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Abstract—As chip technology advances, the number of cores in
mainstream chip multiprocessors (CMP) increases, so chips with
hundreds of cores may become common within a decade. One of
the challenges this trend sets to computer architects is to make the
current CMP designs scalable to larger numbers of cores. A tool
set that would allow us to predict how various design decisions
may affect the performance of larger CMPs is therefore necessary.
In this paper, we present a trace-based simulation framework we
devised for Elbrus microprocessor family. Its core component,
the CMP simulator is scalable to at least one thousand of cores
and allows to evaluate the kilo-core CMP performance in just a
few days using a mainstream 16-core host computer. It is also
highly flexible and architecture-agnostic and, therefore, could
be used to simulate other in-order architectures. We validated
the framework against a real machine and achieved an average
accuracy of 18 percent in single-core tests and 15 percent in
four-core, an average error in relative slowdown evaluation of
2.6 percent, and average absolute errors in L2 and L3 cache
miss rates within 0.3 bytes per cycle.

I. INTRODUCTION

In the past decade, mainstream chip multiprocessors have
increased their core numbers from two or four to tens thanks to
advances in chip technology. This trend appears to remain in
the near future and after another decade, CMPs with hundreds
of cores may become common. For computer architects, this
sets a number of challenges. One of such challenges is to
make current CMP designs scalable, i.e. reusable in the next
generations with higher core numbers. This is vital for coping
with growing design complexity within a limited design time
budget, especially for small chip-makers.

Some of the design decisions can be made based on theory
and common practice. For example, it is already known [1]
that a scalable CMP design will need a distributed shared
cache, a distributed directory included in it, a two-dimensional
(or e.g. optical) on-chip network (Figure 1). Some decisions
need evaluation as they depend on the instruction set, core
microarchitecture, design constraints, novel schemes used or
uncommon features of the particular microprocessor family.
For example, the optimal number of memory channels de-
pends on how frequently cores access memory, how often the
accesses miss in caches and other factors.

As a result, in addition to accurate simulation of the cur-
rently designed processors for verification and fine-tuning of
their components, at least rough estimates of larger prospective
designs must be performed to ensure design scalability and
narrow the spectrum of possible long-term solutions. There
are two basic kinds of accurate simulation: field-programmable

Fig. 1. The idea of a CMP with a distributed shared cache

gate array (FPGA) prototyping and software register-transfer
level (RTL) simulation. The former requires expensive hard-
ware, the latter is prohibitively slow to simulate real applica-
tions and both require complete and working RTL description
of all the design, which is difficult to make in the early design
stages. A close alternative is execution-based cycle-accurate
simulation, which is essentially a simplified software model of
the simulated system. There are good and versatile simulation
frameworks of this type that offer ready building blocks (such
as cache or memory models), e.g. Gem5 [2]. However, this
type of simulators may become too slow and/or memory-
consuming to simulate large CMPs, as they accurately model
the execution of every instruction of the program with all its
data dependencies.

Another approach is trace-based simulation, which is simi-
lar to execution-based, except that the execution of a program
is decoupled from cycle-accurate simulation of the processor.
The program is first executed on a simpler model, usually
without emulating most delays occurring in the real system,
or even just instrumented, to create a trace, i.e. a log, of
the events like memory accesses that drive the work of the
microprocessor’s components. On the second phase, the CMP
simulator is executed with these traces (or some parts of them)
as input data. Therefore, no simulation of the program itself
and, in the case of memory traces, of the complex logic of
the cores is needed in the second phase, which improves
the simulation speed and reduces its memory consumption
dramatically. A number of trace-based simulation frameworks
with different speed, accuracy and capabilities exist.

In this paper, we present a fast and scalable trace-based
simulation framework which we devised for the in-order
very long instruction word (VLIW) microprocessor family
Elbrus [3]. The trace-driven CMP simulator is architecture-
independent and, therefore, potentially cabable of simulating
any other in-order processor, once a similar trace generator has
been made for that processor.
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The main contribution of the study can be summarized as
follows.

