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Abstract—This demo presents the timbreID-VST plugin, an
audio plugin in Virtual Studio Technology format dedicated
to the embedded real-time classification of individual musical
instruments timbres. The plugin was created by porting the code
of the timbreID library, a collection of objects for the real-
time programming language Pure Data that allows the real-time
classification of features of audio signals. The JUCE framework
and the building tools provided by the Elk Audio OS operating
system were utilized, which allows the plugin to be used in the
embedded systems supported by Elk Audio OS. The availability
of the timbreID-VST plugin utilities as a library facilitates the
development of intelligent applications for embedded audio, such
as smart musical instruments. The plugin was trained to classify
percussive timbres from an acoustic guitar.

I. INTRODUCTION

Recently, a family of musical instruments featuring ad-

vanced context-aware and proactive capabilities has been

proposed, the so-called smart musical instruments [1]. At

hardware level, smart musical instruments are characterized

by sensors, embedded systems, and wireless connectivity.

Existing instances of such kind of Musical Things are the

Sensus Smart Guitar developed by Elk [2] or the Smart Cajón

reported in [3].

The development of this class of intelligent instruments

requires embedded technologies dedicated to real-time audio

tasks. In recent years various platforms targeting this purpose

have appeared both as commercial or open source projects

[4]. To date, the two most prominent platforms supporting the

creation of smart musical instruments are: i) the Bela Board,

which is based on Linux Xenomai and the Beagle Bone Black

single board computer (www.bela.io); ii) the Elk Audio OS,

an operating system also based on Linux Xenomai and that

supports a variety of single board computers (www.elk.audio).

Elk Audio OS is based on a sound engine that supports

commercial and non-commercial audio plugins in various

formats (e.g., LV2, VST, RE). A peculiarity of the operating

system is the capability of ensuring low-latency processing and

high sound quality while at the same time supporting advanced

networking options. Given these features, Elk Audio OS can

be considered the most advanced platform for the creation of

smart musical instruments.

Several of the intelligent applications envisioned for smart

musical instruments are based on the understanding, in real-

time, of what is being played (e.g., the performative gestures

of the player). This requires efficient algorithms for the real-

time classification of properties of the audio signal generated

by a player, such as the timbre. Various methods have been

developed in the field of Music Information Retrieval [5] for

the classification of audio signals, nevertheless relatively little

research has been conducted in the real-time domain.

A prominent tool for real-time classification of fea-

tures of audio signals is timbreID [6]. This is a collec-

tion of objects for the real-time programming language

Pure Data (www.puredata.info), which is freely available

(https://github.com/wbrent/timbreID) and particularly useful

for the classification of timbres of individual musical in-

struments. The timbreID library - besides providing efficient

implementations of a set of low-level temporal, spectral, and

cepstral feature-extraction techniques - also integrates a real-

time classifier based on the K-nearest neighbors algorithm,

which takes in input vectors of extracted audio features.

The library was utilized for the creation of the Smart Cajón

reported in [3].

For this demo we ported the timbreID library from the Pure

Data external format to C++ for the JUCE framework and the

building tools of Elk Audio OS were used to produce a plugin

that can run on the platforms supported by said OS. JUCE was

chosen because it allows compile code in the Virtual Studio

Technology (VST) plugin format, and particular attention has

been devoted to coding a fully headless plugin (i.e., without a

graphical user interface).

Pure Data objects of timbreID are originally coded in C

language with use of utilities from the Pd library for externals:

custom data types and utilities were substituted with JUCE

structures and functions, while the rest of the code was adapted

to C++14.

II. EVALUATION

The functionalities of the library were tested on a real world

problem: the classification of percussive timbres produced by

hitting the body of an acoustic guitar.

The percussive technique is very popular among modern

acoustic guitar players and the interaction with some of them,

along with previous research [7] helped to identify 4 main
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timbres produced on different areas of the guitar. The timbres

selected are the following:

1) Palm on lower guitar body

2) Fingers on lower side

3) Thumb on top guitar body

4) Fingers on the keyboard (muted strings)

All the experiments were performed using a training dataset

of 390 audio samples (~100 per timbre) and a test dataset

composed of 80 samples. All of the recordings were performed

on a Yamaha APX-8A acoustic guitar using the internal

piezoelectric transducers and pre-amplifier. Note this standard

setup is not ideal for all kind of sounds; as a matter of

fact more modern amplification systems integrate a condenser

microphone and/or a magnetic pickup.

Two studies (study-1, study-2) were carried out to

compare the performance of the original K-nearest-neighbors

classifier from timbreID and a feed forward neural network.

The configuration for study-1 uses the Bark onset detec-

tor chained to the BFCC feature extractor and finally to the

Knn classifier (timbreID object), k = 3.

The configuration for study-2 is identical except for

the classifier that is now replaced by a feed forward neural

network, composed by an input layer of 25 neurons, 2 hidden

layers of 25 neurons each and an output layer of 4 neurons.

Sparse Categorical Crossentropy is the loss function of choice

and the optimizer used was Adam. The number of training

epochs ranges from 150 to 600 epochs depending on the test

case. For both studies the sample rate is 48000Hz, Bark and

Bfcc use a window size of 1024 samples and spacing of 0.5

barks. This produces a vector of 50 coefficients that is reduced

by retaining only the first 25 values. The hop size for Bark is

128 samples.

Both experiments were repeated by introducing a delay

between the onset detection and the feature extraction, in order

to capture a different part of each sound. This should reduce

pre-onset resonance and general noise in the extracted values.

Given that ”the time between an instrument onset and its

attack peak varies unpredictably according to the instrument”

[8], different delay values have been tested: Bark already

introduces a delay of at least 5.33ms (sample rate: 48000Hz)

and the 2 values tested for the total delay were 20ms and

10ms, meaning respectively additional delays of 14.66ms and

4.66ms. Given the results, an additional test was run with the

study-1 configuration, without reducing the feature vector.

III. RESULTS

TABLE I. S T U D Y-1 SCORES (KNN)

A-Delay 0ms 4.66ms 14.66ms
Study-1 Accuracy: 0.8125 0.8250 0.4625
Study-2 Accuracy: 0.9250 0.9000 0.4125

From the results in tables I the Neural Network architecture

shows to be the clear winner in terms of performance: this is

in all likelihood due to the ability of a network of neurons to

learn weights for the input features, while K-nearest-neighbors

is limited to equal weighting or human designed weights.
Studies using 20ms total delay showed a great reduction

in accuracy while 10ms results were closer to the score of

the setup without delay. More tests need to be done with

this parameter, in particular in the real application with a

guitar connected to the recognition system: this should prove

to work better in that case, even with similar accuracy in

the test, because rapid successions of different sounds cause

interference between said sounds.
This pilot study used only the bfcc feature extractor as

previous studies showed that it is more fitting for percussive

sounds than other modules offered by the library [8], but more

experiments will be carried out with more extractors. The

additional test carried out on a smaller dataset with the full 50

values vector computed by bfcc was evaluated with a Principal

Component Analysis plot (Fig. 1) and compared to the PCA

plot of the dataset for the other studies: the greater number of

feature show marginally better separation. This, along other

configurations will be tested.
Every configuration was successfully compiled as a headless

plugin for Elk Audio OS and tested with a guitar.
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Fig. 1. PCA, 50 features, 20 samples per class. T0:Palm on lower body,
T1:Fingers on lower side, T2:Thumb on top body, T3:Fingers on keyboard
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