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Abstract—The paper deals with simultaneous service multi-
server system, where customer occupies a random number of
servers. The system also admits speed scaling mechanism by
switching speed regimes at arrival/departure instants according
to the corresponding transition probability matrices. Stability
conditions for Markovian case of such a model were derived.
Results of regenerative confidence estimation for the system in
steady-state regime are presented.

I. INTRODUCTION

Modern computing systems are essentially parallel. Rang-
ing from smaller autonomous sensors in the Internet of Things
appliances [1], as well as wearable devices, up to large-
scale High-Performance Computing systems, all of these pos-
sess multiple computational units (cores, processors, servers)
scaling up to millions at the top. As usual, high computa-
tional power needs to be compromised with reasonable power
consumption, which is done by leveraging various energy
efficiency techniques. The latter require appropriate parameter
tuning so as to obtain optimum in the energy-performance
tradeoff.

Random nature of the events appearing in parallel com-
puting systems makes multiserver queueing models best can-
didates for stochastic modeling of the former. Though being
relatively simple, these models may have unwanted features
that complicate the analysis, e.g. the so-called non-work-
conserving property, when idling system resources cannot be
used for serving customers awaiting in the queue, and thus,
are wasted. These features raise the need to use sophisticated
mathematical tools to establish the model stability and perfor-
mance.

Regenerative method is a powerful instrument in stochas-
tic simulation and performance analysis. It allows to obtain
confidence estimates for system performance parameters even
in complicated cases, where traditional estimates (e.g. simple
average) are not applicable (in particular, when independence
assumption does not hold). Detailed description of regenerative
estimation is well presented in [2], [3]. Moreover, regenerative
approach allows to establish stochastic stability of the system
under weak assumptions (e.g. return of the process to some
state/set with positive probability) [4], [5], [6].

In this paper, we apply the regenerative approach to multi-
server queueing model with a distinctive feature which we call
simultaneous service. In such a system, a pool of homogeneous
servers are serving customers, each of the latter occupying a
random number of servers simultaneously, for a (same at each
occupied server) random amount of time. The customers are

waiting in a single unbounded queue in the order of arrival,
and enter service only when the requested number of servers
are available. The simultaneous service feature reflects not
only the key property of a High-Performance Cluster (where
computing tasks are executed on many cores/servers to gain
more computing power), but also addresses the mechanism
used in conventional multicore systems to scale an application
to the available number cores (e.g. in video processing). To
balance the performance with energy consumption, the model
we consider utilizes the speed scaling technique as the less
intrusive one among available. In such a system, we establish
confidence estimates for performance by means of simulation.
This research is considered a first step towards large scale
applications, and thus we start with a simple small scale model,
which though allows to obtain some explicit analytical results.

The structure of the paper is as follows. First, in Section II
we introduce the model of simultaneous service multiserver
system and discuss its properties. We establish the stability
condition in matrix form in Section III. We present the
regenerative structure for the model and briefly discuss the
regenerative method of confidence estimation in section IV.
Some results of regenerative simulation are presented and
discussed in Section V. Finally, conclusions are stated in
Section VI.

II. MODEL DESCRIPTION

We consider a multi-server queueing system with m equiv-
alent servers. Customers arrive into the system at the epochs
{tn; n = 0, 1, . . . } of a Poisson process of rate λ, and
thus inter-arrival times τn = tn − tn−1, n = 1, 2, . . . ,
are independent and exponentially distributed (i.i.d.) random
variables (r.v.) with a generic element τ such that Eτ = 1/λ.
A customer n, arriving at instant tn, is characterized by a
pair of parameters: amount of work Sn > 0 and number of
required servers Cn ≤ m. The customer n demands exactly Cn

servers simultaneously, and if the resources are not available,
s/he waits until service is possible in a single queue operating
on a First-Come-First-Served basis. The Cn servers requested
by the customer n are seized and released simultaneously, after
completion of the required amount of work, Sn, at each of
the servers requested. Note that the considered system is non-
work-conserving, as its properties allow to observe non-zero
queue together with idle servers.