1) We propose a lightweight and fast modification of an
architectural simulator allowing to capture a memory
trace that reflects dependencies between the accesses.

2) We introduce a fast, scalable, and architecture-
agnostic design of a trace-driven CMP simulator,
featuring simple and flexible behavioural models of
caches and the on-chip network.

3) We evaluate the accuracy and performance of this
framework in the SPEC CPU2006 benchmark suite
and a synthetic on-chip network test.

4) We demonstrate the use of the framework for design
space exploration on the example of a kilo-core
simulation.

The rest of the paper is organized as follows. Section
II presents an overview of existing execution- and trace-
based simulation techniques. Section III describes the proposed
solution. Section IV presents an evaluation of its accuracy and
performance. Section V demonstrates an example of its use.
Finally, Section VI concludes the paper.

II. BACKGROUND

A. Execution-based simulators

Gem5 [2] is an acknowledged, accurate and flexible full-
system simulator, widely used in academic research. It supports
most commercial instruction sets and diverse CPU models
and features a detailed and flexible memory system, including
support for multiple cache coherence protocols and intercon-
nect models. However, the scalability of its detailed mode is
limited due to its accuracy and limited multithreading support
in modern mainstream operating systems.

A number of other execution-based simulators have been
developed to overcome these limitations [4], [5], [6]. For
example, ZSim [6] running on a 16-core Xeon E5 host machine
can simulate a 1024-core chip at up to 1,500 MIPS speed with
simple timings models, and up to 300 MIPS with detailed
core and uncore models. However, such speed comes at the
cost of various trade-offs: the simulation is based on native
execution using binary instrumentation, the simulated cores
are not strictly synchronized and uncore models are simplified.
The accuracy and design space exploration capabilities of such
simulators are, therefore, limited.

B. Trace-based simulators

For uncore design space exploration, which is the crucial
part of designing a scalable CMP, detailed modelling of cores
at each simulation is unnecessary and is the main simulation
speed limiter. On the other hand, data dependencies between
instructions must be modelled with cycle accuracy so as to
evaluate how uncore latencies affect the overall performance.
For this reason, some traces of events, captured during an exe-
cution, can be used to drive the uncore model instead of actual
events occurring in the execution-based model. Dependencies
between the instructions can be represented as those between
the events; such traces are sometimes called self-related.

As events, instructions themselves can be used; this is
common when out-of-order architectures are simulated. The

whole processor can be modelled at this level; the speed gain
is accordingly moderate. For example, Elastic Traces [7] allow
to achieve a speed-up of 6–8 times compared to detailed Gem5
simulation.

On-chip network simulators can use network injections as
events. Examples are [8], [9], [10], [11]. While being fast
and accurate, such simulators have limited use as they do
not model caches. Design space exploration involving different
cache configurations will, therefore, require trace capture for
each configuration.

If the task is to model the whole uncore without accurately
modelling out-of-order execution (as in the case of in-order
processors), memory accesses are the events needed to trace.
Sadly, there are few publications on the topic of self-related
memory access traces.

A challenge for trace-based simulation is multithreaded
programs with frequent communication between threads. A
number of solutions have been developed. A hybrid approach
combining trace-based simulation of independent parts of
the code with an execution-based engine was proposed in
[12]. SynchroTrace [13] is claimed to be a scalable, fast and
accurate solution that can be integrated into other simulation
frameworks.

C. Trace sampling

Apart from reduced model complexity, trace-based simu-
lators naturally offer an opportunity to reduce the simulation
time greatly by executing only some small representative parts
of the program. Execution-based simulation requires check-
pointing [14] or benchmark generation [15], [16], [17] for this,
while traces can simply be shortened, or sampled.

