
Media Control at the Network Edge

Evelina Pencheva, Ivaylo Atanasov
Technical University of Sofia

Sofia, Bulgaria
enp,iia@tu-sofia.bg

Denitsa Velkova, Ivaylo Asenov
Technical University of Sofia

Sofia, Bulgaria
denitsa.velkova, ivaylo.asenov@balkantel.net

Abstract—Third party session control can be useful in many
Internet of Things (IoT) use cases including monitoring and
assistance of elderly and mission critical communications.
Enhanced session control with media playing, collecting and
recording interaction adds value and enables more information to
be provided and gathered. The Multi-access Edge Computing
(MEC), which brings the cloud computational and storage power
at the network edge, can address many IoT use cases. The paper
studies the capabilities of exposing media control to MEC
applications. MEC Application Programming Interfaces that
enable third party application to play media message, to collect
and record media interactions within ongoing session, are
presented. Media control data model is proposed. As a proof of
the concept, state models supported by the network and MEC
application are presented, formally described and verified.

I. INTRODUCTION
With the ubiquitous penetration of Internet of Things (IoT)

devices, a lot of new services that capture a great attention
continuously become available in different areas such as
healthcare, home automation, intelligent location tracking,
entertainment etc. [1], [2]. IoT devices are usually constrained
with respect to storage and processing capabilities and
sometimes power supply and network resources, while the
services are computation and storage intensive. The
centralized cloud services can provide the required resources,
but the latency introduced is unacceptable for services with
real-time requirements such as industrial robots, telemedicine,
connected cars etc. [3], [4]. The emergence of Multi-access
Edge Computing (MEC) addresses the latency issues by filling
the gap between centralized clouds and IoT devices. MEC
enables offloading of computing load and provisioning of data
storage capabilities at the network edge, closer to where they
are needed [5], [6]. The distributed computing environment
provided by MEC facilitates low latency and ultra-reliable
services. MEC empowers IoT applications using machine
learning techniques to retrieve insights of data gathered by
sensors and thus to provide better services. The offloading of
heavy tasks from IoT devices to MEC server mitigates the
communication and computational overhead. Further, MEC
can contribute to network traffic congestion alleviation by
preprocessing data of massive IoT applications [7], [8].

Currently standardized MEC services provide up-to-date
radio network and location information and enable traffic
steering between networks, services and applications. MEC
computing environment may be beneficial for telecom
operators but also for third party service providers. The MEC
potential to provide open access to network functions is
beyond existing functionality. MEC can provide computing

environment for applications that may use of core network
functions like messaging, call control and multicasting
exposed for third parties, [9], [10], [11].

In this paper, we study the MEC capabilities to provide
applications with media control functionality. The research is
adopting the idea of Parlay X Audio Call web service [12].
The Audio Call web service enables applications to send
multimedia messages in the context of ongoing call as well as
to manage media types for participants involved in a call. The
current research is focused on distribution of these capabilities
at the network edge following the Representational State
Transfer (REST) architectural style, adopted by European
Telecommunication Standard Institute (ETSI) for MEC
services. Contrary to Parlay X Audio Call, the access to media
type management for participants involved in a session is a
part of functionality of other MEC service which provides
REST-based interfaces for third-party session control,
including dynamic management of session participants.

The rest of the paper presents the MEC deployment
scenario for media control, use cases illustrating the benefits
of media control in the vicinity of end users, data model and
respective Application Programming Interfaces (APIs) for
media control as well as service state models supported by the
network and applications.

II. DEPLOYMENT OF MEDIA CONTROL AT THE EDGE OF THE
MOBILE NETWORK

As to MEC reference architecture, the MEC server hosts
mobile edge platform and Network Function Virtualization
(NFV) platform that provides cloud and communication
resources. The basic functionalities required for applications to
run are provided by the mobile edge platform. MEC
applications are running as Virtualized Network Functions
(VNF) on the top of NFV platform.

For static IoT devices where mobility management is not
required, the mobile edge platform hosting IoT applications
(e.g. for video surveillance, industrial control, home
automation) can be deployed both at the radio access node and
at aggregation point close to the radio access network [13].

For moving IoT devices where mobility management and
service continuity is required (e.g. vehicles, drones, trains) the
mobile edge platform can be co-located with distributed core
network functions. In this case, core network functions AMF
(Access and mobility Management Function), SMF (Session
Management Function), PCF (Policy Control Function), which
are responsible for mobility management and session

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

management, UPF (User Plane Functions) that handles user
traffic, and UDR (User Data Repository) are distributed at the
network edge to face the performance issues associated with
the centralized control [14]. The distributed core network
architecture is suitable for mission-critical communications
and IoT scenarios, where the communication with the
operator’s core functionality is optional [15], [16]. It enables
provisioning of required quality of service (QoS) and
customized features configuration. Furthermore, when
distributed core network functions are virtualized as VNFs,
mobile edge applications can run on the same virtualized
platform as part of the same MEC server. This deployment
improves scalability and enables more efficient resource
usage.

The MEC deployment with distributed virtualized core
network functions is shown in Fig.1. This scenario serves well
session management and policy control functionality required
for media control at the network edge.

