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Abstract—The article describe a simulation of the drone
designed to monitor a large area. Three scenarios are considered:
detection of the fire source in the forest, detection of intruders
in the forbidden territory and detection o their cars. Open
source software is used for the simulation: robotic simulator
Gazebo, framework for robotic applications Robot Operating
System, communication protocol for small unmanned vehicles
MAVLink and autopilot system PX4. Iris+ quadcopter is chosen
as a prototype for the simulation, its mathematical model is
presented as well as the vision model based on the PX4FLOW
monocular camera and optical flow. Algorithms for detecting
objects of interest are described. As a result, the successful
tests of simulation are presented, in which the classification and
localization accuracy is tested.

I. INTRODUCTION

In the last decade, the field of mobile aerial robotics has
attracted considerable attention from the scientific community
and the commercial sector. Prospects for the use of unmanned
aerial vehicles (UAVs) for tasks, that were previously difficult
and costly to automate, forces researchers and developers to
improve unmanned technology. Innovative developments allow
the use of drones in many existing industries: for rescue
services [1], in logistics [2], in building and construction [3],
in agriculture [4], in telecommunications [5]. The potential
of unmanned aerial vehicles is most revealed in the field of
monitoring, especially in cases of a large area or difficult
to access infrastructure. The deployment of round-the-clock
monitoring of such objects is one of the costly tasks for
automation. For natural areas or agricultural land, mobile
monitoring is more effective than conventional monitoring
methods [6], [7].

An important example of the use of drones is fire monitor-
ing of forests [8]. Currently, fire services use three main meth-
ods for monitoring fires: fire towers, the helicopter monitoring
and satellite surveillance. Each of them has disadvantages in
cost and effectiveness. Fire towers have a limited range of
vision, continuous monitoring with helicopters is expensive
and satellite surveillance is not an accurate method for the
rapid detection of fires [9]. On the other hand, monitoring by
drones can be deployed to automatically search for fires in real
time, and at a lower cost than conventional methods [10], [11],
[12].

Another example of the use of drones in monitoring is the
recording of illegal activities. Among the examples are: illegal
logging, illegal digging of solid waste landfills, damage to oil
and gas pipelines [13], [14], [15]. In such cases, offenders often
manage to leave the area / destroy evidence while the security
services react. Monitoring with the help of UAVs allows
detecting zones of vegetation oppression, violation of sealing
of solid waste landfills and other signs of illegal activity.

The academic community has done a lot of research on
the use of drones to detect objects of interest [16]. However,
the mass introduction of UAVs in monitoring services has not
yet occurred. One of the reasons is that various monitoring
scenarios impose their limits on the design of a monitoring
system. For a large area, organizational questions arise [17].
How many UAV units should be involved in the mission?
Which trajectory is optimal? At what altitude and at what
velocity drones should fly? There are also issues of optimal
fleet management and visual capture of the area with computer
vision [18], [19]. Solving these issues in one way or another
required tests and experiments. Since real testing carries risks
of equipment loss, it is easier and more beneficial to use
simulation programs.

This article is dedicated to creating a convenient and un-
demanding to the computational power simulation for testing
monitoring missions with UAVs. The development of such
simulations was carried out earlier, and this article differs from
similar ones in a number of points. It differs from such works
as [20] in that it considers primarily the task of monitoring a
large area, which has been little studied [21]. Another example
is the articles [22], [23] which present platforms for simulation
based on Unreal Engine 4 with support for realistic physics.
However, such works are for the most part intended for
testing vision, rather than for simulating the entire monitoring
system. Articles show that Unreal Engine software is very
demanding on computing power, which can be critical when
testing simulation in the field (for example, before launching
an UAV at a monitoring object). In our case, a less demanding
Gazebo simulator is used, which can work on computers with
a small amount of video memory.

In paper [24], the authors developed a simulation platform
based on the Gazebo simulator and the Robot Operating
System framework. To simulate computer vision, the authors
added inertial measurement unit (IMU) and sonar to the UAV
model. However, sonar is already built into most drone models
and the nuances of its functioning on UAVs are quite well
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understood. IMU cameras are ineffective without gimbal. In
our case, we simulate a realistic camera with a low resolution
for working with the optical flow.