The simple method is statistical sampling of intervals of
fixed length, or cluster sampling [18]. As long as the interval
(cluster) is long enough to compensate cold-start effects,
picking a number of intervals at random times of the execution
is sufficient for a desirable accuracy in simulation results, e.g.
100 intervals can give an average error of several percent.

The more complex solution is to analyse the program
behaviour and select a set of most representative intervals. A
method for automatic cluster selection was proposed [19] and
allows to achieve the average accuracy of a few percent with
only two to ten clusters per test.

III. FAST AND SCALABLE SIMULATION FRAMEWORK

FOR LARGE IN-ORDER CHIP MULTIPROCESSORS

As discussed earlier, a trace-based CMP simulation frame-
work basically consists of an execution engine used for trace
capture and a trace-driven CMP simulator. This section de-
scribes the proposed implementation and use of them.

A. Trace capture

The trace capture tool was built on top of an existing
cycle-accurate user-level execution-driven simulator of VLIW
architecture Elbrus. It is described in detail in [20] and, in the
basic mode, precisely simulates the execution of a program
assuming an ideally fast memory subsystem. Cycle-accurate
cache and memory models can also be added to the simulation
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so as to enable cycle-accurate execution-driven simulation of
the whole chip, which is not considered in this work. Only
the L1 instruction cache is modelled, as its absence increases
the trace size multiple times; an L1 data cache can also be
included to reduce the trace size by tens of times [21] and
increase the consequent CMP simulation speed with an error
in the accuracy of several percent [13].

What is needed during trace capture is to log every memory
access (i.e. L1 cache access or miss), including the timestamp
of the access and a reference to the first future access depen-
dent on it. The following format for this was chosen:

cycle[63 : 0], addr[31 : 0], delay[11 : 0], opc[8 : 0],

where

cycle – is the timestamp of the command issue (reduced to
32 bits during sampling dicsussed further),

addr – is the virtual address of the access,

delay – relative timestamp of a dependent command,

opc – type of access: read/write, inst/data, caching etc.

Cache-unaligned accesses and block prefetches are broken
down into separate aligned operations at this level, so all the
accesses in the trace are aligned.

All this information about the memory access events except
the delay comes naturally from the simulation. To track de-
pendencies and calculate delay, an additional mechanism was
implemented.

Firstly, a “first-in, first-out” buffer (FIFO) was added to
store the events a few thousand of simulation cycles before
output. In addition to the information listed above, each record
in this buffer stores the name of the destination register of the
access. Another structure added to the simulator is a look-up
table, organized as an array of pointers to this buffer for each
possible destination register; the buffer and the table, therefore,
store couples of pointers to each other (Fig 2).

When a memory access is issued, a record is created in
the buffer and a pointer to this record is written to the table.
When a register is accessed by the program, the table is
checked, a corresponding record is found and its delay value is
calculated as the difference between the current timestamp and
the recorded. If a record reaches the end of the FIFO before
the register is accessed, the maximum possible value is output
in place of delay to indicate no dependency found.

To increase the overall simulation speed during trace sam-
pling discussed further, the simulator can dynamically switch
this additional logic on and off. Without it, a speed-up by
several times is achieved thanks to optimisations described
in [22], which is further called fast-forwarding. The speed
in this mode could be additionally increased by switching to
functional simulation, i.e. disabling the modelling of pipeline
delays, but this may lead to significant changes in the sample
number and the uniformity of their distribution. Finding a way
to avoid these effects could be future optimization.

Although this part of the framework is bound to microar-
chitecture Elbrus, it appears that it can be easily built on top
of other cycle-accurate simulators in a similar way.

Fig. 2. Trace capture: a) new memory access, b) register use

B. Trace sampling

Although fast-forwarding in the architectural simulator is
an order of magnitude faster than trace capture, it is still three
orders slower than native execution, as it has to be cycle-
accurate. In modern benchmarks, it takes so much time – from
days to a few weeks for each test – that single-pass trace
sampling is preferable. A simple cluster sampling technique
[18] is therefore used to collect a sufficient number of trace
intervals of sufficient length in one pass; the traces are then
analysed and a representative interval subset is selected.

