENTS

Agent ID Starting point Preferred velocity Target point
0 (0, 0) (1, 1) (10, 10)
1 (10, 0) (−1, 1) (0, 10)
2 (10, 10) (−1,−1) (0, 0)
3 (0, 10) (1,−1) (10, 0)

agent is configured with its preferred velocity (third column of

Table II), directed towards its target point, that is the opposite

vertex w.r.t. its starting point (fourth column of Table II). A

graphical representation of the four scenarios is shown in Fig.

3, where the obstacles as well as the borders of the map are

depicted in gray and the four circles located at the vertices

represent the four agents at their starting positions.

B. Evolutionary Algorithm Configuration

The implementation of the EA was conducted through

the use of the inspyred library, one of the most adopted

frameworks for bio-inspired computation [25]. The library

consists of a series of modules that implement all the main

features of Evolutionary Algorithms as well as several other

bio-inspired algorithms. The modular structure of inspyred
makes it very easy to apply for solving optimization problems,

but also for customizing the optimization algorithms if needed.

In inspyred, each module is in practice an operator that can be

called either at the beginning, during each step, or at the end

of the evolutionary loop. In particular, these operators allow

among other things to: 1) initialize a population of individuals

within user-defined search boundaries (Generator operators);

2) “evolve” these individuals by means of mutation (and/or

crossover) and select at every generation the individuals that

will “reproduce” (Variator and Selector operators); 3) check

if one or more stop criteria are met (Terminator operators);

4) log various aspects of the evolutionary process (Observer

operators). One special operator is the Evaluator, which returns

the fitness function corresponding to a given individual in

input. The complete list of inspyred operators, with their

description, is reported in Table III.

TABLE III. EA CONFIGURATION: INSPYRED 
OPERATORS

Operator Description
Evaluator Measures the fitness of an individual

Generator Generates new individuals within the search
boundaries

Observer Stores to file and/or prints the progress of the
evolution and other user-defined data

Replacer Determines the surviving individuals from the
previous generation

Selector Determines the parents for the next generation
Terminator Determines the evolution termination criteria

Variator Modifies the input individuals e.g. through
mutation and/or crossover

In order to integrate the RVO2 simulator within inspyred,

we implemented a custom Observer, a custom Generator,

and the necessary Evaluators (one for each scenario). The

Observer is designed to save the trajectories corresponding

to the best ORCA parameters found by the EA. The Gener-

ator creates pop size (this value being the population size)

initial individuals, each one consisting of five parameters

{neighborDist, maxNeighbors, timeHorizon, timeHorizonObst,
maxSpeed} uniformly randomly sampled between a lower and

an upper bound, defined as in Table IV.

TABLE IV. EA CONFIGURATION: LOWER AND 
UPPER BOUNDS

Parameter Lower bound Upper bound
neighborDist 0.1 5

maxNeighbors 1 3
timeHorizon 0.1 10

timeHorizonObst 0.1 10
maxSpeed 0.5 5

As for the Evaluators, for each scenario we wrapped a

call to the RVO2 simulator that takes as input an individual

generated by the EA (so, a set of five ORCA parameters),

performs a complete simulation of the movement of the four

agents within the respective environment (for a total duration

of 100000 × timeStep) with those parameters, and finally

extracts a series of values (i.e., the number of the collisions, the

time to reach the targets, and the distances between each agent

and its respective target at the end of the simulation) which

are needed for the fitness function calculation to be minimized.

The latter was defined to take into account the most significant

aspects of the simulation and evaluate the effectiveness of a set

of ORCA parameters in terms of accuracy to reach the target

and collision avoidance. In particular, the fitness function was

formulated as follows:

f(x) = collisions+ error + TTRnorm (5)

where x is an individual composed of the five ORCA param-

eters considered in the optimization process.