Thus, the main advantages of our work for testing of area
monitoring system are:

• realistic computer vision;

• great attention to the mathematical model of the drone
and computer vision;

• the use of open software that is not demanding on
computing power.

The article is organized as follows. Section II describes the
open source software used. Section III presents the mathemati-
cal model of a drone. A description of the vision system and its
algorithms is presented in Section IV. The Section V is devoted
to three monitoring scenarios, and the Section VI presents the
simulation test results. The conclusion are summarized in the
last section.

II. SOFTWARE DESCRIPTION

The monitoring system is organized using the following
software:

• Gazebo is a robotic simulator that allows to simulate
robot’s operation both indoors and outdoors [25].

• Micro Air Vehicle Link (
) is a communi-cation

protocol for Micro Air Vehicle or MAV. The
protocol establishes interaction between the MAV and
the ground control station, as well as their constituent
parts and components. Basic telemetry information is
packaged in a special message.

• Robot Operating System (ROS) is an open framework
for creating distributed robotic systems. The main
abstractions in ROS are nodes, messages, topics, and
services. Some nodes publish messages in topics,
while others subscribe to topics to obtain the neces-
sary information. This creates a publisher-subscription
relationship between nodes. Services also perform the
function of communication, but operate on the basis
of requests / responses.

• For ROS, the MAVROS package
was written, which

provides the ability to control drones using the
MAVLink protocol. MAVROS nodes subscribe to
spe-cific topics awaiting commands and publish
telemetry to other topics. To control the drone, it is
possible to set the target position and yaw angle in the
ENU (East North Up) coordinate system, linear and
angular velocity and orientation.

• PX4 is a flight controller working on Pixhawk,
Pixracer and others boards [26]. It is an autopilot
system for autonomous devices consisting of two
levels. The first level is a set of modules designed
for flight control, the second level consists mainly of
device drivers. In addition, the second level includes a
simulation layer that allows to use PX4 for simulation.

III. MODEL OF DRONE

Iris + is chosen as a prototype for the drone model [27]. It
is equipped with a battery that feeds 4 brushless motors with
a capacity of 950 revolutions per volt (maximum number of
revolutions without load). Thrust of motors allows to fly with
the payload to 400 grams. The choice of this model is due to
the fact that quadcopters of this class are the most common
on the market and they perfectly perform video recording of
objects and areas.

The frame of the IRIS + quadcopter consists of 4 frame
arms in the transverse configuration and two sets of propellers
(Fig. 1). One set rotates clockwise and the other set rotates
counterclockwise.

Fig. 1. Quadcopter XbCYb plane in transverse configuration

To develop the simulation, the following properties of the
quadcopter equipment is taken into account:

• Lithium-ion polymer battery with 5100 mAh. To sim-
ulate maximum flight duration, a battery consumption
algorithm is provided.

• Four DC motors mounted on the body shell. Their
masses and maximum velocity are taken into account.

• Telemetry is implemented using the PX4 autopilot.

• Inertial measurement units (gyro sensor, accelerom-
eter, magnetic meter), GPS module, barometer, laser
rangefinder.

• Model of monocular camera PX4FLOW with 800 ×
800 resolution and optical flow.

Below is a mathematical model of a quadcopter. Units
are assumed to be standard according SI: m for coordinates,
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rad for angles, m/s for linear velocities, rad/s for angular
velocities, m/s2 for linear accelerations, rad/s2 for angular
accelerations, N for forces, Nm for force moments.

The mathematical model is based on a number of premises:

• The quadcopter design is symmetrical.

• Quadcopter propellers are solid.

• The quadcopter body shell is solid.

• The free air velocity is 0.

• The dynamics of motors can be neglected.

• The flexibility of the propellers is small and it can be
neglected.

• Drag force acts linearly according to Stokes’ law.

• The general center of mass coincides with the center
of mass of the body shell.

Two coordinate frames (c.f.) that describe the orientation
and position of the quadcopter are presented below (Fig. 2).

1) Inertial frame {i}. Axis Xi of inertial c.f. is directed
to the north, axis Yi is directed to the east, and axis Zi

is directed along the radius to the center of the earth.
The flight paths and GPS position are determined
relative to the inertial frame.

