
An Approach to Dynamic Reconfigurable Transport
Protocol Controller Unit Development

Elena Suvorova

Saint-Petersburg State University of Aerospace Instrumentation
Saint Petersburg, Russia

suvorova@aanet.ru

Abstract—Transport Protocol Controllers are parts of most

terminal nodes of local networks widely used in information and
telecommunication systems. Typically, a terminal node (node of
local network) is exploited for several years. New applications,
new versions of transport protocols or new transport protocols
could be developed during this time. Support of these new
features without change of equipment is very important today.
Also set of tasks could be dynamically changed that leads changes
in data flows. These changes in turn leads the changes of used
transport layer protocols or their profiles. The Transport
Protocol Controller unit should be dynamically reconfigurable to
meet these requirements. Today dynamically reconfigurable
components usually are developed with Field Programmable
Gate Array (FPGA). However, power consumption, area, time
characteristics (e.g. achievable clock frequency) of FPGA
implementations are essentially worse than same parameters of
Application Specific Integration Circuits (ASIC)
implementations. These factors essentially constrain the
application area of FPGA based dynamically reconfigurable
systems.

In this paper, we consider existing approaches for
development of dynamically reconfigurable systems with ASIC,
evaluate its applicability for Transport Protocol Controller Unit.
We propose an approach to development of dynamically
reconfigurable Transport Protocol Controller Unit. This
approach allows us to take into account the specific requirements
for this unit. In the paper we present several examples of the
proposed approach. We have evaluated reachable parameters
and overheads for these examples.

I. INTRODUCTION
One of main requirements for many modern local networks

used in information and telecommunication systems is the
ability to change of operating mode during exploitation. The
mode can be changed, for example, due to change in tasks set
in the system or due to faults in components [1], [2], [3], [4],
[5]. These changes may lead the change of used transport layer
protocols set, their profiles. In addition, new transport protocols
and new versions of transport protocols, well suited for decided
tasks, may appear during lifecycle of the system.

Correspondingly, the Transport Protocol Controller Unit
should support different protocols. But area and power
consumption of controllers is usually strongly constrained.
Therefore, the possibility of dynamic reconfiguration is one of
the most important features for this unit.

The Transport Protocol Controller Unit may be realized
entirely in hardware, entirely in software or as hardware-

software component. On one hand, entirely software realization
provides very wide possibilities for dynamic reconfiguration.
But on other hand this approach has several essential
disadvantages. Typically, the dedicated processor core can not
be used as the packet distribution unit due to too large area and
power consumption (and power distribution). To process the
packet flow in real time, the processor core should operate at
frequency ten times higher than rate of packets arrival.
Therefore, power consumption is unacceptably high.

The dynamically reconfigurable hardware can be realized
on FPGA. The entire or partial change of bitstream allows us to
change configuration of several units or whole device. But,
power consumption and area of FPGA is essentially higher
than that of ASIC realization due to its structure. Many parts of
device do not require dynamic reconfiguration. Therefore
resources of FPGA are used not efficiently.

In the paper we propose an approach to development of
dynamically reconfigurable controller with ASIC that allows us
to avoid the problems specific to software implementation and
implementation on FPGAs and meet user constraints.

In the paper, we do not consider the ways of packet
processing rules specification (corresponding to the Transport
Layer Protocol). The specification used for Software Defined
Network-on-Chip or other specifications can be used.

The paper is organized as follows. In section 2 we briefly
describe the requirements to the Transport Protocol Controller
Unit, its structure and architecture. In the next section we
consider the existing methods for dynamic reconfiguration
using ASIC technology. The proposed approach to
development of the dynamic reconfigurable Transport Protocol
Controller Unit is described in section 4. Several examples of
this approach applying are presented in section 5. Section 6
concludes the paper.

II. THE REQUIREMENTS TO THE TRANSPORT PROTOCOL
CONTROLLER UNIT, ITS STRUCTURE AND ARCHITECTURE

Transport Protocol Controller Unit may be used as part of
transport layer units. Typical structure of transport layer is
represented in Fig. 1. Number of Protocol Controller Units
depends on quantity of packet flows that should be processed
concurrently. The packet Distribution unit is used when
Transport Layer Unit includes more than one Transport Layer

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Controller Unit. We have proposed an approach to development
of Dynamic Reconfigurable Packet Distribution Unit in [36].

 Fig. 1. Typical structure of transport layer unit

The following system level requirements and limitations
should be considered when designing the packet distribution
unit:

support for a set of transport protocols that is known in
advance;
support for a set of new transport protocols;
area and power constrains;
specific system requirements.

Let’s consider specific system requirements. Transport Layer
Controller Unit should provide data streaming interface with the
Network layer. Receiving data should be processed and sending
data should be generated “on the fly”. Several actions can be
performed for every data words (e.g. CRC count, context check
and etc.).

To implement most of the existing transport protocols,
Transport Protocol Controller should process several event flows
concurrently, perform several actions at the same time (e.g.
receiving and transmission of data and service packets, different
guardian timeout control, and etc.).

