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Abstract—A novel method of outlier detection for prepro-
cessing stream data in the conditions of uncertainty when the
data means and standard errors as the only available summary
information about the initial data statistics is proposed. As neither
the initial data samples nor their sample sizes are known, the
classical methods of outlier detection, including nonparametric
methods of statistics, cannot be applied in this case. The principal
idea of the proposed approach to outlier detection is based
on the use of the classical Gauss-Chebyshev type probability
inequalities—the corresponding confidence intervals constructed
on these inequalities allow to set up the problems of hypotheses
testing similar to the classical settings as the problems of
minimizing the upper bound of the Bayesian risk and maximizing
the lower bound of the test power in the Neyman-Pearson sense.
The results of the processing of the real-life data (Lunar Laser
Ranging data) and the model data manifest unexpectedly good
outlier detection performance.

I. INTRODUCTION

In the framework of data mining and machine learning, the
problem of data preprocessing is vitally important for the well-
known saying ”garbage in, garbage out”. Data preprocessing
includes a number of stages: cleaning, instance selection,
normalization, transformation, feature extraction and selection,
etc. with its product as the final training set [1], [2].

At the cleaning stage, outlier detection is primary. However,
there is no a satisfactory definition of an outlier or an anomaly
in the data. One of the common definitions is the following [3],
[4]: ”An outlying observation, or outlier, is one that deviates
markedly from other members of the sample in which it
occurs.” Generally, this definition is neither mathematically or
statistically correct (for details, see [5]).

Outliers in the data can be explained by data input errors,
experiment conducting errors, measurement errors, mixing data
from various sources, and unaccounted features of sample. For
univariate data, outliers usually have high magnitudes.

In present, there does not exist a general method of outlier
detection: as a rule, outlier detection methods and algorithms
depend on the various purposes of studying, distribution mod-
els and data types [4], [6], [7], [8].

Existing methods of outlier detection may be classified
by two groups: methods using only initial data (data-based)
and methods using the information about data distribution

laws (model-based). For example, the outlier detection method
based on the ”three sigma”-rule is oriented on the normal data
distribution since only the 0.0027 fraction of data values is
observed out of the ”three sigma” boundaries in this case. Also,
Grubb’s method [3] is also related to the model-based group.
On the other hand, Tukey’s boxplot [9] and the method of k
nearest neighbors are oriented only on the data.

The method of outlier detection proposed in this work,
generally, belongs to the group of model-based methods, in
which the lengths of confidence intervals used in this method
are constructed basing on the underlying data distribution.

The main idea of this method can be described as follows.
First, the available data for processing are presented as the
pairs of means and their standard errors, so, they are the
summaries of the initial unavailable data samples including
their sizes— to the best of our knowledge, neither of the
existing methods of outlier detection can be applicable in this
case. It is worth noting that this form of data representation
is common for physics and for other natural and technical
sciences.

Second, the opportunity of using the whole information
contained in data pairs (mean value and its standard error) is
given by the classical tools in the form of Gauss-Chebyshev
type probability inequalities [10], [11]. The corresponding
confidence intervals constructed on these inequalities allow to
set up the problems of hypotheses testing as the problems
of minimizing the upper bound of the Bayesian risk and
maximizing the lower bound of the test power in the Neyman-
Pearson sense.

An outline of the remainder of the paper is as follows. In
Section II, the Gauss-Chebyshev type probability inequalities
are briefly reviewed. In Section III, problem settings for outlier
detection are given. In Section IV, main results are formulated.
In Section V, real-life and simulated data are processed by the
proposed methods. In Section VI, some conclusions are drawn.

II. GAUSS – CHEBYSHEV TYPE INEQUALITIES

The first in this list of results is the Gauss inequality [10].
Let X be a unimodal random variable with mode m and τ2 =
E(X−m)2. Next, τ2 = (μ−m)2+σ2, where μ = E(X) and
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σ =
√
D(X). Then for any positive k the following inequality

holds:

P [|X −m| ≥ k] ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
2τ

3k

)2

for k ≥ 2τ√
3
,

1− k

τ
√
3

for 0 ≤ k ≤ 2τ√
3
.

(1)

Example 1 Consider the standard normal distribution
with μ = m = 0, σ = 1 and k = 3. Then inequality (1) yields

P [|X −m| ≥ k] ≤ (2/9)
2
= 4/81 ≈ 0.05.