2) The fixed-body coordinate frame {b}, rigidly con-
nected with the body shell. It has a beginning at the
center of gravity of the quadcopter. C.f. rotates with
the quadcopter and describes the motion relative to
the inertial frame. Axis Xb always points to the front
of the quadcopter, axis Yb points to its right side, and
axis Zb points down. Such an arrangement of the
axes is chosen because calculations are performed in
this c.f. for the drone controller and on-board sensors.
Also in this c.f., aerodynamic forces and moments are
measured.

The angle between axes Xi and Xb is the pitch angle θ,
between axes Yi and Yb is the yaw angle ψ, and between axes
Zi and Zb is the roll angle φ.

In the model, the following forces and moments are taken
into account: gravity force; thrust of the quadcopter; roll mo-
ment; pitch moment; yaw moment. Rotational motion creates
a gyroscopic effect that acts on the quadcopter and depends
on the inertial characteristics of the rotor. But since these
characteristics are very small, the gyroscopic effect can be
neglected.

The nonlinear equation of motion of the quadcopter was
taken from work [28] and it is as follows:

⎡⎢⎢⎣
ẋi

ẏi

ẏi

⎤⎥⎥⎦ = Ri
b

⎡⎢⎢⎣
u

v

w

⎤⎥⎥⎦ ,

Ri
b =
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CθCψ SφSθCψ − CφSψ CφCψSθ + SφSψ

CθCψ SφSθSψ + CφCψ CφSψSθ + SφCψ

−Sθ SθCθ CφCθ

⎤⎥⎥⎦ ,
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=
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,

where u, v, w — linear velocities along axes X,Y, Z in c.f.
{b}; v — linear velocity along axis Y in c.f. {b}; ṗ —
quadcopter roll acceleration along the axis X in c.f. {b}; q̇ —
quadcopter pitch acceleration along the axis Y in c.f. {b};
ṙ — quadcopter yaw acceleration along the axis Z in c.f. {b};
Fz, L,M,N — aerodynamic forces and moments: total thrust,
torque effect of roll, pitch and yaw; m — quadcopter mass;
Ixx, Iyy, Izz — moments of inertia about the axes Xi, Yi, Zi;
φ, θ, ψ — roll, pitch, yaw angles in c.f. {i}; xi, yi, zi —
quadcopter position along the axes X,Y, Z in c.f. {i}; g —
gravitational acceleration; S∗, C∗ — sine and cosine of the
corresponding angles.

The state-space model can be written as:

Ẋ(t) = AX(t) +Bu(t),

X(t) =
[
φ θ ψ p q r

]T
,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Fig. 2. Quadcopter scheme used in a mathematical model

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1/Ixx 0 0

0 1/Iyy 0

0 0 1/Izz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

×

⎡⎢⎢⎣
−bLxB bLxF bLxB −bLxF

bLyF −bLyB bLyF −bLyB

d d −d −d

⎤⎥⎥⎦ ,

u(t) =
[
ω2
1 ω2

2 ω2
3 ω2

4

]T
,

where ωi — rotation velocity of the i-th motor; b —
thrust coefficient; d — propeller drag coefficient;
LxB , LxF , LyB , LyF — moment arms. Moment arms
are shown in Fig. 3.

Since the accuracy of the mathematical model depends on
physical parameters, we decided to use the real parameters of
the IRIS + quadcopter. Moment arms lengths and quadcopter
mass were found by measuring tape and electronic scales,
propeller thrust and drag coefficients were taken from the

Fig. 3. Illustration of moment arms of IRIS+

quadcopter specification. The moment of inertia was deter-
mined twice using analytical and experimental methods, then
the results of both methods were analyzed.

For the experimental determination of the moments of
inertia, the approach described in [27] was applied. In this
approach a trifillary pendulum is used to measure quadcopter
oscillations along each of its axes. For the analytical determi-
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nation, the components of the quadcopter were approximated
as geometric shapes: quadcopter body shell and its motors
as cylinders, quadcopter rays as thin rods (Fig. 2). Thus, the
moment of inertia for each of the geometric shapes was found
individually, and then we found the moments of inertia Ixx,
Iyy and Izz using the Huygens–Steiner theorem [27]. All found
quadcopter parameters are listed in the Table I.