Fig.1 MEC deployment with distributed virtualized core network functions

Secured exposure of core network capabilities and events
is provided by NEF (Network Exposure Function) [17]. The
NEF also provides secure information from external
applications to the network and packet flow description
management. The NEF is responsible for authorization of all
requests originating from MEC applications.

The exposed capabilities which can be accessed by the
mobile edge platform through the NEF include the following:

Monitoring of User Equipment (UE) related events,

Provisioning of prognostic information about UE
behavior,

Handling QoS policy for UE based on application’s
requests.

The mobile edge platform can use the exposed capabilities
to provide MEC applications with media control functionality.

The proposed media control APIs enable MEC
applications to play media, to capture and record for session
participants. Capabilities for media playing include playing of
text, audio and video messages, retrieval of message status and

terminating the message playing. The capabilities for media
capturing can be used by MEC applications to play a media
file to session participant(s) and to collect information from
session participant(s), to stop media interaction, as well as to
record interaction.

The functionality for third party session management and
adding or removing of session participants, and dynamic
media type management for session participants is exposed by
APIs for third-party session control, but it is not discussed
here.

Next section illustrates the basic Media Control API
functionality by typical use cases.

III. DESCRIPTION OF MEDIA CONTROL API FUNCTIONALITY

Fig.2 illustrates the structure of the resource URIs
supported by the proposed API.

All resource URIs follow a common root that can be
discovered using service registry. The APIs support
information about all requests for media messages to be played
to session participants, and all interaction requests with session
participants. All resources are manipulated using four simple
operations mapped onto HTTP methods – CREATE (HTTP
POST), READ (HTTP GET), UPDATE (HTTP PATCH) and
DELETE (HTTP DELETE).

Fig.2 Structure of media control resource URIs

A. Message Playing
A use case of media playing is as follows. The application

tracks the location of a child and finds that the child is not in
the area (e.g. school area) where it is expected to be. The
application initiates a session with the parent and using the
media playing API she plays an audio message to the parent.

Another use case is video surveillance in home automation.
The application detects intrusion, initiates a session between
the homeowner and the security officer, and using the media
control API sends a video stream of the intrusion.

The playMessageRequests resource represents all requests
for media messages to be delivered for ongoing session. The

/{apiRoot}/mc/v1

/playMessageRequests

/{playMessageRequest}

/interactionCollectRequests

/{interactionCollectRequest}

/playAndCollectSubscriptions

/interactionRecordRequests

/{interactionRecordRequest}

/(playAndCollectSubscription}

/playAndRecordSubscriptions

/(playAndRecordSubscription}

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 377 --

messages to be played to the session participants can be in
different media forms including text, audio and video.

When a MEC application wants a media message to be
played, she sends a POST request to the playMessageRequests
resource. The request body contains MediaMessageInfo data
structure which specifies the session identifier, session
participants, message information and optionally charging
information, and the application instance identifier. The
application allocates a unique request identifier for subsequent
interactions. The media control service responds with “201
Created” and response body containing media message
information specific for that request.

Fig.3 shows the flow for a request of playing media
message. A request for media message playing results in
execution of Application Function (AF) influence on traffic
routing procedure described in [14]. According to this
procedure, the MEC platform, in a role of AF, can send
requests to influence SMF routing decisions for traffic of
packet sessions. The MEC platform uses NEF to interact with
5G core network. On application request for message playing,
the media control service invokes Nnef_TrafficInfluen-
ce_Create operation of the Nnef_TrafficInfluence service as
described in [18], [19]. The Nnef_TrafficInfluence service
authorizes the request, forwards the request for traffic
influence and creates subscription for traffic related events. On
receiving operation execution result indication, the media
control service responds to the application.

Fig.3 Flow for a request of media message playing

The playMessageRequest resource represents an existing
request for message playing. The application can retrieve the
media message status and cancel a previous message playing
request.

As with the traffic influence request, the media control
service has created a subscription for traffic related events, it
received notifications from the NEF for message playing
status. Fig.4 shows the flow for retrieval of message status by
the application.

In order to retrieve the message status, the application
sends a GET requests to the resource representing the request
for message playing with message body including the message
correlator. The response contains the respective message status
which can be one of the following: played (the message has
been played), playing (the message is currently playing),
pending (the message has not started yet) and error (the
message will not be played as an error has occurred).

Fig.4 Flow for requests for message playing status

The MEC application can change the request for message
playing. To do this, she uses REST based procedure by
sending PUT or PATCH request to the resource representing
the request for message playing. The request body contains
updated MediaMessageInfo data structure. The media control
service in turn invokes Nnef_TrafficInfluence_Update
operation of the Nnef_TrafficInfluence service. This operation
authorizes the request and forwards it to update the traffic
influence. On receiving indication about the result of executed
operation, the media control service responds to the MEC
application with “200 OK”.

The flow for updating the request for message playing is
shown in Fig.5.

Fig.5 Flow for updating the request of media message playing

Fig.6 shows the flow for message playing cancelation.
When the application wants to cancel the message playing
previously requested, she sends a DELETE request to the
resource representing the request for message playing. This
results in execution of Nnef_TrafficInfluence_Delete
operation of the Nnef_TrafficInfluence service.

Fig.6 Flow for a request for cancelation of media playing.