The sequences {Sn; n ≥ 1} is i.i.d. and independent of
an i.i.d. sequence {Cn; n ≥ 1}. We define the corresponding
generic elements of such sequences by S and C. (Note that
in a real-world system Sn and Cn might be dependent, e.g.
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in terms of distribution, see [7]). Generic number of required
servers, C, is a discrete r.v. that takes values k = 1, . . . ,m with
corresponding probability pk from a given distribution p =
(p1, . . . , pm). More detailed description and stability criterion
of such a model are presented in [8].

The main feature of the system considered in this paper
is the speed scaling technique, i.e. the servers can process
customers at L distinct speeds, μ1 < · · · < μL, and we assume
that the speed switching simultaneously affects all m servers.
(Such an assumption is motivated by simultaneous service
feature, since a customer served at several servers with distinct
speeds will experience the speed of the slowest server.) More
precisely, if the servers work at rate μi, i = 1, . . . , L, then a
generic work S can be completed in S/μi amount of time. It
follows that the work Sn of customer n will require computing
time in the interval [Sn/μL, Sn/μ1].

The motivation of speed scaling implementation in mul-
tiserver systems is mainly related to energy efficiency im-
provement under quality of service restrictions. Thus, inspired
by high-performance and IoT applications, we study the
model with asynchronous blind randomized switching policy,
such that the (system) speed is altered only at customer
arrival/departure epochs according to (corresponding) Markov
chain. This means that at an arrival (departure) epoch, speed
μi may be switched to speed μj with probabilities ai,j (or
di,j , respectively), where ai,j (di,j) is a corresponding element
of a square stochastic matrix A (D) of order L. Such a
speed scaling approach was used in a single-server model to
mimic the asynchronous switching at arrival/departure epoch
in wireless transmission devices [9]. Note, that such a policy
can be used to obtain the optimal performance/energy tradeoff
without the need to keep track of the system state.

A. M/G/2-type System

We concentrate on a particular case of two-server system,
that is, m = 2. Thus, customers can seize one or both servers
according to a given distribution p = (p1, 1− p1).

Note that the matrices A and D may define rather compli-
cated speed scaling rules, e.g. of ladder type (when speeds are
sequentially increased at arrivals and decreased at departures).
However, to simplify comprehension, we focus on the two-
speed case, that is, L = 2. Moreover, we adopt the transition
matrices from [9]:

A =

[
1− a a
0 1

]
, D =

[
1 0
d 1− d

]
, (1)

where a, d ∈ [0, 1]. As such, at arrival instants, the speed may
be switched from lower to higher with probability a, while at
departure instants it may be switched from higher to lower with
probability d. Conventionally, the speed of an empty system
at customer arrival epoch is chosen randomly.

The presented two-server system of M/G/2-type could be
uniquely described by a set of parameters λ, p1, a, d, μ1, μ2

and the distribution function of generic work amount, S.

III. STABILITY ANALYSIS

In this section we establish the stability condition for a
M/M/2-type system, that is, the generic work amount S is

exponentially distributed. Thus, we extend the matrix analytic
model of a simultaneous service multiserver system [8] in
a two-server case. Let X(t) be the number of customers
in the system at time t � 0 and two dimensional vector
N(t) = (n1, n2) ∈ {1, 2}2 define numbers of servers required
by the two oldest customers in the system (if any). Finally,
let J(t) ∈ {1, 2} be the number of system speed at time t
(that is, at time t system works at speed μJ(t)). The process
{X(t), N(t), J(t), t � 0} is the so-called Quasi-Birth-Death
(QBD) process, that is, X(t) is changed by at most 1, at
the process transition epochs. The infinitesimal generator of
a QBD process has block-tridiagonal form:⎡⎢⎢⎣

B0,0 B0,1 0 0 . . .
B1,0 B1,1 B0 0 . . .
0 B2 B1 B0 . . .
...

...
. . .

. . .
. . .

⎤⎥⎥⎦ .

It remains to define the block matrices that constitute the
infinitesimal generator. Since a change in the component X(t)
triggers a change in N(t) and (independent) change in J(t),
the matrices governing these changes may be obtained by
Kronecker product ⊗, of the corresponding matrices governing
a reduced process {X(t), N(t), t � 0} considered in [8], and
matrices A,D governing the changes in J(t). Namely, denote

PN =

⎡⎢⎣ p1 1− p1 0 0
0 0 p1 1− p1
p1 1− p1 0 0
0 0 p1 1− p1

⎤⎥⎦ ,

and it is easy to see that PN is the matrix of transitions
of phase N(t) at departure epochs. Construct the following
diagonal matrices Dσ = diag(2, 1, 1, 1), related to the num-
ber of customers simultaneously served at each phase, and
M = diag(μ1, μ2). Now define

B0 = I⊗λA, B1 = −λI−Dσ⊗M, B2 = (DσPN )⊗(MD).