Thus, at each stage of the data processing, there is a need to
perform several actions in parallel and decide to move to the next
state under several conditions.

There are quite heavy restrictions on the area and energy
consumption for many types of systems (e.g., for embedded
systems). The presence of heavy restrictions on energy
consumption, in turn, leads to the fact that the Transport Protocol
Unit shall operate at a frequency corresponding to the frequency
of receipt of data words. Therefore, most of the data words must
be processed in one clock cycle, and several decisions should be
made in this cycle. This requirement should be taken into
account at the stage of development of the architecture and
structure of controllers.

III. THE BRIEF OVERVIEW OF THE METHODS FOR DYNAMIC
RECONFIGURATION WITH ASIC TECHNOLOGY

The dynamic reconfiguration can be provided at the
technology (close to technological) layer or at higher layers,
 Fig. 2.

ASIC

Technology layer Close to
technology layer Highest layers

eFPGA

technology
libraries of cells
with dynamic

reconfiguration

look-up tables
(LUT)

programmable
logic arrays

(PLA)

schemes providing
switching on/off of

components

reconfigurable
DataPath

reconfigurable
automata

processor cores

microcontrollers

Fig. 2. Typical structure of transport layer unit

The dynamic reconfiguration at the technology layer can be
achieved by using:

The technology libraries of cells with dynamic
reconfiguration [6], [7];
eFPGA[8], [9], [10], [11].

The technology libraries with dynamic reconfiguration
includes special cells. Every special cell can perform various
functions (e.g. NAND, NOR, NOT) depending of the
configuration. The area of such cells is not essentially bigger
than area of cells without dynamic configuration. But the area of
memory cells that need for store of configuration can be
essential. In addition, existing CAD tools do not support
synthesis with using of the technology libraries with dynamic
configuration. Therefore using of these libraries is significantly
limited.

The special library cells with FPGA structure (fragment of
FPGA) - eFPGA can be included in design [8,9,10,11]. The
eFPGA could include from several hundred to several thousands
of slices (logic blocks), memory cells and interconnection
structure. Generation of bitstreams for these eFPGA can be
performed with the FPGA Design tools. Today eFPGA are
widely used. However, the availability of eFPGA for a very
limited list of technology libraries and large size (and area) of
these cells essentially constrain their use.

At the close to technological layer, the dynamic
reconfiguration is achieved by using:

look-up tables implemented on ASIC library cells
(memory blocks or flip-flops);
programmable logic arrays (PLA) implemented on
ASIC library cells (such as AND, OR, NOT).

This kind of structures could be described on HDL as soft IP-
blocks. They can also be implemented as firm or hard IP-blocks
for decreasing of area and power overheads.

Standard CAD tools can be used for synthesis of designs that
includes such blocks. But use of these IP-blocks is limited by

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 430 --

area overheads and achievable working frequency. Typically
these IP-block are used for implementation of relatively small
components or as part of more complex reconfigurable
components. These methods can be used for implementation of
dynamic reconfiguration at higher layers.

At the highest layers can be used:

 schemes providing switching on/off of components;
 reconfigurable finite state machine (automata);
 reconfigurable DataPath;
 processor cores (typically RISC);
 microcontrollers.

The schemes, providing switching on/off of components,
logically based on multiplexors. The main advantages of this
approach are ease realization and possibility of fast switching
between modes. When the unused units could be switched off
the power dissipation of such scheme is practically equal to
power dissipation of one unit. Nevertheless, area of this schema
may be too large. Other essential disadvantage of the schema is
impossibility to configure it for new modes.

Other way of dynamical reconfiguration providing is using of
reconfigurable finite state machine. The next properties of
reconfigurable state machine could be changed dynamically: the
logical meaning and quantity of the states, the rules of transition
between states, the values of output signals, associated with
them. The physical realizations of reconfigurable finite state
machine may be various. Typical realizations based on Look-up
Tables or Programmable Logic Matrices (PLM). Let’s briefly
consider Look-up Table based realization. The input signals and
the current state are feed to inputs of Look-up table. Strings of
Look-up table contains the next state and the values of output
signals (or values of output signals can be generated by
combinational circuit as function of current state and input
signals). Number of strings in Look-up table is determined by the
formula 2(Ni+Ns), where Ni – total width of input signals, Ns –
width of state vector. Therefore, the area of Look-up table grow
essentially with growing of Ni or Ns. Developer can use next
approaches to reduce area:

 decomposition of initial finite state machine to sub-
automates [12];

 additional multiplexing schemes for input signals, that
allow us to decrease the number of input signals (Ni)
connected to Look-up table in comparison with the
number of input signals of finite state machine [13],
[14], [15].