The first component of the fitness function, collisions,

counts the number of collisions occurred between any pair of

agents during the simulation. This is computed by updating

a counter at each timestep of the simulation. A collision

______________________________________________________PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 21 ----------------------------------------------------------------------------



−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

Agent 0 Agent 1

Agent 2Agent 3

(a)

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

Agent 0 Agent 1

Agent 2Agent 3

(b)

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

Agent 0 Agent 1

Agent 2Agent 3

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

Agent 0 Agent 1

Agent 2Agent 3

(c) (d)

is considered to happen whenever the distance between two

agents is smaller than two times their radius (i.e., the radius
parameter in Table I, set to 0.1), plus a certain safety threshold

of 0.01. For clarity, the Python code for the collision check

is shown below, where p1 and p2 are the 2-dimensional

Cartesian coordinates of the two agents, r is their radius and

distance() computes the Cartesian distance between p1
and p2.

def check_collisions(p1, p2, r):
if distance(p1, p2) < (2*r + 0.01):

return True
else:

return False

Thus, whenever the check_collisions() function above

returns True, the collisions counter is increased.

The second component, error, represents the distance of

each agent from its target position at the end of the simulation,

averaged across n = 4 agents:

error =
1

n

n∑
i=0

distance(pi, ti) (6)

where pi is the position of the i-th agent at the end of

the simulation, ti is the target position, and distance()
computes the Cartesian distance between the final position and

the target.

Finally, to favor simulations where agents are able to reach

their target faster, the third component, TTRnorm, computes

the time to reach (TTR) the target, again averaged across

n = 4 agents. The target is considered reached once the agent

is within a distance of radius = 0.1 from it, in which case

the timestep is saved. These timesteps are then averaged across

the agents, and the averaged value is normalized in [0, 1] by

dividing it by the total number of timesteps of the simulation:

TTRnorm =
1
n

∑n
i=0 TTRi

timeSteps
(7)

where TTRi is the timestep at which the i-th agent reached

its target location and timeSteps is the maximum number of

timesteps for each simulation (in our experiments, 100000).

It should be noted that due to this fitness function for-

mulation, a hierarchy of relevance is implicitly defined in

the optimization phase among the three variables (due to the

different orders of magnitude of its three components), in

Fig. 3. Graphical representation of the tested scenarios: (a) scenario I, (b) scenario II, (c) scenario III, and (d) scenario IV.
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order to favour first of all the optimization of the number of

collisions, then the accuracy to reach the target, and finally

the time to reach the target.

To complete the description of the EA, we note that its

other modules were all based on existing operators available

in inspyred, namely:

• file observer: prints to file the statistics of the evolutionary

process and the data of each generation;

• tournament selection: performs random sampling of tour-

naments made of a fixed number of individuals;

• heuristic crossover: performs crossover on two individuals

to generate new offspring;

• gaussian mutation: performs Gaussian mutation on one

individual to generate new offspring;

• generational replacement: performs generational replace-

ment with elitism;

• evaluation termination: terminates the evolution when the

maximum number of evaluations is achieved.

In our experimentation we configured these modules with the

parameters shown in Table V.

TABLE V. EA CONFIGURATION: ALGORITHM 
PARAMETERS

Parameter Value
pop size 100

num selected pop size
tournament size 4
mutation rate 0.4
crossover rate 0.6

num elites 1
max evaluations 100000

IV. RESULTS

For each of the four scenarios, we performed 10 inde-

pendent runs in order to evaluate the average fitness trend

and the ability of the EA to minimize the fitness function

independently from the initial population. Fig. 4 shows the

average fitness trend ± std. dev. across the 10 runs performed

on each scenario. These trends demonstrate the optimization

progress during the evolutionary process. Considering the

fitness function formulation in Eq. (5), it should be noted

that even if the collisions are equal to 0 and the error to

reach the target is 0, the third component will always have a

positive value (normalized in [0, 1]), due to the finite speed

of the agents. In our experiments, as shown in the fitness

trends, we have observed that the minimum attainable values

are around 0.3. For example, the best set of ORCA parameters

found by the EA on scenario IV, reported in Table VI, yield a

fitness value of ∼ 0.28. A graphical representation showing the

agents’ trajectories obtained with these parameters is shown

in Fig. 5, where it can be seen that the four agents are able

to pass through the obstacles and reach their target positions

without collisions5.

5We provide some example video recordings of the simulations of the four
scenarios at: https://vimeo.com/showcase/7183239.