Secondly, we consider the well-known Chebyshev inequality
[11]. Let X be a random variable with mean μ and variance
σ2. Then for any k ≥ 1 the we have:

P [|X − μ| ≥ kσ] ≤ 1/k2. (2)

For the Chebyshev inequality, the interval is constructed with
the center at the mean value and without the condition of
unimodality.

Example 2 Consider again the standard normal distri-
bution X ∼ N(0, 1) with k = 3. In this case inequality (2)
yields the ”three sigma” rule

P [|X − μ| ≥ 3σ] ≤ 1/9 ≈ 0.11.

Finally, we consider the Vysochanskij – Petunin inequality
[12]. Let X be a unimodal random variable with mean μ and
variance σ2. Then for any k >

√
8/3 we get:

P [|X − μ| ≥ kσ] ≤ 4/9k2. (3)

The Vysochanskij – Petunin inequality is similar to the Gauss
inequality with the only difference that the center of the
interval is at the mean value.

Example 3 Consider the standard normal distribution
X ∼ N(0, 1) with different values of k; inequality (3) yields
the following bounds:

1) for k =
√
8/3, it is 1/2 — the limit case,

2) for k = 2, it is 1/9 like in the Chebyshev case,

3) for k = 3, it is 4/81 like in the Gauss case.

III. PROBLEM SETTING

A. Data presentation form

The data for processing are given in the form of stream
data as mean values with their standard errors at time instants
t0, t1, . . . , tn, . . .

(x̄0, s0), (x̄1, s1), . . . , (x̄n, sn), (4)

where

x̄i =
1

ni

ni∑
j=1

xij , i = 0, 1, . . . , n,

si =
1√
ni

⎛⎝ 1

ni

ni∑
j=1

(xij − x̄i)
2

⎞⎠1/2

.

Here we underline that the initial data samples
{x0j}n0

1 , {x1j}n1
1 , . . . , {xij}ni

1 together with their sample
sizes are unavailable, only summary data in the form (4)
is available; that is why, the classical methods of outlier
detection cannot be used in this case. Moreover, we repeat
that this form of data presentation is common for natural and
technical sciences.

In what follows, we apply the classical inequalities of the
Gauss – Chebyshev type for revealing the statistically signifi-
cant outliers (shifts) in the data. Recall that the aforementioned
inequalities estimate the probabilities of the deviations of a
random variable X from its mean values (in different senses)
via its distribution moment values.

B. Confidence intervals based on the Chebyshev inequality

The available information on the real-life statisti-
cal data as the mean and its standard error values
(x̄0, s0), (x̄1, s1), . . . , (x̄n, sn) can be represented by apply-
ing the Chebyshev inequality as the sequence of confidence
intervals Δ0(k0),Δ1(k1), . . . ,Δn(kn) for random variables
X̄0, X̄1, . . . , X̄n:

Δ0(k0) = (x̄0 − k0s0, x̄0 + k0s0),

Δ1(k1) = (x̄1 − k1s1, x̄1 + k1s1), (5)

. . . . . . . . . . . ,

Δn(kn) = (x̄n − knsn, x̄n + knsn).

From (5) it follows that the probabilities of belong-
ing of random variables X̄0, X̄1, . . . , X̄n to the intervals
Δ0(k0),Δ1(k1), . . . ,Δn(kn) have the form:

P [X̄0 ∈ Δ0(k0)] = P [x̄0 − k0s0 ≤ X̄0 ≤ x̄0 + k0s0]

= P [|X̄0 − x̄0| ≤ k0s0] ≥ 1− s20
k20s

2
0

= 1− 1

k20
,

P [|X̄1 − x̄1| ≤ k1s1] ≥ 1− s21
k21s

2
1

= 1− 1

k21
, (6)

. . . . . . . . . . . . . . . ,

P [|X̄n − x̄n| ≤ knsn] ≥ 1− s2n
k2ns

2
n

= 1− 1

k2n
,

where k0, k1, . . . , kn are some positive values.

Equations (6) yield the minimum values for the
confidence probabilities of the localization of random
variables X̄0, X̄1, . . . , X̄n in the confidence intervals
Δ0(k0),Δ1(k1), . . . ,Δn(kn). This situation is illustrated
by Fig. 1 for confidence intervals Δ0(k0), ..., Δ((k4) for
different variants of their relative location.
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Fig. 1. Observations and their confidence intervals

C. Minimizing the upper bound of Bayesian risk

Consider the problem of outlier detection as the problem
of hypotheses testing

H0 : X = X̄0 ∈ Δ0(k0) versus H1 : X = X̄1 ∈ Δ1(k1). (7)

Denote the prior probabilities of hypotheses as P [H0] = p0,
P [H1] = p1, p0 + p1 = 1. Next, we introduce the function of
Bayesian risk in the form

R(k0, k1) = c0p0P [H1|H0] + c1p1P [H0|H1], (8)

where P [H1|H0] is the probability of type I error (the alterna-
tive H1 is accepted when the null hypothesis H0) is true),
P [H0|H1] is the probability of type II error (the the null
hypothesis H0 is accepted when the alternative H1 is true),
c0, c1 > 0 are given error costs.