Cluster sampling means that random intervals of fixed
length are traced. The number of cycles a test will run on the
trace capture engine can be estimated by running it natively on
a machine of the target architecture while counting the cycles
the pipeline was busy using hardware monitors. The ratio
between the total number of cycles and the number to be traced
is then calculated and used as a parameter of trace capture.
The simulator randomly switches between fast-forwarding and
capture so as to maintain this ratio and, therefore, produce
roughly the needed number of traced intervals.

Three choices affect the resulting trace size and accuracy.

1) Cluster size: is chosen so as to limit cold start effects
to an acceptable value. In this study, the highest effect comes
from cache warm-up similar to cache flushing at the beginning
of the simulation. It causes additional processor pipeline stalls
due to cache misses, the total number of which has the upper
bound of roughly two megabytes per core. One potential worst
case is when such misses occur at different times. For a
pessimistic estimate of 100 cycles of stall per miss and 64-
byte cache lines, this will sum up to roughly three millions
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of cycles. Another extreme case is when all misses occur
simultaneously and slow down the memory controller; in the
CMP configurations simulated in this paper, the time needed
for the memory to pass through the corresponding amount of
data ranged from one to five millions of cycles. For a one-
percent level of processor speed measurement accuracy, the
cluster size of 300 million cycles is therefore needed.

2) Cluster number: will define how representative of the
program they are. As seen in [18], one hundred should be
sufficient for an average accuracy of several percent, which
is typical for best trace-driven models. In the experiments
in this paper, only 20 to 30 intervals per test were sampled,
since the model is not as accurate. Capturing one hundred of
intervals, 300 million cycles each, on the proposed simulator
and a modern host machine takes around a day (using one
core) and around 100 GB of disk space (compressed on the
fly using gzip), which translates to a day or two using 8–16
cores and several terabytes for a whole benchmark suite. As
trace generation needs to be run only once, until the core’s
performance has significantly changed (due to instruction set,
microarchitecture or compiler changes), this cost is acceptable
and, importantly, independent of the length of the tests.

3) Cluster selection: Each interval is then evaluated for
L3 cache miss rate using a simple cache model and, based
on read and write miss rates, one most representative interval
per test is selected. Choosing multiple clusters could be more
accurate: in [19], by using two to ten clusters per test, the
average error was reduced from 17 to 3 percent. As cache
and memory access delays are the only delays added at the
stage of trace-driven simulation, cache miss rate appears to
be the most adequate criterion for interval choice. Single-core
trace-driven uncore simulation could be used to compare the
intervals in more detail; the time it will take will be still
negligible. For tests that experience dramatic slowdown on a
real machine or the CMP simulator due to uncore delays, the
respective beginning parts of the clusters should be analysed
during selection; otherwise, much longer CMP simulation will
be needed to maintain accuracy.

As an alternative to “blind” cluster sampling, a sophis-
ticated technique like SimPoints [19] could be used. First,
a fast-forwarded run of a test could gather some execution
statistics for each 300M-cycle interval, then, after comparing
the statistics and selecting the most representative intervals,
a second run would generate the traces. This would reduce
the time and the storage space needed for the trace capture
yet require an additional fast-forwarded run and, therefore,
increase the overall run time for long tests nearly twice.

C. Multithreading support

Trace capture and sampling discussed above imply a single-
threaded program. Multithreaded programs could be traced and
simulated in a similar way. However, this is not an accurate
solution [23] and if a full-system simulator is used for trace
capture, this will probably limit the number of threads.

More accurate and unrestrained simulation of multi-
threaded programs requires user-level trace capture, allowing
to intercept system calls so as to control thread scheduling
and OS-level synchronization during replay. Unfortunately, the
architectural simulator available for the target architecture of

Fig. 3. The CMP simulator structure

this study currently supports multithreading only in full-system
mode. When it is implemented in user mode, there is a way
the trace-based framework described here can be updated.