We omit the matrices Bi,j , i, j ∈ {0, 1} to save space, since
their contents is not useful for stability analysis, which is based
on the celebrated Neuts ergodicity criterion [10]

αB21 > αB01,

where 1 is the vector of ones, and α is the stochastic vector
solving the equation

α(B0 +B1 +B2) = 0, α1 = 1. (2)

Observe that (2) it is a linear system of equations that has
unique solution which can be easily obtained. In that sense, α
being the solution of a (well defined) linear system, is explicit.

We note that θ(a, d) = αB21 defines the maximal through-
put of the system (by notation we stress the dependence of θ
on scaling policy parameters a, d). To study the sensitivity of
θ on the parameters a, d, we perform a numerical study. We
vary a0 = 2i, i = −10, . . . , 0, and for each such a0 plot the
curve (d, θ(a0, d)) for d ∈ [2−25, 1]. The results of numerical
study are depicted on Fig. 1. It can be seen that the maximal
throughput is bounded by the values of maximal throughput
in a system without speed scaling, working at speed μ2 and
μ1, respectively. Recall that these are available from [8] (see
also [11]): θ(0, 1) = 2μ1/(2−p21) and θ(1, 0) = 2μ2/(2−p21),
respectively. Moreover, the slope of the curve depends on the
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value a, that is, if a is sufficiently small, the throughput is
close to the lower bound, apart from the cases when d � a.

The stability condition obtained is useful for M/G-type
model validation with an M/M -type one. This approach can
also be used to obtain the system performance explicitly in an
M/M/2-type model, however, this discussion is left for future
research.
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Fig. 1. Sensitivity analysis of the maximal throughput, θ(a, d), on the
parameters a = 2i, i = −10, . . . , 0 and d ∈ (0, 1]

IV. REGENERATIVE STRUCTURE

Define by ν(t) and Q(t) the number of customers at service
and in the queue at time instant t ≥ 0, respectively. Thus, the
basic process X , associated the total number of customers, is
presented as

X(t) = {ν(t) +Q(t); t ≥ 0}.
Consider Xn = X(t−n ), n ≥ 0 – the discrete analogue of the
process X(t), which defines number of customers just before
n-th arrival. Assume that the system has zero initial state:
X(t0) = 0 (t0 := 0 for simplicity) and consider the following
sequence:

βn = min
k

{k > βn−1 : Xk = 0}, n ≥ 1, β0 = 0.

Thus, βn denotes the numbers of customers which arrive into
empty system. At each such a moment the system starts over
in stochastic sense, or regenerates.

Denote αn = βn−βn−1, n ≥ 1. The process {Xn} (and its
continuous analogue {X(t)}) is called a regenerative process
and has independent stochastically equivalent cycles with i.i.d.
lengths {αn} (denote a generic length by α). The sequence
{βn} defines regeneration points of a process {Xn} in discrete
time. Regeneration points (instants) in continuous time {Tn}
(with generic element T ) are related with βn as follows:

Tn = tβn
, n ≥ 1, T0 = 0.

Thus, {Tn} denotes such arrival instants, that customers enter
an empty system. If the mean cycle length is finite, the process
{X(t), t ≥ 0} is called positive recurrent [4], [12]. In general,
positive recurrence also includes the condition for the first
cycle:

T1 < ∞, w.p. 1 (with probability 1),

which automatically holds, since the process was considered
without delay, X(0) = 0 (the first cycle is stochastically equal
to a generic one).

If the condition ET < ∞ holds good, then the regenerative
method, which is a strong instrument in stochastic simulation
and stability analysis, can be applied. More detailed description
of regeneration approach is well-presented in [4], [13], [14],
[15].