Now we rewrite Equation (8) in the following form

R(k0, k1) = c0p0α+ c1p1β, (9)

where
α = P [H1|H0] = P [X̄0 ∈ Δ1(k1)]

= P [x̄1 − k1s1 ≤ X̄0 ≤ x̄1 + k1s1],

β = P [H0|H1] = P [X̄1 ∈ Δ0(k0)]

= P [x̄0 − k0s0 ≤ X̄1 ≤ x̄0 + k0s0].

The error probabilities α and β can be expressed via their
complementary probabilities:

α = P [H1|H0] = 1− P [H1|H1]

= 1− P [x̄1 − k1s1 ≤ X̄1 ≤ x̄1 + k1s1],

β = P [H0|H1] = 1− P [H0|H0]

= 1− P [x̄0 − k0s0 ≤ X̄0 ≤ x̄0 + k0s0].

Now we apply the Chebyshev inequality for estimating the
bounds of the corresponding probabilities:

P [H0|H0] = P [X̄0 ∈ Δ0(k0)] ≥ 1− 1

k20
,

P [H1|H1] = P [X̄1 ∈ Δ1(k1)] ≥ 1− 1

k21
.

Further, we get

α ≤ 1

k20
, β ≤ 1

k21
,

and the corresponding upper bound for the Bayesian risk

R(k0, k1) = c0p0α+ c1p1β

≤ R̄(k0, k1) =
c0p0
k20

+
c1p1
k21

.

The unconstrained minimization of the upper bound
R̄(k0, k1) is obviously senseless as its minimum is attained in
the limit case when k0, k1 → ∞, hence some upper constraints
upon the values of the parameters k0, k1 (explicit or implicit),
that is, upon the lengths of the corresponding confidence
intervals, should be imposed. It is natural to consider the
problem of minimization of R̄(k0, k1) under the side condition
of the nonintersecting confidence intervals Δ0(k0) and Δ1(k1)
(see Fig. 1)

R̄(k0, k1) → min
k0,k1

, (10)

x̄1 − k1s1 ≥ x̄0 + k0s0. (11)

The solution of problem (10) has sense only with the suf-
ficiently small probabilities of type I and II errors, that is,
with sufficiently large values of the parameters k0, k1. These
conditions are also taken into account in the Neyman-Pearson
problem setting.

D. Neyman-Pearson hypotheses testing problem setting

Consider the hypotheses testing problem (7) with the
corresponding Neyman-Pearson test

PD = P [H1|H1] = P [X̄1 ∈ Δ1(k1)]

≥ 1− 1/k21 → max
k1

, (12)

α = P [H1|H0] ≤ ᾱ = 1/k20, (13)

x̄1 − k1s1 ≥ x̄0 + k0s0

as the problem of maximizing the lower bound of the power
of test (the probability of true detection) under the bounded
probability of type I error and under the side condition of the
nonintersecting confidence intervals Δ0(k0) and Δ1(k1) (11)
(see Fig. 1).

IV. MAIN RESULTS

The problem settings considered in Section III imply the
following results.
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A. Precise results

Theorem 1 The optimal test for outlier detection min-
imizing the upper bound of the Bayesian risk is given by
the solution of the optimization problem (10) under the side
condition (11).

In this case, the optimal test is represented by the optimal
lengths of the non-intersecting confidence intervals Δ0(k

∗
0)

and Δ1(k
∗
1) with the corresponding probabilities of type I and

II errors satisfying the following inequalities

α ≤ ᾱ =
1

k∗0
2 , β ≤ β̄ =

1

k∗1
2 . (14)

Theorem 2 The optimal test for outlier detection max-
imizing the lower bound of of the power of test is given by
the solution of the optimization problem (12) under the side
conditions (11) and (13).

These results hold under the conditions of the validness of
the Chebyshev inequality, namely, for data distributions with
bounded first two moments.