When decomposition of initial finite state machine to sub-
automates is used, the number of states, input and output signals
for every sub-machine will be essentially less than for initial
finite state machine. Correspondingly, total area of realization is
also essentially less in comparison with initial realization.
However, when developer decompose an initial finite state
machine to sub-machines achievable degree of configurability
(number of possible configurations) may be decreased [16]. This
decline is especially significant when the decomposition makes
formally. In this case, any new configuration may not
corresponds to this decomposition. Therefore, when the structure
of the initial finite state machine is permanent for all possible

modes, the decomposition to sub-automates should correspond to
this structure [17].

The value of Ni is decreased when the additional multiplexing
scheme is used for input signals. Decomposition of finite state
machine to sub-machines and additional multiplexing schemes
could be used together [17].

Other way of realization of reconfigurable state machines
based on PLM structures and a register for storing of finite state
machine’s state. In this case, the area overheads are also main
factors that limit the number of inputs and states of finite state
machine. Also, eFPGA cells could be used for realization of
large reconfigurable automates.

The next state of finite state machine is selected every clock
cycle correspondingly to values of input signals and current state
(all possible conditions are considered). Therefore reconfigurable
state machines well suited for parallel processing of many flows
of events in real time. However, state machines do not intended
to data flow processing. Therefore, reconfigurable finite state
machines are often used in combination with dynamically
reconfigurable Datapath.

Dynamically reconfigurable DataPath includes set of
functional units (FU) and interconnections between these units.
The FUs functions and the structure of interconnections could be
dynamically reconfigurable. Dynamically reconfigurable
DataPath typically used for data flow processing. It is poorly
suited for realization of control logic due to large overheads [18].

The dynamic reconfiguration could be provided by using
processor cores. In this case, dynamic reconfiguration is
achieved by change software. Several cores, such as Xtensa,
ARC [19], [20], [21], [22], [23], [24], [25] and others
programmable processors, such as [34] provides additional
reconfiguration possibilities. They may include reconfigurable
units for implementation of specific data processing.

However, these cores do not suitable for processing of data
flow “on the fly”. Too high working frequency is required for
processing of several event flows in real time due to context
switching (it will be 10 - 20 times higher than data flow rate).
Thin design rules are required for achieve such working
frequency. Often it is not economically feasible. Other problem
is high power consumption and dissipation when high working
frequency is used. Due to these disadvantages processor cores
cannot be used for the Packet distribution unit implementation.

Special microcontroller cores also can be used for realization
of dynamic reconfiguration. Microcontrollers often have special
components for data flow processing in real time.

Several classes of microcontrollers, such as streaming
processors [28], [29], [30] are not suitable for the Transport
Layer Controller Unit realization due to too large area. Other
classes of microcontrollers, such as [31] are more compact, but
too high working frequency is required for processing of several
event flows in real time (it will be 10 - 20 times higher than data
flow rate). Due to these disadvantages microcontroller
cores cannot be used for the Packet distribution unit
implementation.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 431 --

The main advantages and disadvantages of analyzed
approaches for realization of reconfigurable packet distribution
unit are represented on Table I.

TABLE I. COMPARISON OF APPROACHES TO DYNAMIC
RECONFIGURATION IMPLEMENTATION

lib
ra

ri
es

 o
f c

el
ls

 w
ith

 d
yn

am
ic

re

co
nf

ig
ur

at
io

n

eF
PG

A

sc
he

m
es

 p
ro

vi
di

ng
 sw

itc
hi

ng

on
/o

ff
of

 c
om

po
ne

nt
s

R
ec

on
fig

ur
ab

le
 fi

ni
te

 st
at

e
m

ac
hi

ne
+D

at
ap

at
h

Pr
oc

es
so

r
co

re
s

M
ic

ro
co

nt
ro

lle
r

co
re

s
No specific requirement to

CAD - +- + + + +

No specific requirements to
tech libs - - + + + +

Area, power overheads +- - + + - -
Possibility of data flow

processing in real time when
working frequency is equal

to data rate

+ + + + - +

Possibility of parallel
processing for several event

flows, when working
frequency is equal to data

rate

+ + + + - -

Possibility of new modes
realization + + - + + +

This table show that using of reconfigurable finite state
machines in combination with reconfigurable DataPath is the
most appropriate approach to realization of Transport Layer
Controller Unit.

IV. THE PROPOSED APPROACH TO DEVELOPMENT OF
TRANSPORT LAYER CONTROLLER UNIT

We propose an approach to development of Transport Layer
Controller Unit, based on dynamically reconfigurable finite state
machine and DataPath.

The general structure of proposed dynamically reconfigurable
unit is represented in Fig. 3. It includes Control Unit
(reconfigurable finite state machine), reconfigurable DataPath,
memory subsystem (storage of current configuration, storage for
processed data, registers and flags) and Interface Unit (with
structure similar to FPGA interconnect).

Several transport layer protocols require to store a large
amount of data (e.g. for providing of retransmission when errors
in network occur). It is possible to store data in outside memory
when proposed approach is used.

The reconfigurable unit has a functional input and output
interface and a configuration interface (interface for loading of
new configuration). The functional interface includes an
interface with network layer (streaming interface) and an
interface with application layer (typically, an interface like AHB,
AXI, WISHBONE, and an IRQ interface).