SynchroTrace methodology [13] basically means capturing
synchronization and communication events and adding a thread
scheduler to the trace-driven simulator. Since the architectural
simulator in this study is lower-level compared to the binary
instrumentation-based used in the original work on Synchro-
Trace and already uses a shadow memory, no significant
performance drop in trace generation is expected.

For now, the CMP simulator is made with such future
update in mind, while this paper basically considers single-
threaded programs assigned to different cores. The extreme
cases of well-scalable applications which use every core almost
independently, and single-threaded programs using only one
can thereby be examined. Section V shows how this approach
may help in making design decisions.

D. CMP simulator

After trace samples are captured and representative sub-
sets are chosen, they can be used for trace-based simulation
of various configurations of the CMP. The CMP simulator
includes trace replay engines at every core, and cache, on-
chip network and memory controller models. It is a single-
threaded cross-platform console application written in C++;
the configuration of the simulation is defined by command-
line parameters. Since it is architecture-agnostic, it could be
used to simulate any in-order target architecture.

The overall structure of the simulator with main event
processing paths is shown in Fig 3.

E. Trace replay

Since traces are large, they are compressed during capture
using gzip, which reduces the size each event takes on the
storage drive from 12 bytes (in binary format) to approximately
four bytes. To decompress traces, zlib library [24] is used; this
reduces the simulation speed by roughly ten percent, which is
acceptable. So as to reduce randomness in storage accesses,
which might become a bottleneck when multiple kilo-core
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simulations are run in parallel on the same host machine,
each trace replay engine has event queues (one for regular
memory accesses and four for asynchronous prefetches used
in the target architecture), each of them accessing the trace
file assigned to the core only when it becomes empty so as to
fetch thousands of events from the same file at once.

Every simulation cycle, if the core is active, the heads
of its event queues are checked, and if the timestamp of an
event matches current simulation time with some offset, it is
executed as a memory request.

Based on in-order execution model, each core model
contains variables indicating whether it is currently active
(no stall), when its pipeline will begin to stall due to depen-
dencies if no current memory request completes (t stall), when
it will run again if it is inactive (t resume), and the current
timestamp offset, which is the sum of all previous stall cycles.
These variables are updated in every simulation cycle based
on memory request execution states. Private cache hits are
executed instantly by the models described further, updating
the three stall-related variables according to the expected cache
hit latency (including the accumulated delays in the L2 cache
bank pipelines due to conflicts).

The states of private cache misses are tracked by a model of
miss status holding registers, which is basically a buffer for 64
requests. When a request is added into (on L2 cache miss) or
deleted from it (when the request is complete), t stall variable
is updated accordingly. Additionally, to prevent dependency
loss when a regular request is preceded by a prefetch (which
updates the cache state instantaneously and may cause false
hit), all private cache accesses check the buffer and update
t stall and the delay field of the prefetch request, if it is found.
When the buffer is full, the core is considered inactive.

F. Cache models

As cache hit and miss latencies are modelled as described
previously, it is possible to use the simplest behavioural models
of the caches themselves. All private caches of a core (L1i,
L1d, L2) are combined in one C++ class and use one method
to access all of them simultaneously; similarly, a shared cache
bank is combined with a directory slice in another class. A
cache (bank) or a directory slice is modelled as three arrays:
addresses and coherence protocol states for cache lines and
replacement mechanism states for sets.

The access method returns hit or miss result, the requests
addresses and opcodes in the case of cache miss and/or write-
back needed; the same method call in the shared cache class
also calls the invalidation method of the corresponding private
caches on back-invalidation.

The coherence protocol used is MOSI with three ver-
sions of messaging for inclusive, non-inclusive or exclusive
schemes of shared and private cache communication. Various
replacement algorithms are implemented as separate functions,
accessed through a function pointer of the class object, and
include LRU, Pseudo-LRU, Random, Global LRU and others.