B. A low-complexity algorithm for the approximate solution
of the constrained optimization problem

Consider the simplification of optimization problem (10)
with setting k0 = k1 = k:

R̄(k) =
c0p0 + c1p1

k2
→ min (15)

under the side condition

x̄1 − ks1 ≥ x̄0 + ks0.

The optimal value of k is given by

k∗ =
|x̄1 − x̄0|
s0 + s1

. (16)

Similarly to problem (10), the solution (16) has sense only
with sufficiently small values of the probabilities of type I and
II errors

α ≤ 1

k∗2
, β ≤ 1

k∗2
, (17)

that is, with sufficiently large values of the parameter k∗, say,
k∗ > k̄. Thus, if k∗ > k̄ then the hypotheses H0 and H1

significantly differ from each other: an outlier (or an anomaly)
is observed with the transition from the point (x̄0, s0) to the
point (x̄1, s1).

In our study, the threshold k̄ is set equal to 2 with the
corresponding upper bound upon the probabilities of type I
and II errors equal to 1/4: α, β ≤ 1/4 as it follows from
the Chebyshev inequality (17). Further in Section V, while
processing the real-life and model data, we show that real
probabilities of type I and II errors are far smaller than their
rather pessimistic upper bounds.

Now we describe our algorithm of outlier detection in a
stepwise way.

1) Consider two adjacent observations: i-th and (i+1)-
th, where i = 1, N − 1.

2) For this pair of observations, we find the correspond-
ing k
-value according to (16):

k
i =
|μ1 − μ0|
σ0 + σ1

,

where μ0 = xi, μ1 = xi+1, σ0 = si, σ1 = si+1.
3) If k
i ≥ 2, we decide that an anomaly has occurred

between i-th and (i+ 1)-th observations.

Formally, this algorithm is given as follows.

Algorithm 1 Outlier detection

Input: integer N – number of observations, double m[N],
double s[N] – arrays of means and standard errors of
observations, integer threshold – value regulating maximum
amount of outliers following each other
Output: bool ifOutlier[N] – array of boolean flags showing
if an observation is an outlier or not

0: integer anomaly[] := createEmptyIntegerArray();
1: push(anomaly, 1);
2: integer n := 1;
3: for i := 1, 2, ..., N do

ifOutlier[i] := False;
end for

4: for i := 1, 2, ..., (N-1) do
k := abs(m[i+1] - m[i]) ÷ (s[i] + s[i+1]);
if k ≥ 2 then

push(anomaly, i+1);
n := n+1;

end if
end for

5: push(anomaly, N+1);
6: n := n+1;
7: for i := 1, 2, ..., (n-1) do

if anomaly[i+1] - anomaly[i] ≤ threshold then
for j := anomaly[i], ..., (anomaly[i+1] - 1) do

ifOutlier[j] := True;
end for

end if
end for

V. PERFORMANCE EVALUATION

A. Modeling the real-life data

In order to test the proposed outlier detection algorithm,
we model the real-life data (Lunar Laser Ranging data): only
in the case of model data when the outliers in the data are
exactly known, it is possible to do this correctly.

Lunar Laser Ranging data are generated by the following
procedure: (i) there are five retroreflector arrays installed on
Moon; (ii) each of them represents a reflective surface; (iii)
hitting such surfaces, the light ray reflects back; (iv) in the earth
observatories, lasers are installed aiming at the retroreflector
arrays on Moon; (v) for each pulse transmitted, the response
time is measured and this response time is proportional to the
distance between the observatory and the retroreflector array.

Lunar Laser Ranging data is presented in special databases.
Actually, the rows of database files correspond not to indi-
vidual observations but to the groups of observations. Each
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group consists of the observations obtained at approximately
one point in time which have been considered to belong to the
same distribution (unknown). Thus, the data for processing
consists of pairs: (mean value x̄, its standard error s).

Real-life data turns out to be presented as a sequence of
segments of observations. These segments obey different dis-
tributions and are separated from each other with a pronounced
shift (however, in this work we are not going to deal with the
shifts). Real-life data is contaminated by outliers.

The real-life data is manually divided into segments. The
division is based on visual assessment. After that, also manu-
ally, the outlier-like observations are removed from data. As a
result, we expect to get data segments distributed unimodally
or close to.

After that using the R packages we attempt to match the
distributions and their parameters with the segments so that
the real-life data is described in the best way. For the means
the following distributions are used: normal, Cauchy, logistic,
skewed normal and skewed Student. For the standard errors
we use the following distributions: exponential, gamma, log-
normal and Weibull. The choice of distributions for matching
is determined, first of all, by the quality of their fitting to the
real-life data; secondly, it is due to their availability in the R
statistical packages.