Media control App

GET …/playMessageRequests
/{playMessageRequest}

200 OK (mediaMessageInfo)

Media control App

Media control App

POST
…/playMessageRequests/

(mediaMessageInfo)

201 Created
(mediaMessageInfo)

Media control App

Core network

Core network

Nnef_TrafficInfluence_Create
Request

Nnef_TrafficInfluence_Create
Response

Media control App

PUT …/playMessageRequests
/{playMessageRequest}

(mediaMessageInfo)

200 OK (mediaMessageInfo)

Media control App

Core network

Core network

Nnef_TrafficInfluence_Update
Request

Nnef_TrafficInfluence_Update
Response

Media control App

DELETE …/interactionRequests
/{playMessageRequest}

204 No Content

Media control App

Core network

Core network

Nnef_TrafficInfluence_Delete
Request

Nnef_TrafficInfluence_Delete
Response

Start influence
on traffic
routing

Change
influence on
traffic routing

Stop influence
on traffic
routing

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 378 --

B. Media Interaction
Following the location tracking use case, the application

using media control API can start an interaction with the
parent asking him whether to initiate a session with the child.
Another use case is an analytic application that detects elder
people's bad mood caused by stress or troubles, initiates a
session with the stressed person and using media control API
starts a video stream to cheer him/her up. Typical use cases of
media interactions in control of communicable diseases is
provided in [20]. Use cases and requirements for media
recording can be found in [21].

In order to capture or record media from session
participants, the application creates a subscription for
notifications about events related to interactions with
participants. The playAndCollectSubscriptions resource
represents all subscriptions for notifications related to media
capturing related events in the context of interaction with
session participant(s). The playAndRecordSubscriptions
resource represents all subscriptions for notifications related to
recoding of media provided by session participant(s).

When the application wants to capture media from session
participant, it sends a HTTP POST requests to the
playAndCollectSubscriptions resource with message body
containing PlayAndCollectSubscription data structure. The
PlayAndCollectSubscription data type contains the session ID,
session participant URIs and the callback address where the
application wants to receive notifications. Upon receiving the
request, the media control service invokes Nnef_EventExpo-
sure_Subscribe operation of the Nnef_EventExposure service
to subscribe for receiving notifications about interaction
related events. When the subscription is accepted, the media
control service responds to the application with “201 Created”
and response body containing data structure specific to that
interaction related subscription.

Fig.7 shows a scenario where the application uses REST-
based procedure to create a subscription for notifications about
media captured.

Fig.7 Flow of subscribing to media capture event notifications

The application can update the subscription (e.g. adding/
removing a session participant to/from interaction). When the
application needs to modify existing subscription for
interaction related events, she sends a PUT request to the
resource representing the respective subscription with a
message body containing data specific to the updated
subscription. Upon receiving the request, the media control
service invokes Nnef_EventExposure_Subscribe operation of

the Nnef_EventExposure service to update the existing
subscription for receiving notifications about interaction
related events. When the subscription update is accepted, the
media control service responds to the application with “200
OK” response body containing data structure specific to that
interaction related subscription. The media control service
returns to the application “200 OK” with the message body
containing the accepted data structure specific for that event
subscription.

When the application does not want to receive notifications
about media interaction anymore, she terminates the
subscription by sending a DELETE request to the resource
representing the respective subscription. The media control
service invokes Nnef_EventExposure_Unsubscribe service
operation of the Nnef_EventExposure service to terminate the
subscription. Upon receiving indication about operation
execution result, the media control service responds to the
application.

Fig.8 shows the flow of successful subscription termination
for notifications about media capture events.

Fig.8 Flow of unsubscribing from media capture event notifications

The interactionCollectRequests resource represents all
requests for media interactions with session participants. The
application can initiate a new media interaction in which she
plays an announcement to session participants and collects
information from a session participant.

When a MEC application wants to start playing an
announcement and collect information from session
participants, she sends a POST request to the
interactionRequests resource. The request body contains
MediaInteractionInfo data structure which specifies the
session identifier, session participants, playing configuration,
collected information configuration, and the application
instance identifier. The media control service responds with
“201 Created” with response body containing media
interaction information specific for that request and the
interaction correlator for subsequent interactions.

The flow for a request of media interaction with session
participants is shown in Fig.9.

A request for media interaction results in execution of
Nnef_TrafficInfluence_Create operation of the Nnef_Traffic-
Influence service.

Media control App

DELETE
…/playAndCollectSubscriptions
/{playAndCollectSubscription}

204 No Content

Media control App

Core network

Core network

Nnef_EventExposure_Unsubscri-
be Request

Nnef_EventExposure_Unsubscri-
be Response

Media control App

POST
…/playAndCollectSubscriptions
(PlayAndCollectSubscription)

200 OK
(PlayAndCollectSubscription)

Media control App

Core network

Core network

Nnef_EventExposure_Subscribe
Request

Nnef_EventExposure_Subscribe
Response

 Create event
monitoring

Delete event
monitoring

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 379 --

Fig.9 Flow for a request of media interaction with session participants

In case of active subscription for notifications about media
captured events, the media control service notifies the
application about information captured from the participant.
Fig.10 presents a scenario where the media control service
uses REST based procedure to send notification on media
capture event to the application. When the NEF needs to report
the media capture event to the media control service that has
previously subscribed, it invokes Nnef_EventExposure_Notify
service operation. The media control service in turn sends a
POST request with message body containing the
MediaCapturedNotification data structure to the callback
address provided by the application. The application responds
with a “204 No Content”.