TABLE I. IRIS + PHYSICAL PARAMETERS

Parameter Value

m quadcopter mass, kg 1.689

Ixx moment of inertia, kgm2 0.0220

Iyy moment of inertia, kgm2 0.0108

Izz moment of inertia, kgm2 0.0309

b thrust coefficient, kgm 7.2115 · 10−6

d drag coefficient, kgm2 1.6473 · 10−7

LxB arm, m 0.228

LxF arm, m 0.228

LyF arm, m 0.128

LyB arm, m 0.128

IV. COMPUTER VISION

A vision system is represented by a monocular camera.
It is modeled taking into account internal parameters such as
camera weight, matrix resolution, viewing angle, culvilinear
and tangential distortion. The camera is fixed to the bottom
of the quadcopter under the center of mass and is directed
downward, perpendicular to the ground. To obtain an image
from the camera and transmit processed information about the
position of the object, the ROS framework is used. Computer
vision is implemented for two tasks: detecting a fire in the
forest and detecting intruding into a forbidden area.

A. Detection

The majority voting algorithm is used to detect a fire source
[29]. The algorithm operates on the basis of several of the most
robust conditions for detecting pixels of a fire image. In our
case, if at least seven conditions out of eleven are triggered,
then the pixel is considered to belong to the fire, otherwise
— to the background. This algorithm has low computational
complexity, since the belonging of a pixel to a fire image
is determined using a pre-calculated table, where a known
belonging value is assigned to each color. As a dataset, 300
images of fires in the forest are used. All conditions of the
algorithm are defined in the following format:

ri(x) = fi(x)− ci,

where x — pixel coordinate in the image; fi(x) — function
of a condition i; ri(x) — resulting function of a condition i;
ci — a constant. As conditions, the most effective conditions
from [29] were selected.

As the first condition, the algorithm from [30] is used,
in which a three-dimensional histogram is constructed in the
RGB space based on segmented images from the dataset. The
result is a function f(r, g, b), where r, g, b — color components

of red, green and blue. This function takes positive values
for points that probably belong to the fire, and negative for
points that belong to the background. The first condition can
be described as follows:

r1(x) = f [I(x)],

where I(x) — pixel color at point x in the image.

The second condition uses a∗ and b∗ channels from the
L ∗ a ∗ b color space and looks like this [29]:

r2(x) = Ia∗(x) + Ib∗(x)− t1,

where Ia∗(x) and Ia∗(x) — saturation of channel a∗ and b∗
in point x; t1 = 32 — threshold constant.

The third condition uses the RGB color space and the fact
that for fire the saturation of red will be much greater than the
saturation of blue or green:

r3(x) = IR(x) + min[IR(x), IG(x), IB(x)]− t2,

where t2 = 72 — threshold constant.

The fourth and fifth conditions use the RGB and YUV
color spaces [31]. Using the fourth condition, high saturation
areas are searched in the image:

r4(x) = Iv(x)− t3,

where Iv(x) — saturation value for channel V of the color
space YUV; t3 — threshold value that is found using the Otsu
method [32]. Then, the selected areas are analyzed using the
RGB color space. This is how a three-dimensional Gaussian
model is built on the basis of the color model of fire using
labeled images from the dataset.

The fifth condition is as follows:

r5(x) = −
√ ∑

C∈{R,G,B}

(IC(x)−mC)2 + τσ · σ,

where mC — average value of channel C for pixels satisfying
the condition r4; σ = max{R,G,B}(σC) — standard deviate
of channel C for pixels satisfying the condition r4. The
coefficient τσ = 2.5 was found empirically.

The six remaining conditions use Y CbCr color space [33].
The sixth and seventh conditions use the fact that in most
cases the saturation of red and the brightness component in th
Y CbCr color space are greater than the saturation of blue:

r6(x) = IY (x)− ICb
(x),

r7(x) = ICr
(x)− ICb

(x),

In the following three conditions, the average value of the
brightness component is used to search for bright areas in the
image:
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r8(x) = IY (x)− Y m,

r9(x) = Cm
b − ICb

(x),

r10(x) = ICr
(x)− Cm

r ,

where Y m, Cm
b and Cm

r — saturation average values of
channels Y , Cb and Cr.