The L3 cache can be configured as private, distributed
shared (S-NUCA) or hybrid, which is the simplest access time
optimization [25]. Other algorithms will be added in the future.

Fig. 4. Two-step replacement in ZCache

Being extremely simple and flexible, these models are
easy to modify for design space exploration. For example,
different partitioning schemes were implemented, including
way-partitioning, Partitioning First and Futility Scaling [26]
and skewed organization with ZCache replacement mechanism
[27] (Figure 4). As shown in Section IV, even the most
complex scheme is simulated at the same order of speed.

G. Network model

In a large shared-cache CMP, the on-chip interconnection
network is responsible for communication between cores and
shared cache banks and may, therefore, contribute to shared
cache access time greatly. Therefore, network latencies must be
modelled with good accuracy. Network throughput and fairness
must be modelled for the same reason.

However, accurate simulation of every packet may become
slow as the network size grows. In a 32x32 mesh network,
which is modelled in the kilo-core simulations in this paper,
a packet makes 21 hops on average, many of which involve
arbitration among conflicting packets when traffic is high.

In the proposed CMP simulator, the on-chip network model
was simplified thanks to the observations that the main traffic
in a distributed shared-cache CMP is between cores and
shared cache banks and such cache normally involves bank
interleaving. Additionally, to stress the network, scenarios
where all cores execute the same task can be simulated and if
the network does not become a bottleneck, it can be expected
to cope with smaller numbers of active cores as well.

Therefore, the traffic can be modelled as uniform random,
with some realtime checks of the adequacy of such a model.
The network model correspondingly needs to reproduce packet
latency distribution as a function of packet injection rate
(which will also determine throughput), maintain a desired
degree of fairness and evaluate network load so as to detect
and assess any inaccuracy.

1) Latency model: The proposed network model is based
on input queues at each node, storing the packets, output
queues storing the pointers to input packets and their estimated
arrival time (based on the distance between the input and
the output in the modelled topology), and state variables
of every output (Fig 5). Every cycle, unless the network
throughput is exceeded, the simulator checks the state of every
output and if there are ready packets, they are output and the
corresponding queues and the output state are updated.

The initial intuitive idea was to use only one queue at
each output to achieve the highest possible simulation speed.
However, in this case, it would be difficult to either input or
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Fig. 5. The on-chip network model structure

output the packets so as to maintain their nominal arrival time,
as the input and output times of packets hardly correlate. A less
obvious problem would be the difficulty in modelling network
unfairness like the “parking lot” effect common in mesh
networks when the closer sources of packets are somewhat
prioritized [28].

As a result, the decision was to use multiple queues at each
output according to input-output distances of the packets. For
a 32x32 mesh network, a packet traverses 0 to 62 channels
(using any minimal routing), so 63 queues are needed. With
this approach and even the simplest FIFO queues, the packets
are readily sorted by their arrival time, so they can be simply
added to the tail and checked and fetched at the head of the
queues. Distance-related network unfairness can be modelled
by adding an appropriate arbiter at the queue outputs; a simple
round-robin was used in this study, assuming some fairness
mechanism implemented in the network routers [29]. To speed
up the check of 63 queues, their common state is maintained
during every input and output operation:

• The array of their non-emptiness packed as a 64-bit
integer, comparing which to a zero readily tells if there
are packets in any queue;

• The minimal arrival time of the head packets, main-
tained not strictly (which would be slow);

• The arbiter state. In the case of round-robin arbiter, it
keeps the number of the last granted queue.

Only when the first two 64-bit variables show the possible
presence of ready packets at this output, the queue heads are
checked; this check is performed usually quickly, as the first
variable also tells which queues to check (and the arbiter state
tells the order). If after all checks a ready packet is still not
found, the second state variable is updated to the precise value
(as all non-empty queues are checked in this case) so the next
queue check will be successful.