Fig. 3. General structure of the proposed dynamically reconfigurable unit

One configuration corresponds to one operating mode.
Configuration (Fig. 4) includes:

values, that written to Look-up table of reconfigurable
finite state machine (automata);
initial values for DataPath FU’s;
initial values of registers4;
a set of configuration vectors.

 Every Configuration Vector consist of two parts:

configuration of the DataPath FU’s;
configuration of the Interface Unit.

Configuration Vector 1
Configuration Vector 2

Configuration Vector N

Configuration

Configuration of LUT (for automata)

Initial values for DataPath FUs
Initial values for Registers

Configuration of the
DataPath’s FUs

Configuration of the Interface
Unit

Configuration Vector i

Configuration of one
DataPath’s FUs

Structure of Configuration Vector:

Configuration of one switch
of Interface Uint

 Fig. 4. Structure of configuration

Configuration of the DataPath FU’s consists of configuration
subvectors for every FUs of DataPath, which may be configured
(one subvector corresponds to one FU). Configuration of the
Interface Unit consists of subvectors for every switch.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 432 --

The configuration vector determines the set of actions that are
performed with input data words and internal events.
Configuration vectors play the role of arithmetic, logic and
load/store commands in processors architectures (like
instructions in WLIV architectures).

The main function of Control Unit is choice of configuration
vector (determining of configuration vector number) that shall be
used in next clock cycle. In comparison with processor
architectures, this unit implements conditional and unconditional
branches. However, as noted above, the use of a finite state
machine allows us in one clock cycle to realize the choice of a
transition between several branches (more than two). This
distinguish our approach from others (e.g. [35]), where
implement classical jump with two branches in finite state
machine.

The illustration of our approach is represented in Fig. 5. The
example of algorithm’s part contain two sequential conditions
(Fig. 5, a). The first of these conditions may be complex. For
example, the header of packet is correct when format of header is
correct (Hformat_correct=true), the Address of packet is correct
(PAddr_correct=true), the Key of packet is correct
(PKey_correct=true), the CRC of header is correct
(HCRC_correct=true).

Corresponding assembler code will include several
comparison commands and jump commands for implementation
of this algorithm. Implementation of this algorithm with state
machine is represented in Fig. 5,b. In one clock cycle state
machine may pass from Packet_header_CRC_state to one of
three states (Deletion_state, Read_state, Write_state).

Special FUs based on PLA structure are used in DataPath to
quickly and concurrently calculate values of conditions (they will
be considered further).

As noted above, the main limitation when using a
reconfigurable state machine is the area limitation.
Decomposition to sub automates and multiplexing of inputs may
be used for area decreasing.

We have analysed modern transport Layer protocols and its
possible realizations. Corresponding structures and quantity of
sub automates vary greatly. Therefore using of decomposition
approach in this case will not give a tangible gain in area, or very
significantly limit the possibilities for reconfiguration.

Consequently, we consider an approach of input multiplexing.
During the analysis of modern Transport layer protocols, it was
determined that the number of inputs that must be analysed to
determine the next state can range from several tens to several
hundreds. (Conditions of transitions typically are very complex,
different groups of signals are used in different states of state
machine).

Due to using special FU based on PLA for calculation of
values for inputs of state machine, the maximum possible
number of transitions from one state to the next is determined the
number of input signals of the state machine. Analysis of the
Transport protocol’s implementations showed that the number of
following states for each possible state does not exceed 10.
Therefore, input multiplexing allows us very essentially
decreasing quantity of inputs of the reconfigurable automata.

CRC of the packet header
received

The header is
correct

Deletion of the packet
rest

The command
is “READ”

Reading data Writinging
data

...

...

... ...

Packet_ header_
CRC_state

Deletion_state Read_state Write_state

...

...

yesno

yes no

A)

B)

This condition may be
complex, for example,
Header_correct=true
when
HFormat_correct=true
PAddr_correct=true
PKey_correct=true
HCRC_correct=true

Header_correct
=false

Header_correct
=false &

Read_command
=true

Header_correct
=false &

Read_command
=false

Fig. 5. An example (1) of implementation of transition between several
branches

Let’s consider these FUs and its using. The FUs with PLA
structure allows us to implement functions presented in perfect
disjunctive normal form. (Such FUs can be used to implement
any function whose number of input variables does not exceed
the number of FU’s inputs and the number of disjunctions does
not exceed the number of library cells with OR logic, includes
into the FU.)

Let’s consider an example of using such FU’s for
implementation of the part of algorithm (Fig. 5). In this
implementation, we use next flags:

Flag(0), for which a logic function HFormat_correct is
assigned (it is set to one if the Header Format is
correct);
Flag(1), for which a logic function PAddr_correct is
assigned (it is set to one if the Address of the packet is
correct);
Flag(2), for which a logic function PKey_correct is
assigned (it is set to one if the Key field of the packet
header has allowable value);
Flag(3), for which a logic function HCRC_correct is
assigned (it is set to one if the Header CRC is correct);

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 433 --

 Flag(4), for which a logic function Read_command is
assigned (it is set to one if the received command is
Write Command).