The following rule uses the fact that there is a difference
between the pixel saturations on channels Cb and Cr.

r11(x) = |ICb
(x)− ICr

(x)| − t4,

where the coefficient t4 = 40 was found empirically.

The maximum numbers at which the values of the resulting
function of the conditions take positive values in the image ar-
eas belonging to the fire are chosen as coefficients t1, t2, t3, t4.
Minimum number is chosen as a coefficient τσ .

For detection of intruders from a drone’s altitude, a ma-
chine learning method is used, based on boosting feature
of histogram of oriented gradients [34]. It is robust to light
changes, effective in describing the shape of objects and
undemanding in computing power.

First, features are extracted from the image, and then they
are used to train the classifier using the AdaBoost method. At
the output of the trained classifier, a set of boosting features
is obtained. The vector of boosting features has a dimension
five times smaller than a regular vector of oriented gradients,
and this significantly reduces the time spent on the algorithm.
Then these features are used to obtain a classifier based on
support vectors. Its main advantage is the effectiveness for this
classification task. The final classifier is used to detect people
and cars.

The described methods of computer vision are chosen
taking into account the fact that after the simulation, the
monitoring system should be tested on real equipment installed
on the UAV. Preliminary tests showed that on a single-board
computer with a Cortex-A53 processor (ARM v8) and a
frequency of 1.4 GHz, the image processing time takes 41
ms, which corresponds to 24 frames per second.

B. Determining the Position of Objects on the Map

ROS topics provide information about the current position
and orientation of the quadcopter relative to the inertial co-
ordinate frame. Using this data and camera data, we need to
localize the objects of interest (Fig. 4).

The coordinate transformation matrix from the c.f. of the
drone to the inertial coordinate frame has the following form:

M i
b =

⎡⎢⎢⎢⎢⎢⎢⎣

. . . . .
. ...

Ri
b P i

. .
. . . .

...

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Ri
b — rotation matrix from c.f. {b} to {i}; P i —

position of the quadcopter in inertial c.f.

Since the camera is fixedly mounted on the UAV, the
transformation matrix from the camera coordinate frame to
the drone coordinate frame looks like:

M b
cam =

⎡⎢⎢⎢⎢⎢⎢⎣

. . . . .
. ...

Rb
cam P b

. .
. . . .

...

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Rb
cam — rotation matrix from the camera c.f. to the

drone c.f.; P b — camera position in drone c.f.

Then the coordinate of the point Pmap in a inertial frame
looks like:

Pmap = M i
b ·M b

cam · P cam

where P cam — coordinates of the point relative to the camera.

Since a monocular camera is used, and only the position of
the object on the image plane is known, to determine the three-
dementional position of the object, it is necessary to project
its image back to the ground. Let the surface of the earth be
represented as a discrete function z = h(x, y). The matrix of
internal parameters of the camera is as follows

Mint =

⎡⎢⎢⎣
fx 0 cx

0 fy cy

0 0 1

⎤⎥⎥⎦ .

There are two focal lengths in this matrix: fx = F ·sx and
fy = F · sy, where F — focal length in mm; sx and sy —
the number of pixels per millimeter along the camera axes X
and Y ; cx and cy — coordinates of the center of the image in
pixels. All four parameters fx, fy , cx and cy are determined
by calibrating the camera.

Then the vector that determines the possible position of the
point, that is projected to the image point Pim = (px; py; 1),
has the form:

ācam = M−1
cam · p̄im,

where p̄im — radius vector.

By adding the coefficient k and the homogeneous coordi-
nate to the coordinates of the vector ācam, the point is obtained:

bcam(k · ax; k · ay; k · az; 1).

With a certain coefficient k, the point bcam will be on the
plane XiOYi of the inertial coordinate frame. The search for
this coefficient is carried out using the equality:
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Fig. 4. Projecting a point from an image onto the surface of the ground: Pmap — point of interest on the ground, P im — image of point Pmap

(M i
b ·M b

cam · bcam)z = (M i
b ·M b

cam ·

⎡⎢⎢⎢⎢⎢⎣
k · ax
k · ay
k · az
1

⎤⎥⎥⎥⎥⎥⎦)z = (bmap)z = 0.