A. Regenerative estimation

Consider some measurable function f of a regenerative
process {X(t), t ≥ 0}, which represents a QoS characteristics
of the considered system, and construct

r(t) =
1

t

∫ t

0

f [X(u)]du,

which represents an “average” value of the process f [X] at
[0, t]. The following limit (if exists)

lim
t→∞ r(t) = r, (3)

is a steady-state performance measure. Conditions of existence
for the limit (3) are rather simple. Define the sequence, {Yn},
of i.i.d. accumulated values of the characteristics over the
segments of the process {X(t), t ≥ 0}

Yn =

∫ Tn

Tn−1

f [X(u)]du, n ≥ 1.

If mean cycle length is finite (ET < ∞), first cycle is finite

T1 < ∞ w. p. 1 and
∫ T

0
|f [X(u)]|du < ∞, then

1

t

∫ t

0

f [X(u)]du → EY
ET

. (4)

Moreover, if the generic length T is non-lattice, the following
weak convergence takes place

X(t) ⇒ X, t → ∞.

where X is a random variable (limit distribution). Thus,

EY
ET

≡ Ef [X].

Consider the corresponding values in discrete time

Yn =

βn−1∑
i=βn−1

f [Xi], n ≥ 1.

In case of positive recurrence, which means that the following
conditions hold good,

EY < ∞, Eα < ∞,

the estimator

rn :=

∑n
k=0 Yk∑n
k=0 αk

=

∑βn−1
i=0 f [Xi]

βn

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 348 ----------------------------------------------------------------------------



converges w. p. 1 to a discrete analogue of (4). Namely,

rn → r =
EY
Eα

=

∑α−1
i=0 f [Xi]

Eα
, n → ∞. (5)

Consider the sequence of i.i.d. variables

Zn = Yn − rαn, n ≥ 1

with a generic element Z. Obviously, EZ = 0 and its variance
is defined as follows

D[Z] = D[Y ]− 2rCov(Y, α) + r2D[α].

By Central Limit Theorem, under the condition D[Z] < ∞,
we obtain a weak convergence

√
n[rn − r]√
D[Z]/Eα

⇒ N (0, 1), n → ∞, (6)

where N (0, 1) denotes a standard normal distribution.

The convergence (6) allows to build an interval esti-
mator for parameter r. In this way, the unknown constant√
D[Z]/Eα is replaced by its strongly consistent estimator.

Obviously, that mean average αn := 1
n

∑n
k=1 αn converges

to Eα w. p. 1. Then we construct the following unbiased
estimators

Dn[α] =
1

n− 1

n∑
k=1

[αk − αn]
2,

Dn[Y ] =
1

n− 1

n∑
k=1

[Yk − Y n]
2,

Covn[α, Y ] =
1

n− 1

n∑
k=1

[
(αk − αn)(Yk − Y n)

]
,

which converge w.p. 1 to D[α], D[Y ], Cov(α, Y ), respec-
tively. Note, that Y n is mean average among n independent
replications of Y . Thus, having in mind (5), we obtain an
estimator

sn :=
[
Dn[Y ]− 2rnCovn[α, Y ] + (rn)

2Dn[α]
] 1

2

, (7)

which converges w.p. 1 to
√
D[Z], as n → ∞.

Hence, (6) evaluates to

√
n[rn − r]

sn/αn
⇒ N (0, 1), n → ∞,

which implies the following 100(1− γ)% confidence interval:

r ∈
[
rn − zγsn

αn
√
n
, rn +

zγsn
αn

√
n

]
.

Note, that γ is a given reliability, and zγ is obtained from the
statement

Φ(zγ) =
1− γ

2
, (8)

where Φ is the Laplace function.

B. Estimation of the mean queue

Next, our goal is to apply presented regenerative method
to the considered queueing system with simultaneous service
and speed scaling. We illustrate confidence estimation of mean
queue size (mean number of customers in the queue).

First, we present the conditions of applicability for regen-
erative method. Note, that the queue process Q(t) regenerates
on the same instants {Tn}n≥0 (has same regeneration points
{βn}n≥0 defined in discrete time) as the basic process X . The
positive recurrence of Q is (ET < ∞), which is equivalent to
stability of the considered system.

Construct a single server (working at unit speed) model
M/G/1 with the same arrival instants as in the original system
and assume that service times are independent and distributed
as Smax, where

Smax = S/μ1,

recall that μ1 is the smallest speed scaling coefficient. Such a
new system is stochastically majorant system, as its workload
is greater or equal to the original model with simultaneous
service and speed scaling (see [16]). Note, that the stability
condition of the majorant system

λESmax < 1. (9)

automatically implies the stability (positive recurrence) of the
original system, which means ET < ∞.