The Packet Header is correct when (Flag(0) = ‘1’) &
(Flag(1)=’1’) & (Flag(2)=’1’) & (Flag(3)=’1’).

We denote inputs of the Control unit (state machine) as in(i).
For implementation of considered part of algorithm we will use
in(0), in(1). When its values are “X0” (in(1) may have any value,
in(0)=0) the state machine should pass to Deletion_state. When
its values are ‘11’, the state mashine should pass to Read_state.
When its values are ‘01’, the state mashine should pass to
Write_state.

We use FU with PLA structure for calculation values for these
inputs. The next function is implemented with PLA: in(0)=
(Flag(0) = ‘1’) & (Flag(1)=’1’) & (Flag(2)=’1’) &
(Flag(3)=’1’). We do not need PLA for in(i) calculation
(in(1)=Flag(4)).

We use this PLA based FU for implementation of other
function in other part of considered algorithm. (This part is
represented in Fig. 6). The state machine may pass from the
Packet_command_state to Packet_header_CRC_state or to Idle
state dependently on the next received data word. If the End of
Packet (EP) received, the state machine goes to Reset_state. (EP
is not expected symbol here and the received part of packet
should be discarded.) If Data symbol is received the state
machine pass to Packet_header_CRC_state. If nothing received,
the state machine stays in Packet_command_state. The primary
inputs and outputs of reconfigurable controller (data_in, valid_in,
ready_out) are used for calculation of these conditions.

Nothing_received = (valid_in=’0’) U (ready_out =’0’)

EP_received = Data_in(8) (in this example Data_in(8) is
using for signing data or EP word)

In this case in(0)= Nothing_received. Corresponding function
is implemented with PLA based FU. In(1) is equal EP_received.

When its values are “X1” (in(1) may have any value, in(0)=1)
the state machine stays in Packet_command_state. When values
are “00” the state machine goes to state
Packet_header_CRC_state. When values are “10” the state
machine goes to state Reset_state.

These examples illustrate using the same FU for calculation of
different conditions, and illustrate multiplexing of inputs of state
machine.

To determine the whole set of FUs that should be included in
DataPath, we have analysed the algorithms corresponding to
modern transport layer protocols. Despite the fact that the
protocols may vary greatly, they include a limited set of actions
that are performed during the processing and generation of the
packet’s header and body, generation and processing of various
internal events (e.g. timeouts). In most cases, this set includes
operations of comparison (=, <, >), shifts, arithmetic operations
(+,-,*), CRC count, count of different events. Therefore,
DataPath should include standard set of components for
performing arithmetic and logical operations (e.g. ALUs) and

special components (CRC counters, special components for
calculation the values of conditions).

As discussed above, in proposed architecture special
components for calculation the values of conditions need for
forming of input signals (for determining of branch conditions)
for Control Unit, also we use these components in combination
with counters for count of different events quantity (e.g.
timeouts, quantity of data words, quantity of errors and etc.)

Packet_ header_
CRC_state

...

... ...

Header_correct
=false

Header_correct
=false &

Read_command
=true

Header_correct
=false &

Read_command
=false

...

Packet_
Command_

state

Reset_state

EP_Received=true

Nothing_received=false
EP_Received=false

Nothing_Received=
true

 Fig. 6. An example (2) of implementation of transition between several
branches

Let’s consider memory subsystem. Different components of
this subsystem may be implemented on memory block (special
library component) or as arrays of flip-flops. Area and power
dissipation for memory blocks is essentially less than for an array
of flip-flops with same capacity. Therefore, the size of flip-flops
array is strongly constrained. However, memory block typically
have only one or two interfaces (accesses to one or two memory
cells may be performed in one time). Several (more than two)
cells from flip-flop array can be read and written in one time.

Memory subsystem in the dynamically reconfigurable unit
includes:

 Look-up tables in reconfigurable finite state machine;
 Storage for configuration vectors;
 Memory for processing data (outside memory can be

used);
 Registers (for storage parameters need for packet

header analysing) and flags.

The data to Look-up table and to Storage for configuration
vectors is written, when new configuration is loaded. One word
is read from these memories every clock cycle. Therefore,
memory block can be used for it’s realization.

The processed data packets can be quite large (up to several
KB, MB). Therefore, for their intermediate storage, it is
necessary to use memory blocks. Memory external to the
controller may be used.

Registers are used for storage of parameters, that need for
packet header and body analysing (e.g. identificators of transport

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 434 --

protocols, addresses, identificators of applications, acceptable
number of words in packet body), for internal events control (e.
g. timeout values). Also, registers are used for storage different
variables (e.g. current packet length). These parameters and
variables can be used by different FUs of DataPath concurrently.
Therefore they should be implemented as separate flip-flop
groups (memory block is not suitable due to restriction to
number of words that can be read and write concurrently).