In order to gain further insight into the optimization results

and assess the robustness of EA on problem at hand, we

analyzed the distribution of the optimal parameters found in

the 10 runs for each scenario. We report in Fig. 6 the histogram

of the five ORCA parameters in each scenario. Except for the

timeHorizon parameter, which converges to different values

in the range [0.1, 10] (see Table IV), all the other parame-

ters show a clear trend. In particular, neighborDist tends to

converge to the largest values, except for scenario I (this is

most likely due the the simpler environment of this scenario).

maxNeighbors converges predominantly (in 39 cases on 40
total runs) to 1, which means that during the computation of

the preferred velocities in ORCA each agent takes into account

only one of the other three agents. Similarly, we can note that

timeHorizonObst tends to converge in all runs to the lowest

values, while maxSpeed tends to the largest values.

Finally, we performed a set of additional tests in order to

evaluate the generalization of the results obtained with the

EA. In these experiments, we considered the best parameter

settings found across the 10 runs for each of the four scenarios,

and applied them to the other three scenarios. We then took

the mean fitness value across the three scenarios as a measure

of generalization. We report the results of these tests in Table

VII, where it can be seen that the set of parameters with the

best generalization capability is the one optimized for scenario

III. This set of parameters, reported in Table VIII, allows to

complete successfully every scenario, making each agent reach

its target location without colliding with the other agents. By

comparing the results in Table VI and Table VIII, we can

observe that only maxNeighbors and maxSpeed take similar

values, while the other three parameters are quite different.

This means that, in general, it is not possible to guarantee that

the parameters optimized for one specific scenario will work

in another one, a consideration that should be seriously taken

into account in real-world applications.

V. CONCLUSION AND FUTURE WORKS

In this work, we applied an Evolutionary Algorithm to find

the optimal parameters of the Optimal Reciprocal Collision

Avoidance (ORCA) algorithm. Our solution, based on two

existing Python frameworks, namely the inspyred library for

bio-inspired computation and the RVO2 library for agent

navigation simulations, is general and can be easily customized

or adapted to others collision avoidance simulators and/or

different optimizers. Our numerical results provide a number

of interesting insights as to what concerns the performance of

different sets of ORCA parameters in different environment

scenarios. Furthermore, we have observed that generalization

across scenarios is hard to obtain as the optimal parameters

for one scenario are not guaranteed to work in other scenarios.

In future works, it will be interesting to extend this study

in different ways. For example, alternative optimization algo-

rithms could be used in comparison with the proposed EA to

evaluate if it is possible to obtain better results. In this direction

one interesting opportunity would be to evaluate diversity-

driven algorithms [26] such as MAP-Elites [27], which com-
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Fig. 4. Fitness trend (average ± std. dev. across 10 runs) for: (a) scenario I, (b) scenario II, (c) scenario III, and (d) scenario IV.
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Fig. 5. Graphical representation of the trajectories obtained with the best
parameters found for scenario IV (see Table VI).

pared to traditional fitness-driven EAs tend to promote di-

versity among individuals and as such are capable of better

exploration of the parameter space. This kind of algorithms

could indeed provide different trade-off optimal parameters

corresponding to different (and possibly more generalizable)

sets of ORCA parameters. Furthermore, it would also be

interesting to test alternative scenarios with a larger number of

agents, or groups thereof, or with different (and more complex)

environments, in order to evaluate the performances of the

optimal ORCA parameters in more difficult conditions.
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TABLE VI. BEST PARAMETERS FOUND FOR 
SCENARIO IV

Parameter Value
neighborDist 2.2017602006013703

maxNeighbors 1
timeHorizon 2.3891425667157310

timeHorizonObst 0.2388588110888072
maxSpeed 5

TABLE VII. GENERALIZATION RESULTS

Scenario
I

Scenario
II

Scenario
III

Scenario
IV

Mean fitness 4.987 2.653 0.319 4.979

TABLE VIII. BEST GENERALIZATION PARAMETERS 
(SCENARIO III)

Parameter Value
neighborDist 4.6351668310830220

maxNeighbors 1
timeHorizon 8.1368729597609600

timeHorizonObst 0.1604237686279340
maxSpeed 4.9999983416259270
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Fig. 6. Parameter distribution (across 10 runs) for: (a) scenario I, (b) scenario II, (c) scenario III, and (d) scenario IV.
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