Fig.10 Flow of receiving notifications on media capture event notifications

The interactionCollectRequest resource represents existing
interaction request to capture media from session participant.

The application can update the ongoing interaction with a
session participant using REST based procedure. To do this,
the application sends a PUT or PATCH request to the resource
representing the respective interaction. A request for media
interaction update results in execution of Nnef_TrafficInflu-
ence_Update operation of the Nnef_TrafficInfluence service.
On receiving indication about the result of executed operation,
the media control service responds to the MEC application
with “200 OK”.

The application can terminate the ongoing interaction with
a session participant. To do this, she sends a DELETE request
to the resource representing the respective interaction. The
media control service responds with “204 No Content” as
shown in Fig.11.

A request to cancel media interaction results in execution
of Nnef_TrafficInfluence_Delete operation of the Nnef_Tra-
fficInfluence service.

 Fig.11 Flow of cancelation of media interaction with session participants

The application can play a media message to one or more
session participants on an existing session and record media
from a session participant. Media recording may be initiated
by a contact center customer service application or financial
trading desks. Typical use cases include media recording for
mission critical services. In some use cases, media recording is
required to resolve user complaints by inspecting visual
session replays or to fit out the sessions of premium customers
in order they receive enhanced service.

Following the same pattern of communication, the
application can subscribe for and unsubscribe from
notifications about media interaction recoding. The application
can send a POST request to the interactionRecordRequests
resource to play a media file to session participant(s) and
record media information from a session participant. The
request body contains MediaRecordInfo data structure which
specifies the session identifier, session participants, playing
configuration, recording configuration, and the application
instance identifier.

The interactionRecordRequest resource represents existing
request for media playing and recording. The application can
interrupt the ongoing media playing and recording by using
REST based procedure.

IV. DATA MODEL AND API DEFINITION
The data model defines the data types and structures

related to media control.

The MediaMessageInfo data type defines the details of
message to be played to session participant(s). It is a structure
of timestamp, sessionID, sessionParticipants, messageType,
ChargingInfo, appID and requestID where:

 timeStamp is time stamp,

 sessionID is of string type and identifies the session
to which the message must be played,

 sessionParticipants is a structure of one or more
participant addresses within the session to which the
message has to be played,

 messageType is a structure of mediaType and
messageContent. The mediaType is of enumeration
type (text, audio, video). The messageContent type
defines the text to process with Text-to-Speech
engine for text messages, or the URI indication the

Media control App

POST
…/interactionCollectRequests/

(mediaInteractionInfo)

201 Created
(mediaInteractionInfo)

Media control App

Core network

Core network

Nnef_TrafficInfluence_Create
Request

Nnef_TrafficInfluence_Create
Response

Media control App

POST …/callbackRef
(MediaCapturedNotification)

204 No Content

Media control App

Core network

Core network

Nnef_EventExposure_Notify
Request

Nnef_EventExposure_Notify
Response

Media control App

DELETE
…/interactionCollectRequests
/{interactionCollectRequest}

204 No Content

Media control App

Core network

Core network

Nnef_TrafficInfluence_Delete
Request

Nnef_TrafficInfluence_Delete
Response

Pre-condition: application has active
subscription for media capture eventsEvent occurs

Start influence
on traffic
routing Stop influence

on traffic
routing

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 380 --

location of the audio or video content to be played for
audio or video messages,

 chargingInfo defines the charge to apply for message
playing,

 appID is of string type and is unique identifier for the
MEC application,

 requestID is of string type and is unique identifier
allocated by the MEC application for message
playing request.

The PlayAndCollectSubscription data type represents a
subscription to inputs captured from session participant(s). It is
a structure of callbackRef, subscriptionID, filterCriteriaCollect
and expiryDeadline, where:

 callbackRef is URI selected by the MEC application
to receive notifications on collected inputs from a
session participant,

 subscriptionID is self-referring URI regarded as
subscription identifier,

 filterCriteria is a structure of collectParticipants
which defines one or more session participants from
whose media has to be captured, represented by their
URIs, appID as defined above, and one or more
identifiers to associate the information for a specific
participant,

 expiryDeadline is time stamp indicating the
subscription expiry.

The MediaInteractionInfo data type contains information
about media interaction. It is a structure of timesStamp,
sessionID, sessionParticipants, playParameters, capturePara-
meters, appID, and requestID where:

 sessionID and sessionParticipants represent the session
and session participants involved in the interaction,

 playParameters represents the playing configuration
and it is a structure of fileLocation which is URI
pointing to the location of the file that has to be played,
text which is a string representing the text to be
converted by Text-to-Speech engine, mediaType
indicating the media type of the announcement to be
played, and interruptMedia which is of Boolean type
and indicates whether the participant is allowed to
interrupt, pause the prompt;

 captureParameters is of string type and it represents the
configuration of the input capture from the participant,

 pauseMedia indicates whether the session participant is
allowed to pause or interrupt the prompt.