Flags are used for storage a values of conditions. They are
realized as separate flip-flops.

The Interface Unit provide connections between the Memory
for processed data, the Registers, the Flags and DataPath (FUs).
The Interface Unit consists of two parts:

 interconnection system between the flags and the FUs
(width of channels – 1 bit);

 interconnection system between the Memory for
processed data, the Registers and the FUs (width of
channels – 1 word).

For example, the data inputs of comparator FU are connected
to interconnection system with one word channels width, the
data output is connected to interconnection system with one bit
channels width.

The structure of both interconnection systems is same. Each
Interconnection system includes some logical channels. The
number of logical channels is equal to number of primary ports
(ports of reconfigurable controller) of input ports of the registers,
the flags and the FU’s connected to this system (every input port
connected to one logical channel). One logical channel support
one connection of corresponding input port with any output port
that connected to this interconnection system at one point of
time. (One output port may connect to only one input port in
same time.) The logical channel in implemented as multiplexor
on Register Transfer Layer. The corresponding subvector of
Configuration vector is forwarded to the control input of the
multiplexor. Physical implementation of multiplexor is
implemented by CAD tools correspondingly to used technology
library.

The Transport Layer Controller Unit developed with proposed
approach can be configured to perform any algorithm
corresponds to next constraints:

 Set of functional units included in the DataPath support
all functions need for algorithm

 Capacity of configuration vectors storage is enough for
set of configuration vectors, Look-up Table size is
enough to realization of finite state machine,
corresponds to transport protocol

 Quantity of parameters and flags need for packet flow
processing is not more than quantity of registers and
flags

The area overhead of dynamic reconfigurable Transport
protocol controller developed with using of proposed approach
depends on area of the Look-up table, the storage of
configuration vectors, Interface unit and PLA. (Other
components also are used in realization without dynamic
reconfiguration and therefore do not affect to overheads.)

V. EXAMPLES OF RECONFIGURABLE TRANSPORT LAYER
CONTROLLER UNIT

We have selected several transport protocols that could be
used for similar tasks in different operating modes for
demonstration of our approach. These protocols are widely used
in aerospace onboard networks.

We initially developed a Reconfigurable Transport Layer
Controller Unit that can support the RMAP [30] and the STP
[31] transport protocols with proposed approach. (The algorithm
of Reconfigurable automata generation is beyond the scope of
this paper.) Both these protocols can be used for transmission
data from sensors to host system in different modes of data
processing. The RMAP protocol is used in query mode (host
send to sensors queries when need the data from them). STP
protocol is used when the data packets are periodically
transmitted from sensors to host.

We have included into the Reconfigurable Transport Layer
Controller Unit 15 additional registers, 20 additional flags, and
CRC16 FU for providing possibility of other protocols
implementation.

Then we have generated the configuration corresponds to the
ESDP (STP2) protocol [32] controller for this Reconfigurable
Transport Layer Controller Unit. (ESDP protocol differs from
the STP protocol in the format of the packet header and the
procedure of setting up the transport connection, it includes some
additional features for data transmission.)

Further we have generated the configuration corresponds to
the STP-ISS 13 protocol [33] controller for the Reconfigurable
Transport Layer Controller Unit. (This protocol also is used for
data transmission from sensors to the host system.)

After that we have showed that the Reconfigurable Transport
Layer Controller Unit includes not enough resources (FUs,
registers, flags and memory blocks) for realization of STP_ISS
14 [33]. (This version of protocol is essentially complex than
STP_ISS 13.) There were not enough registers, flags, and
memory size to store Look-up table and configuration vectors.
But we have generated configurations for several profiles of
STP_ISS 14 (scheduling and command duplication). Only
profile with transport connections can not be implemented.

Let’s compare area of proposed Reconfigurable Transport
Protocol Controller with area of other realizations:

 separate realizations of considered protocol’s
controllers (RMAP, STP, ESDP, STP_ISS 13,
STP_ISS 14);

 realizations of dynamically reconfigurable controllers
with schemes providing switching on/off of these
controllers (three variants: RMAP+STP+ESDP,
RMAP+STP+ESDP+STP_ISS13,
RMAP+STP+ESDP+STP_ISS14).

We used Cadence design tools and different technology
libraries (180 nm – 65 nm) for synthesis of these units. Area of
units depends on technology library, timing constraints (clock
period and others) and specific of implementations. Therefore,
we used implementations of RMAP, STP, STP-ISS controllers
developed for the same clock frequency. (Frequency is varied

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 435 --

from 125MGz for 180mn to 325MGz for 65 nm. These values
were selected in accordance with the existing requirements to
bandwidth of controller.)

We have evaluated hardware cost (area) of units and
compared results. The ratio of the results obtained for different
libraries varies slightly (within 5%). The relative areas of
considered controllers are represented in Fig. 7.