For each real-life data segment the best fitting pair of
distributions is chosen by applying the χ2 fitting test. These
results are represented in Table I.

TABLE I. THE FRACTIONS OF SEGMENTS WITH DIFFERENT

DISTRIBUTIONS PAIRS

Weibull Log-normal Gamma Exponential

Normal 0 0.023 0 0

Cauchy 0 0.023 0.047 0

Logistic 0.023 0.093 0 0.047

Skewed normal 0 0.070 0 0.047

Skewed Student 0.070 0.255 0.047 0.255

Based on the information obtained as a result of real-life
data analysis, model data is generated as follows:

1) The amount of observations in the generated segment
is chosen randomly using the inverse distribution
function of the number of observations in segments.

2) The pair of distributions for the generated segment
is selected randomly in accordance with the fractions
of different pairs. The parameter values set is chosen
from the real-life sets of parameter values.

3) The generated segment is randomly contaminated by
outliers so that they account to 2 − 3% of the total
amount of observations. The basic condition for the
outliers to satisfy is that their means and standard
errors should significantly differ from the means and
the standard errors of the observations considered to
be true.

4) All the generated segments are concatenated.

B. Processing model data

We now conduct the experiment under the same condition
(i.e., with the same number of segments) N times. Each time
we calculate the probabilities of interest:

1) outlier detection probability

PD =
ND

Nout
,

where ND stands for the number of correctly detected
outliers, Nout stands for the total number of outliers;

2) outlier false alarm probability (probability of taking
a true observation as an outlier)

PF =
NF

N −Nout
,

where NF stands for the number of incorrectly de-
tected outliers, N stands for the total amount of
observations, Nout stands for the total amount of
outliers.

Here we give the illustration of results got on model data.

Fig. 2. Outlier detection with 3-segment model data

In Fig. 2 observations considered to be true are grey-
colored and outliers are black.

For the experiment conducted with the number of Monte
Carlo cycles equal to 1000, the probability of outlier detection
PD is approximately 0.99, whereas the false alarm probability
PF ≈ 0 within the margin of error - the obtained results are
unexpectedly good, especially if to recall that the Chebyshev
upper bound upon the probability of errors is 0.25.

C. Processing real-life data

Here we give the illustrations of the method application to
real-life data. Observations which were marked as outliers are
black-colored.

Fig. 3. Outlier detection with real-life data (Cerga2)

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 406 ----------------------------------------------------------------------------



Fig. 4. Outlier detection with real-life data (Apache)

Fig. 5. Outlier detection with real-life data (Haleakala)

The feature of real-life data is that we never know if
an observation is an outlier or not as we have no ”correct
answer” to compare the results with. Thus, we have two
main ways to analyze the results: visual analysis and expert
reviewing. Analyzing the results visually, we see that some
of the observations which could be expected to be filtered are
marked as outliers—though not each of them, as well as we can
not claim that each observation marked is an obvious outlier.
Anyway, most of the observations which have significantly
different mean values and/or large standard values have been
detected – that is exactly what we expected. From the expert
reviews we managed to understand that the results obtained
resemble what we supposed to get.

VI. CONCLUSIONS

1) Classical probability tools, namely, the Gauss-
Chebyshev inequalities are applied to outlier detec-
tion in stream data described as the set of pairs of
observation means and their standard errors as the
only available summary information. This approach
allows to get the corresponding confidence intervals
and on their basis to formulate the problem of out-
lier detection as the problems of hypotheses testing
both in the Bayesian and Neyman-Pearson senses:
minimizing the upper bound of the Bayesian risk
and maximizing the lower bound of the test power,
respectively.

2) These optimization problems are considered under
the natural side conditions of non-intersecting con-
fidence intervals—after simplifying the optimization
setting, a low-complexity effective algorithm of out-
lier detection is proposed.

3) The proposed algorithm has been applied to the
model data—it exhibits unexpectedly splendid per-
formance.

4) A rather fair performance of this algorithm is ob-
served while processing the real-life data.

5) In case of the availability of the additional informa-
tion about data distributions, the quality of outlier
detection can considerably be improved with the use
of the Gauss and Vysochanskij-Petunin inequalities.

6) The successful experience of application of the pro-
posed algorithm to the real-life data lets us expect
its advantageous applicability to other problems of
anomaly detection, for example, shift detection.
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