The MediaCaptureNotification data type represents the
input captured from session participant(s). It is a structure of
subscriptionID as defined earlier, collectParticipant data type
which is a structure of one or more session participants and
collectedInfo from each of them.

The PlayAndRecordSubscription data type represents a
subscription for notifications on events related to retrieving
media from session participant(s). It is a structure of
callbackRef, subscriptionID, expiryDeadline, as described
above and filterCriteriaRecord. The filterCriteriaRecord data
type is a structure of recordParticipants which defines one or
more session participants whose media must be recorded,
represented by their URIs, appID as defined above, and one or
more identifiers to associate the media for a specific
participant.

The MediaRecordNotification data type represents the
media recorded from session participant(s). It is a structure of
subscriptionID as defined earlier, recordParticipant data type
which is a structure of one or more session participants and
recordedInfo from each one.

The MediaRecordInfo data type contains information about
recorded media. It is a structure of timeStamp. sessionID,
sessionParticipants, playParameters, recordParameters, appID,
and requestID where recordParameters define configuration
parameters related to media recording, containing the location
for storing the recorded media, and maxRecortingTime
representing the maximum time to record the media.

Table I summarizes the resources of media control service
and supported methods.

TABLE I. RESOURCES OF MEDIA CONTROL SERVICE AND

SUPPORTED METHODS

Resource
name

Resource URI HTTP
method

Meaning

All requests
for message
playing

/playMessageRequests GET

POST

Retrieves the list
of requests for
message playing
Creates a new
request for
message playing

An existing
request for
message
playing

/playMessageRequests
/{playMessageRequest}

GET

PUT

DETELE

Retrieves
information about
existing request
Modifies existing
request
Cancels existing
request

All subs-
criptions for
notifications
on media
capturing

/subscriptions
/playAndCollectSubscriptions

GET

POST

Retrieves list of
all subscriptions
for notifications
on media capture
Creates a new
subscription

Existing
subscription
for notify-
cations on
media
capturing

/subscriptions
/playAndCollectSubscriptions/
{playAndCollectSubscription}

GET

PUT

DELETE

Retrieves infor-
mation about the
subscription
Update the
subscription
Terminates the
subscription

All subs-
criptions for
notifications
on media
recording

/subscriptions
/playAndRecordSubscriptions

GET

POST

Retrieves list of
all subscriptions
for notifications
on media
recording
Creates a new
subscription

Existing
subscription
for notify-
cations on
media
recording

/subscriptions
/playAndCollectSubscriptions/
{playAndRecordSubscription}

GET

PUT

DELETE

Retrieves infor-
mation about the
subscription
Update existing
subscription
Terminates the
subscription

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 381 --

TABLE I CONTINUE
Resource

name
Resource URI HTTP

method
Meaning

All requests
for playing
an announ-
cement and
collecting
information

/interactionCollectRequests GET

POST

Retrieves the list of
requests for play
and collect infor-
mation
Creates a new
request

Existing
request for
playing an
announc-
ement and
collecting
information

/interactionCollectRequests
/{interactionCollectRequest}

GET

PUT

DELETE

Retrieves infor-
mation about
existing request
Modifies existing
request
Cancels existing
request

All requests
for playing
an announ-
cement and
recording
media

/interactionRecordRequests GET

POST

Retrieves the list of
requests for play
and record media
Creates a new
request

Existing
request for
playing an
announcem
ent and
recording
media

/interactionRecordRequests
/{interactionRecordequest}

GET

PUT

DELETE

Retrieves infor-
mation about
existing request
Modifies existing
request
Cancels existing
request

V. STATE MODELS
As a proof of the concept, models representing the message

playing status as seen by the mobile edge application and the
MEC server are designed. The models must be synchronized,
i.e. to expose equivalent behaviour.

In this section, models representing the message playing
status are proposed and formally described using the concept
of Labelled Transition Systems (LTS). The formal model
description enables a mathematical proof that they have a bi-
simulation relation e.g. expose equivalent behaviour.

Fig.12 Message status as seen by the application

Fig.12 shows an application view on the message status.
The model is simplified as far as it does not consider the
exceptional situations with message playing.

The message status from application point of view may be
Null, Pending, Playing or Played. The status is Null when
there is no message to be played. The status is Pending if the
message is waiting to be delivered to the network. The status
is Playing or Played if the message playing is ongoing or
terminated respectively. The MEC application may cancel
message playing.

By App = (SApp, ctApp, App, s0
App) it is denoted an LTS

representing the application view on the message status where:

- SApp = {Null [sA
1], Pending [sA

2], Playing [sA
3], Played [sA

4],
Cancelled [sA

5]};

- ActApp = { playMessage [tA
1], palyMessageResponse [tA

2],
getMessageStatus [tA

3],
getMessageStatusResponse(pending) [tA

4],
getMessageStatusResponse(playing) [tA

5],
getMessageStatusResponse(played) [tA

6], cancelMessage
[tA

7], cancelMessageResponse [tA8],finished [tA
9]};

- App = { (sA
1 tA

1 sA
2), (sA

2 tA
2 sA

2), (sA
2 tA

3 sA
2), (sA

2 tA
4

sA
2), (sA

2 tA
5 sA

3), (sA
3 tA

3 sA
3), (sA

3 tA
5 sA

3), (sA
3 tA

6 sA
4),

(sA
4 tA

3 sA
4), (sA

4 tA
6 sA

4), (sA
4 tA

9 sA
1), (sA

3 tA
7 sA

5), (sA
2

tA
7 sA

5), (sA
5 tA

8 sA
1)}

- s0
App = {sA

1}.