Fig. 7. Relative area of Transport Protocol Controller Units

This chart shows, that area of the Reconfigurable Transport
Protocol Controller Unit is essentially bigger, than areas of the
RMAP, STP, ESDP (STP2) Controller Units implemented
separately. However, the proposed Reconfigurable controller is
not essentially bigger, than the based on switching on/off scheme
Reconfigurable Controller, that includes the RMAP, STP, ESDP
Controller Unit. The area of proposed Reconfigurable controller
is essentially less than area of based on switching on/off scheme
Reconfigurable Controller, includes the RMAP, STP, ESDP,
STP ISS 13 Controller Unit.

This example shows that the area overheads of the Unit,
developed with our approach are acceptable, that we can add
new configurations of the Reconfigurable controller for
implementation of new protocols or new profiles of protocols.

We have compared area of the Reconfigurable Transport
Protocol Controller with the area of the STP_ISS 13+ controller
(profile of STP_ISS 14 with scheduling and commands
duplication, without connections) implemented with Xilinx
Virtex 7 (with using Vivado). We select Virtex 7 due to partial
reconfiguration is supported for this FPGA. Virtex 7 is realized
with 28 nm technology.

We select STP_ISS 13+ controller for comparison due to its
area is bigger than area of RMAP, STP, ESDP, STP_ISS 13.

Number of LUTs need for implementation of STP_ISS 13+ is
enough for implementation any other considered controller.
Therefore implementation of the STP_ISS 13+ controller may be
replaced by implementation of other controller in SoC realized
with Virtex 7.

Area of the Reconfigurable controller (ASIC 180 nm) is
comparable with area of the STP_ISS 13+ controller (Virtex 7).
But achievable working frequency of the STP_ISS 13+
controller with Virtex 7 is about 75MGz. That is less than
achievable working frequency of the Reconfigurable controller
(125 MGz). Area of the Reconfigurable controller (ASIC 65 nm)
is in dozen times less, than area of the STP_ISS 13+ controller
(Virtex 7).

This comparison show that implementation of the
Reconfigurable controller with ASIC is more compact and has
higher achievable working frequency (and throughput) than
implementation of one special controller with FPGA.

VI. CONCLUSION
We consider existing approaches to realizing of dynamic

reconfigurable units with ASIC, their advantages and
disadvantages for Transport Protocol Controller Unit
correspondingly to specific requirements to this Unit.

We propose an approach for realization of dynamic
reconfigurable Transport Protocol Controller Unit, which is
based on dynamically reconfiguration state machine
(automata) and DataPath.

In frame of this approach, we use units with PLA structure
in DataPath for calculation of complex conditions. In
combination with using reconfigurable state machine, it allows
us to select next state (which depends on several conditions) in
one clock cycle that is not possible when processor core is
used. This feature is very actual for Transport Protocol
Controller Unit since processing of several event flows is
required.

Besides, the complex conditions are used for decreasing of
finite state machine inputs and for count of events.

The dynamically reconfigurable units developed with
proposed approach can be configured to perform any
algorithm corresponds to several constraints described in the
corresponding part of the paper.

Several examples are considered where presented approach
is used, and area overheads are evaluated. It’s shown, that area
of Reconfigurable Unit developed with our approach are
typically less than when set of units without dynamic
reconfiguration is used. Also we show that using of the
approach allows us to realize new algorithms in existing
Reconfigurable controller unit.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the Ministry of Education and Science of the Russian
Federation.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 436 --

REFERENCES
[1] A. Azarian, M. Ahmadi, “Reconfigurable Computing Architecture”,

Survey and introduction 978-1-4244-4520-2/09 IEEE 2009, pp 269 -
274.

[2] M.B Stensgaard, “ReNoC: A Network-on-Chip Architecture with
Reconfigurable Topology”, in Proceedings of Second ACM/IEEE
International Symposium, 7-10 April 2008, pp.55 - 64

[3] E. Cota, Reliability, Availability and Serviceability of Networks-on-
Chip / E. Cota, A. de Morais Amory, M. S. Lubaszewski. Springer,
2012, 209 p.

[4] S. Jafri, L. Guang, A. Hemani et al., Energy-aware fault-tolerant
network-on-chips for addressing multiple traffic classes.
Microprocessors and Microsystems, vol. 37, issue 8, 2013, pp. 811–
822.

[5] K. Yoonjin, “Reconfigurable Multi-Array Architecture for Low-
Power and High-Speed Embedded Systems”, Journal of
Semiconductor Technology and Science, Vol.11, N.3, 2011.