Let Qn = Q(t−n ) define a queue size just before the n-th
arrival and construct i.i.d. sequence

Yn =

βn−1∑
i=βn−1

Qi, n ≥ 1.

Note that Qβn−1
= 0. Since n-th regenerative cycle

consists of αn arrivals,

Qi < αn w.p. 1, i = βn−1 + 1, · · · , βn − 1,

which implies

Yn <

αn∑
i=1

αn w.p. 1. (10)

Then construct the following estimator of the mean queue:

rn :=

∑βn−1
i=0 Qi

βn
.

By Wald’s identity [13] ET = EτEα. Note that the condition
(9) provides finite mean cycle length in discrete time: Eα <
∞. Next, from (10) and by Wald’s identity:

EY < [Eα]2.

Under these conditions:

rn → EY
Eα

, n → ∞.

Moreover, assume that

P(τ > Smax) > 0. (11)

Thus, with a positive probability, there exists a regeneration
cycle having only one arrival, P(α = 1) > 0. Hence, cycle
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length α is aperiodic (discrete analog of non-lattice property)
and the queue process {Qn; n ≥ 1} converges to its stationary
distribution (r.v. Q).

Qn ⇒ Q, n → ∞,

hence,

rn → EQ, n → ∞.

Note, that condition (11) automatically holds for the models
with Poisson input.

Since we consider the model in steady state, we expect
that queue process does not go to infinity, and for any arbitrary
time, the system becomes empty in a finite time with a positive
probability. Thus, assuming the condition D[Y −EQ ·α] < ∞,
it is possible to build the following 100(1 − γ)% confidence
interval for EQ:

EQ ∈
[
rn −Δn, rn +Δn

]
, (12)

where

Δn =
zγsn
αn

√
n
, (13)

zγ is obtained from (8), αn defines mean average cycle length,

and sn is an unbiased strongly consistent estimator of
[
D(Y −

EQ · α)
]1/2

, constructed similarly as in (7).

V. SIMULATION

In this section we present results of confidence estimation
of mean queue size EQ for different configurations of con-
sidered 2-server system with L = 2 speed modes, assuming
that service times a exponentially distributed with a rate μ and
speeds are switched at arrival/departure instants, according to
transition matrices A and D, defined in (1).

The mean queue EQmaj in majorant system M/M/1 with
a load coefficient

ρ :=
λ

[μ1μ]

is defined by [17]

EQmaj =
ρ2

1− ρ
. (14)

We additionally construct minorant queueing system
M/M/2 with the same sequence of arrival instants as in the
original system, but with exponential service times with a rate
μ2μ. Such a stochastically minorant system (cf. monotonicity
results in [16]) has the load coefficient

ρ :=
λ

[μ2μ]
,

and its mean queue EQ if defined by

EQmin =
ρ3

4− ρ2
.

Thus, we obtain an obvious relation

EQmin ≤ EQ ≤ EQmaj . (15)

Our goal is to compare an interval (12) based on regener-
ative estimation with (rather rough) theoretical bounds (15)
for different configurations of considered system. Note, that
experiments were done under the condition

ρ < 1,

which guarantees the stability of the majorant system and
allows to apply statement (14). The simulation model is
based on 100 000 arrivals. We illustrate the dynamics of rn
and corresponding 95% confidence intervals, where n is the
number of regeneration cycles. Note, that in this case, the
reliability γ = 0.05, which corresponds to zγ ≈ 1.6449.
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Fig. 2. Regenerative estimation of EQ, for ρ = 0.5, μ1 = 0.9, μ2 = 1.1

Fig. 2 presents the case for λ = 1, μ = 2. The correspond-
ing probabilities are defined by a = 0.3, d = 0.4, p1 = 0.5
and speed scaling parameters are μ1 = 0.9, μ2 = 1.1. Thus,

ρ = 0.56, EQmaj = 0.6944, EQmin = 0.0248.