Notations in brackets are for short names.

Fig.13 shows the simplified model of the message state as
seen from the media control service point of view. In Idle
state, there is no message to be played.

Fig.13 The message state as seen by the MEC server

On receiving a request from an application to play a
message, the media control service invokes the
Nnef_TrafficInfluence_Create operation, which requests to
influence SMF routing decisions for user plane traffic of
packet session and creates a subscription for SMF events, and

getMessageRequest/
getMessageResponse(pending)

Idle

Traffic
Influence Start

Wait for
Playing Stop

Traffic
Influence Stop

playMessageRequest/
Nfnef_TrafficInfluence_Create_Req

Nfnef_TrafficInfluence_Create_Res

Nfnef_EventExposure_Notify_Req(start)/
Nfnef_EventExposure_Notify_Res

timeExpire/
Nfnef_TrafficInfluence_Delete_Req

Nfnef_TrafficInfluence_Delete_Res

Wait for
Playing Start

Wait played

Nfnef_EventExposure_Notify_Req(stop)/
Nfnef_EventExposure_Notify_Res,
setTimer

cancelMessageRequest/
cancelMessageResponse,

Nfnef_TrafficInfluence_Delete_Req

getMessageRequest/
getMessageResponse(playing)

getMessageRequest/
getMessageResponse(played)

playMessageResponse;
getMessageStatus/
getMessageStatusRequest;
getMessageStatusResponse(pending)

Null

Playing

playMessage/
playMessageRequest

getMessageStatusResponse(playing)

CancelMessageResponse

Pending

Played

finished

getMessageStatus/
getMessageStatusRequest;
getMessageStatusResponse (playing)

Cancelled

CancelMessage/
CancelMessageRequest

Null

getMessageStatusResponse(played)
getMessageStatus/
getMessageStatusRequest;
getMessageStatusResponse (played)

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 382 --

the message playing status becomes TrafficInfluenceStart.
Upon indication of successful operation execution, the
message playing state is occupied, in which notification about
SMF event for message playing start is awaited. The message
playing status in WaitForPlayingStart state is pending and the
status becomes Playing on notification about message playing
start event. In WaitForPlayingStop state, the message playing
status is played until a notification about message playing stop
event is received. In WaitPlayed state, the media control
service maintains the message playing status for some time
after which the message status is released and the
Nnef_TrafficInfluence_Delete operation is invoked. In
TrafficInfluenceStop state, the request for traffic influence
delete is processed in the network. The application may query
about message status in WaitFor PlayingStart state, WaitFor-
PlayingStop state and WaitPlayed state. The application may
cancel the message playing in WaitFor PlayingStart state and
in WaitForPlayingStop state.

By Mec = (SMec, ctMec, Mec, s0
Mec) it is denoted an LTS

representing the MEC server view on the message status
where:

- SMec = {Idle [sM
1], TrafficInfluenceStart [sM

2],
WaitForPlayingStart [sM

3], WaitForPlayingStop [sM
4],

WaitPlayed [sM
5], TrafficInfluenceStop [sM

6]};

- ActMec = { palyMessageRequest [tM
1],

Nnef_Traffic_Influence_Create_Res [tM
2],

getMessageRequest [tM
3],

Nnef_EventExposure_Notify_Req(start) [tM
4],

Nnef_EventExposure_Notify_Req(stop) [tM
5],

timerExpire [tM
6], cancelMessageRequest [tM

7],
Nnef_Traffic_Influence_Delete_Res [tM

8]};

- Mec = { (sM
1 tM

1 sM
2), (sM

2 tM
2 sM

3), (sM
3 tM

3 sM
3), (sM

3 tM
4

sM
4), (sM

4 tM
3 sM

4), (sM
4 tM

5 sM
5), (sM

5 tM
3 sM

5), (sM
5 tM

3
sM

6), (sM
6 tM

8 sM
1), (sM

3 tM
7 sM

6), (sM
4 tM

7 sM
7)}

- s0
Mec = {sM

1}.

The formal model verification is done by using the concept
of bisimulation equivalence [22].

Proposition: app and Mec are weakly bisimilar.

Proof: By RS, it is denoted a relationship between
corresponding states of app and Mec, such as RS = {(s 1,sM

1),
(s 2,sM

3), (s 3,sM
4), (s 4,sM

5)}. The following transition
mapping can be identified:

1. The application initiates a message playing, the
media control service invokes traffic influence create
procedure and waits for SMF event notifications. The message
status becomes pending: For (s 1,sM

1) (s 2,sM
3) (sA

1 tA
1 sA

2)
 {(sM

1 tM
1 sM

2), (sM
2 tM

2 sM
3)}.

2. The application queries the message status while the
message is pending: For (s 2,sM

3) {(sA
2 tA

2 sA
2), (sA

2 tA
3

sA
2)} (sM

3 tM
3 sM

3).