[6] I. O'Connor, I. Hassoune, D. Navarro, “Fine-Grain Reconfigurable
Logic Cells Based on Double-Gate MOSFETs”, IFIP AICT 313,
2010, pp. 97–113

[7] I. Hassoune, I. O’Connor, “Double-Gate MOSFET Based
Reconfigurable Cells”, Electronics Letters 43(23), 2007 , pp. 1273–
1274

[8] Speedcore eFPGA Datasheet (DS003). Achronix Semiconductor
Corporation, Web:
https://www.achronix.com/documentation/speedcore-efpga-
datasheet-ds003

[9] eFPGA IP and electronic diagnostics, Web:
http://www.nanoxplore.com/categories/17-efpga.html

[10] Web: http://www.electronics-lab.com/taking-advantage-embedded-
fpga-efpga

[11] Web: http://www.menta-efpga.com/efpga-ips.html
[12] V. Sklyarov and I. Skliarova, “Synthesis of parallel hierarchical finite

state machines,” in Proceedings of the 2013 21st Iranian Conference
on Electrical Engineering, ICEE 2013, Iran, May 2013

[13] J. Glaser, M. Damm, J. Haase, and C. Grimm, “TR-FSM: Transition-
based Reconfigurable finite state machine,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 4, no. 3,
article no. 23, 2011

[14] A. Karatkevich, Design of Reconfigurable Logic Controllers, vol. 45,
springer, Berlin, Germany, 2016

[15] I. Garcia-Vargas and R. Senhadji-Navarro, “Finite state machines
with input multiplexing: A performance Study,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol.
34, no. 5, pp. 867–871, 2015

[16] S. Gupta, V. Pareek, S. C. Jain, and D. Jain, “Realization of
sequential reversible circuit from finite state machine,” in
Proceedings of the International Computer Science and Engineering
Conference, ICSEC 2014, pp. 458–463

[17] V. Salauyou, “Synthesis of high-speed finite state machines in
FPGAs by state splitting,” in Computer Information Systems and

Industrial Management: 15th IFIPTC8 International Conference,
CISIM 2016, Springer International Publishing, Vilnius, Lithuania,
2016, pp. 741–751

[18] S. Xydis, G. Economakos, D. Soudris, and K. Pekmestzi, “High
Performance and area efficient flexible DSP data path synthesis”,
IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol. 19, no. 3,
pp.429-442

[19] “The What, Why and How of Configurable Processors”, Tensilica’s
White Paper. 2008. Web:
https://ip.cadence.com/uploads/902/TIP_What_Why_How_Cust_Pro
cessors_WP_V3_FINAL-pdf

[20] Xtensa Instruction Set Architecture (ISA) Reference Manual.
Tensilica, Inc., 2007

[21] Xtenta LX2 Microprocessor Data Book. Tensilica, Inc., 2008
[22] Xtensa LX7 Processor. Tensilica Datasheet, 2016, 13 pp.
[23] ARChitect Processor Configurator. Arc.com. Retrieved 2014-03-02.
[24] ARC Processor Core. Fujitsu Microelectronics America, Inc., 2016
[25] U. Kapasi, S. Rixner, W. Dally et al. “Programmable stream

processors,” IEEE Computer, 2003
[26] S.Venkatasubramanian, “The graphics card as a stream computer,“

SIGMOD DIMACS, 2003
[27] SHARC® Processor Programming Reference. Revision 2.4, 2013
[28] PSoC® 4: PSoC 4200 Family Datasheet. Cypress Semiconductor

Corporation. Document Number: 001-87197 Rev. J. Web:
https://www.cypress.com/documentation/datasheets/psoc-4-psoc-
4200-family-datasheet-programmable-system-chip-0

[29] S. N. Pradhan, P. Choudhury, “Low power and high testable Finite
State Machine synthesis,” in Proceedings of the International
Conference and Workshop on Computing and Communication,
IEMCON 2015, Canada, 2015, pp. 1–5

[30] ECSS E ST 50 52C SpaceWire - Remote memory access protocol,
2010

[31] Y. Sheynin, E. Suvorova, F. Schutenko, V. Goussev, “Streaming
Transport Protocols for SpaceWire Networks”, International
SpaceWire Conference, 2010

[32] A. Khakhulin, I. Orlovsky, Y. Sheynin, E. Suvorova, I Korobkov, V
Olenev, I. Lavrovskaya, “Real Time Video Data Transmission in
SpaceFibre Networks with the ESDP Transport Protocol”, SpaceWire
Conference, 2016

[33] V. Olenev, I. Lavrovskaya, Y. Sheynin, I. Korobkov, E. Suvorova, E.
Podgornova, D. Dymov, S. Kochura “STP-ISS Transport Protocol for
SpaceWire On-Board Networks: Development and Evolution”,
International Journal of Embedded and Real-Time Communication
Systems, 5(4). IGI Global, 2014, pp. 45-76

[34] M. Safarpour, O. Hautala Silvén, “An Embedded Programmable
Processor for Compressive Sensing Applications”, NorCAS, 2018

[35] E. Hrynkiewicz, M. Miros aw Chmiel, “Programmable Logic
Controller - Basic Structure and Idea of Programming” PRZEGL D
ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R.
88 NR 11b, 2012, pp. 98-101

[36] E. Suvorova, V. Rozanov “Dynamic Reconfigurable Packet
Distribution Unit for Embedded Systems”, WECONF 2019, 8 p.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 437 --