For considered case we obtained n = 27286 regeneration
cycles, thus more than 25% customers arrive into totally empty
system. The interval (grey solid lines) becomes thinner with a
growth of n, this fact is easily explained by the construction
of Δn, see (13). The confidence interval built by regeneration
method is much more accurate than theoretical interval (dash
lines), based on bounds (15). Consider the relative measure

δ :=
EQmaj − EQmin

2
,

which is equal to a half of theoretical interval. As,

δ

Δn
=

0.3348

0.0097
= 34.52,

the regenerative confidence estimation provides in 34 times
more accurate interval for EQ, than bounding based on mono-
tonicity properties.

Table I illustrate results of interval estimating of EQ for
different configurations of considered system, having load
coefficient λ/μ fixed and equal to 0.5. Note, that columns
Qmaj , Qmin present the results for mean queue length in
majorant and minorant systems, respectively.

The first block of the Table I corresponds to the case of
“medium” probabilities a, d, p1. Obviously, greater values of
deviation [μ2 − μ1] provide less accurate theoretical intervals
(greater δ). Moreover, with the growth of [μ2 − μ1], we
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TABLE I. SIMULATION RESULTS FOR λ = 1, μ = 2.

a = 0.3, d = 0.4, p1 = 0.5.
μ1 μ2 ρ n rn Qmaj Qmin Δn δ
1.0 1.0 0.50 28528 0.4835 0.5000 0.0333 0.0088 0.2333

0.9 1.1 0.56 27286 0.5358 0.6944 0.0248 0.0097 0.3348

0.7 1.4 0.71 21582 0.9305 1.7857 0.0118 0.0241 1.8870

0.6 2.0 0.91 15509 1.7671 9.0909 0.0040 0.0721 4.5435

a = 0.9, d = 0.1, p1 = 0.5.
0.9 1.1 0.56 27742 0.5107 0.6944 0.0248 0.0098 0.3348

0.7 1.4 0.71 23229 0.8652 1.7857 0.0118 0.0241 1.8870

0.6 2.0 0.91 18023 1.5712 9.0909 0.0040 0.0611 4.5435

a = 0.1, d = 0.9, p1 = 0.5.
0.9 1.1 0.56 27132 0.5465 0.6944 0.0248 0.0108 0.3348

0.7 1.4 0.71 20051 1.0198 1.7857 0.0118 0.0241 1.8870

0.6 2.0 0.83 17119 1.3701 4.1667 0.0040 0.0399 2.0814

observed a slight increase in the load of a speed scaling
system, which implies the larger values of rn, less regen-
eration (the system becomes empty less number of times)
and larger values of Δn. Anyway, the benefit of regenerative
confidence estimation in comparison with theoretical bounding
is illustrated for the case with high speed scaling. Namely, for
μ1 = 0.55, μ2 = 2: δ/Δn = 63.02, while for the “worst” case
(without speed scaling) μ1 = μ2 = 1: δ/Δn = 26.51.

The second block of the Table I illustrates the case for
a = 0.9, thus with a high probability the system switches
to the second speed regime (with a faster service) at arrival
instants. Small d = 0.1 also contributes to keep the second
mode at departure instants, which implies a slightly less loaded
system (in comparison with the first block of the Table I), more
regeneration epochs, smaller rn and more accurate confidence
interval.

The last block of the Table I illustrates the case for a = 0.1,
d = 0.9, and such a configuration tries to keep the first speed
regime, which corresponds to the slower service and provides
slightly larger load, less regeneration points and increase in
average queue.

Simulation results for other configuration and under the
condition ρ < 1 had shown rather similar results: the most
illustrative advantage of regenerative estimation in comparison
with theoretical interval is obtained to the cases with high
speed scaling. Variation of parameters a, b, p1, ρ does not
strongly affect the fraction δ/Δn.

VI. CONCLUSION

In this paper, we considered a specific case of non-work-
conserving queueing model with simultaneous service and
speed scaling policy. For M/M/2-type of such a system
the stability condition was derived and sensitivity of the
system throughput was studied by means of matrix-analytic
method for various system configurations. Next, considering
the M/G/2-type model in steady state, we applied the re-
generative method, which is a strong instrument in stochastic
analysis. We presented some numerical results related to
regenerative confidence estimation of the mean queue size, and
illustrated the advantages of such a method in comparison with

interval estimation, based on monotonicity properties, for the
different load coefficients and speed scaling parameters.
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