3. The media control service receives a notification on
SMF event regarding message playing start and the message
status becomes playing. The application queries the message

status while the message is playing: For (s 3,sM
4) {(sA

2 tA
5

sA
3), (sA

3 tA
3 sA

2)} {(sM
3 tM

4 sM
4), (sM

4 tM
3 sM

4)}.

4. The media control service receives a notification on
SMF event regarding message playing stop and the message
status becomes played. The application queries the message
status while the message is played: For (s 4,sM

5) {(sA
3 tA

6

sA
4), (sA

4 tA
3 sA

4) } {(sM
4 tM

5 sM
5), (sM

5 tM
3 sM

5)}.

5. The application considers the message as played and
there is no message to be played. The media control service
releases the message status and invokes traffic influence delete
procedure: For (s 4,sM

5) (s 1,sM
1) (sA

4 tA
9 sA

1) {(sM
5 tM

3

sM
6), (sM

6 tM
8 sM

1)}.

6. The application cancels message playing while the
message status is pending and the media control service and
invokes traffic influence delete procedure: For (s 2,sM

3)
(s 1,sM

1) { (sA
2 tA

7 sA
5), (sA

5 tA
8 sA

1)} {(sM
3 tM

7 sM
6), (sM

6

tM
8 sM

1)}.

7. The application cancels message playing while the
message status is playing and the media control service and
invokes traffic influence delete procedure: For (s 3,sM

4)
(s 1,sM

1) {(sA
3 tA

7 sA
5), (sA

5 tA
8 sA

1)} {(sM
4 tM

7 sM
6), (sM

6

tM
8 sM

1)}.

Therefore, app and Mec are weakly bisimilar.

Similar models on the media interaction status are
maintained by the MEC application and server.

One of the key performance indicators of MEC is latency.
The round-trip time (RTT) depends on the time required to
transmit packets over the radio interface TR, the time backhaul
connection between the access and core network TB, the core
network processing time TC, and the time for connection
between the core network and MEC server TT. So, RTT is 2 x
(TR+ TB+ TC+TT.). The proposed mobile edge service assumes
MEC server co-location with distributed core functionality, so
site the TT is insignificant. Deployment of distributed core
network closer to the edge further reduces the backhaul
latency TB.

For example, Verison engineers have conducted 5G tests
with MEC equipment installed at a cell site as a part of cloud
radio access network and the tests have shown RTT between
10-15ms [23]. The access to MEC server deployed at a site
with distributed core could decrease the latency down to about
15ms which is 25-40% lower than typical 4G deployments
[24], [25].

To assess the latency introduces by the proposed API, we
emulate the media playing transactions. The configuration
experiment setup includes client running on Intel Core i7-
3770@3.4 GHz, 8 cores, 8 GB RAM, Ubuntu and server
running on Intel Core i7-9750H@2.6 GHz, 6 cores, 16 GB
RAM, Ubuntu. The server is implemented using Vert.x, which
supports REST-based interface toward the client, and Redis,
which writes in Redis store configure to work in single node
without clustering [26], [27].

Fig.14 shows the record of operations' latency for a
sequence, consisted of 105 operations (POST requests and

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 383 --

relevant 201 OK responses). As it might be observed, after the
initial system warm-up i.e. after the first 2x104 operations, the
operations' latency, seen as a process, converges to about
240μs. The observed spikes in the decimated sequence tend to
be between 1 and 15ms and they are caused mainly by the
ongoing memory resizing as far as the test operations are
exclusively posts to an in-memory repository.

Fig.14 Record of operations' latency for a sequence of 105 operations

VI. CONCLUSION
The session initiation by third party is applicable in many

use cases including eHealth, mission critical communications
as well as different IoT scenarios. The sessions may be
enhanced with message playing or media interactions. In this
paper, we study the capabilities to deploy media control for
ongoing session with message playing and media interaction at
the network edge. These capabilities can be provided by using
MEC technology with co-location of the MEC server and
distributed core network functions.

We propose REST-based APIs that enable MEC
applications to play media session to participant(s) in ongoing
session, to play an announcement and collect information from
session participant(s), and to record the media interaction. The
functionality of the proposed APIs is illustrated by typical use
cases. The presented data model describes the RESTful
resources and data types. The state of the resources can be
manipulated by HTTP methods. Models representing message
playing status as seen from MEC application and network
point of view are proposed, formally defined, and verified.
The formal model verification is useful in assessment of API
realization against API specification.

ACKNOWLEDGMENT
This work was supported by grants DH07-10, 2016 and

KP-06-H37-33, 2019 from Bulgarian National Science Fund,
Ministry of Education and Science.

REFERENCES
[1] D. Wang, D. Chen, B. Song, N. Guizani, X. Yu and X. Du, "From IoT to

5G I-IoT: The Next Generation IoT-Based Intelligent Algorithms and
5G Technologies," IEEE Communications Magazine, vol. 56, no. 10, pp.
114-120, October 2018.

[2] S. Taherizadeh, A. Jones, I. Taylor, Z. Zhao, V. Stankonski, Monitoring
self-adaptive applications within edge computing frameworks: A state-
of-the-art review, Journal of Systems and Software, vol.136, 2018,
pp.19-38.