Expressing k and substituting in bcam, we can find the
position of the object for the case when the function h(x, y)
of the ground’s surface is zero throughout the plane XiOYi.
Then, using the iterative method, the position of the object is
refined taking into account the values of the function h(x, y).
Thus, the position of objects of interest on the map can be
obtained by projecting their contours from the image into
three-dimensional space.

V. SIMULATION SCENARIOS

All objects were modeled in Blender, a software for cre-
ating 3D images. In Gazebo simulator, an environment was
created that included three zones: a forest in fire (Fig. 5a),
the area with illegal activity (Fig. 5b), the area with a car of
intruders in a forbidden area (Fig. 5c).

The general simulation scenario is as follows. For each
task, flight boundaries and altitude are determined in advance.
The quadcopter control algorithm performs take off, then
directs the quadcopter to the study area and begin monitoring.
As soon as the object of interest is detected, the quadcopter
will hang over it and will launch the algorithms of computer
vision. Further information about the objects is transmitted to
the user console.

(a) (b)

(c)

Fig. 5. Simulation Scenarios: a) a forest in fire, b) illegal activity, c) car of
intruders

VI. SIMULATION RESULTS

F -score coefficient is used as a metric for evaluation the
recognition efficiency of objects.

F =
2 · P ·R
P +R

,

P =
TP

TP + FP
,
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R =
TP

TP + FN
,

where TP — number of true positive results; FP — number
of false positive results; FN — number of false negative
results.

The quadcopter was commanded to fly around at seven
different heights (H) with velocity of 15, 30 and 45 km/h an
area in the form of a square with 600 × 600 m dimensions.
The time for which the quadcopter flies around the area, the
error in determining the position of objects and the F -score
were determined. The error e was determined as the difference
between the calculated coordinate of the object and the real
coordinate from Gazebo. The simulation results are shown in
Table II, III and IV.

TABLE II. RESULTS AT THE VELOCITY OF 15 km/h

N H , m t, min e, m
F -score

fire car human

1 30 35.35 1.79 0.963 0.965 0.959

2 40 27.00 1.75 0.985 0.956 0.950

3 50 22.62 1.84 0.983 0.948 0.938

4 60 19.93 1.90 0.984 0.932 0.927

5 70 17.33 2.03 0.970 0.925 0.921

6 80 15.12 2.13 0.969 0.922 0.904

7 90 14.37 2.21 0.976 0.916 0.899

TABLE III. RESULTS AT THE VELOCITY OF 30 km/h

N H , m t, min e, m
F -score

fire car human

1 30 17.68 1.80 0.975 0.968 0.962

2 40 13.48 1.79 0.976 0.959 0.953

3 50 11.33 1.83 0.980 0.930 0.930

4 60 9.93 1.94 0.977 0.924 0.919

5 70 8.67 2.05 0.969 0.921 0.912

6 80 7.58 2.12 0.982 0.921 0.895

7 90 7.20 2.25 0.962 0.914 0.879

TABLE IV. RESULTS AT THE VELOCITY OF 45 km/h

N H , m t, min e, m
F -score

fire car human

1 30 11.78 1.85 0.972 0.959 0.950

2 40 8.98 1.82 0.984 0.953 0.945

3 50 7.29 1.89 0.967 0.941 0.931

4 60 6.48 2.01 0.974 0.930 0.918

5 70 5.77 2.10 0.981 0.923 0.903

6 80 5.02 2.19 0.982 0.920 0.881

7 90 4.83 2.31 0.978 0.908 0.865

VII. CONCLUSION

The simulation model has successfully demonstrated its
operability for monitoring tasks. Simulation testing showed
that with height, the quadcopter covers the area faster, but at
the same time, the accuracy of the algorithm for detecting a car
and a human deteriorates. This is due to the reduction in the
size of objects in the image. The error in the coordinates of the
object is caused by the inaccuracy of the localization sensors,
and it amplifies with height. The fire recognition algorithm at
altitudes from 30 to 90 m and at speeds from 15 to 45 km/h
shows approximately the same results. This is due to fact that
the basis of this algorithm is the color palette of fire.

Further experiments of the simulation model will be de-
voted to the use of more modern algorithms for computer
vision, primarily deep learning methods. The performance of
a multi-agent monitoring case and various algorithms for their
optimal management will be tested. Other monitoring scenarios
will also be explored, in particular the search for missing
people during natural disasters.
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