[3] N. Bazhenov, D. Kozun, Event-Driven Video Services for Monitoring in
Edge-Centric Internet of Things Environment, Proc. of 25th Conference
of FRUCT Association, 2019, pp.47-56.

[4] E. Saksonov, Y. Leokhin, P. Panfilov, Structural Synthesis of the IoT
System for the Fog Computing, Proc. of 24th Conference of FRUCT
Association, 2019, pp.382-387.

[5] L. Zanzi et al., "Evolving Multi-Access Edge Computing to Support
Enhanced IoT Deployments," IEEE Communications Standards
Magazine, vol. 3, no. 2, pp. 26-34, June 2019.

[6] Q.V. Pham, et al, "A Survey of Multi-Access Edge Computing in 5G
and Beyond: Fundamentals, Technology Integration, and State-of-the-
Art," arXiv:1906.08452v2 [cs.NI] 2 Jan 2020, available at:
https://arxiv.org/pdf/1906.08452.pdf

[7] S. Yang, Y. Tseng, C. Huang and W. Lin, "Multi-Access Edge
Computing Enhanced Video Streaming: Proof-of-Concept
Implementation and Prediction/QoE Models," IEEE Transactions on
Vehicular Technology, vol. 68, no. 2, pp. 1888-1902, Feb. 2019.

[8] S. Wang, "Edge Computing: Applications, State-of-the-Art and
Challenges," Advances in Networks, vol. 7, Issue 1, 2019, pp. 8-15.

[9] E. Pencheva, I. Atanasov, D. Velkova, V. Trifonov, "Application Level
User Traffic Control at the Mobile Network Edge," Proc. of 24th
Conference of FRUCT Association, 2019, pp.312-327.

[10] E. Pencheva, I. Atanasov, V. Vladislavov, "Mission Critical Messaging
Using Multi-Access Edge Computing," Cybernetics and Information
Technology, vol.19, no.4, 2019, pp.73-89.

[11] E. Pencheva, I. Atanasov, I, Asenov, "Access and mobility policy
control at the network edge, " ISC International Journal of Information
Security (ISeCure), August 2019, vol.11, Number 3, pp. 105-111.

[12] 3GPP TS 29.199-11 Technical Specification Group Core Network and
Terminals;Open Service Access (OSA); Parlay X Web Services; Part 11:
Audio call, Release 9, v9.0.0, 2009.

[13] S. Kekki et al. MEC in 5G Networks, ETSI White Paper No.28, 2018
[14] 3GPP TS 29.513 Technical Specification Group Core Network and

Terminals; System Architecture for the 5G System (5GS), Stage 2,
Release 16, v16.3.0, 2019

[15] F. Giust et al. MEC Deployments in 4G and Evolution Towards 5G,
ETSI White Paper No.24, 2018

[16] Mukherjee, Shreyasee & Ravindran, Ravi & Raychaudhuri, Dipankar.
(2018). A Distributed Core Network Architecture for 5G Systems and
Beyond. Proceedings of the Workshop on Networking for Emerging
Applications and Technologies, NEAT '18, 2018, pp. 33–38,
https://doi.org/10.1145/3229574.3229583

[17] 3GPP TS 29.522 Technical Specification Group Core Network and
Terminals;5G System; Network Exposure Function Northbound APIs;
Stage 3, Release 15, v15.2.0, 2018

[18] 3GPP TS 23.502 Technical Specification Group Services and System
Aspects; Procedures for the 5G System (5GS), Stage 2; Release 16,
v16.2.0, 2019

[19] 3GPP TS 29.122 Technical Specification Group Core Network and
Terminals; T8 reference point for Northbound APIs, Release 16,
v16.3.0, 2019

[20] European Centre for Disease Prevention and Control (ECDC), A
literature review on health communication campaign evaluation with
regard to the prevention and control of communicable diseases in
Europe, Insights into health communication, Technical report, 2019.

[21] K. Rehor, L. Portman, A. Hutton, R. Jain, Use Cases and Requirements
for SIP-Based Media Recording, RFC: 6341, 2011.

[22] P. Jan ar and S. Schmitz, "Bisimulation Equivalence of First-Order
Grammars is ACKERMANN-Complete," 2019 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), Vancouver, BC,
Canada, 2019, pp. 1-12.

[23] M. Alleven, Verizon’s MEC gear gives an ‘edge’ in latency, C,
https://www.fiercewireless.com/wireless/verizon-s-mec-gear-gives-it-
edge-latency

[24] M. Elbamby et al. "Wireless Edge Computing with Latency and
Reliability Guarantees," arXiv:1905.05316v1 [cs.NI] 13 May 2019,
pp.1-20.

[25] L. Yala, P. A. Frangoudis and A. Ksentini, "Latency and Availability
Driven VNF Placement in a MEC-NFV Environment," 2018 IEEE

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 384 --

Global Communications Conference (GLOBECOM), Abu Dhabi, United
Arab Emirates, 2018, pp. 1-7.

[26] Eclipse Vert.x, Available at: https://vertx.io/, Accessed on February
2020.

[27] Redislab 5.0.7, Available at: https://redis.io/, Accessed on February
2020.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 385 --