Virtual channels can be modelled with separate network
models using common thoughput limiters.

To simulate latency increase with traffic increase, adjust-
ments can be made to packet arrival times. It will be explained

and tested in Section IV.

2) Fairness: Network throughput distribution among its
agents can be controlled not only by arbiters at the network
outputs but also by a source throttling mechanism [30].

A simple mechanism was implemented. Packet injections
are counted at every input. Every 1,000 cycles, the average
number is calculated, and throttling coefficients for every input
are computed as a function of this number and the number at
the input. In the next 1,000 cycles, the injection at the input
is blocked with the probability based on this coefficient.

This scheme is fast, independent of traffic pattern, network
topology or other details. Like quality of service (QoS) mecha-
nisms in real networks [29], it is able to reduce the throughput
deviation under uniform loads to several percent.

3) Adequacy check: As discussed earlier, this approach
must be adequate for uniform traffic typical for rarely inter-
acting threads in a distributed-shared-cache CMP. It can be
extended to non-uniform traffic without dramatic speed loss
based on two facts for the network theory [28]:

• With deterministic routing, the network throughput
under any specific traffic pattern is determined by one
mostly used network channel;

• With adequate adaptive routing, network throughput
is normally higher.

The solution, therefore, is to compute channel usage statistics
assuming deterministic routing (XY in the case of mesh
topology), which is trivial, and assess the possible slowdown
the program could have experienced based on it.

The channel use statistics are checked and reset every
1,000 cycles. The number of possible additional CPU stall
cycles is computed as the maximum number of excessive flits
in a channel. Based on this, every 1,000,000 cycles, along
with other simulation statistics, the accumulated slowdown
and the maximum and average maximum channel use among
1,000-cycle intervals are written into the simulation log. If this
estimated overall slowdown is significant (which is supposed
not to be a very common case even in parallel applications), the
program could be re-run using an appropriate network model
of sufficient precision. Alternatively, wider channels can be
tried for simulation to prevent channel overload.

In this study, such statistics are counted for the request
subnetwork, it costs only a few percent of the speed and rarely
showed overload in the experiments.

H. Memory controller model

There exists an accurate and extensible DRAM simulator
that shows acceptable speeds, called Ramulator [31]. However,
as the proposed CMP simulator was mainly created to evaluate
future CMPs, a simpler model was implemented in it. Firstly,
the exact specifications (even frequencies) of future memories
are not known, so the simulation cannot represent future
systems very accurately anyway. Secondly, as the number of
threads increases, memory performance tends to that under
random traffic [32], which is simple to model.

The model is based on DDR4 controller design described in
[33] and emulates bank interleaving, page switching delays and
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the main timings. Assuming the memory traffic to be relatively
low, the model is not connected to the on-chip network but uses
simple FIFO queues to emulate delays.

IV. EVALUATION

A. Accuracy

First, the simulator was validated against a real eight-
core machine of the target VLIW architecture. Table I shows
its CPU configuration for slow and fast scenarios. On this
machine, test execution time was measured using the Linux
time command (user field) while other statistics were obtained
from hardware monitors.

TABLE I. TARGET CPU CONFIGURATION USED FOR VALIDATION

Component Configuration
Core 8 cores @ 1372 (slow) / 1000 (fast) MHz

L1i cache 128 KB, 4-way, 128 B line

L1d cache 64 KB, 4-way, 32 B line

L2 cache 512 KB, 4-way, 64 B line

L3 cache 8 banks x 2 MB, 16-way, 64 B line

Network 4-node ring, 1 request / 32 B data per cycle

RAM 4 ch x 2 GB DDR4 @ 1375 (slow) / 2000 (fast) MT/s

The CMP simulator had the same configuration in this
section with the exception of the network topology of 4x4
mesh instead of a four-node concentrated ring, which causes
negligible differences in the results, and 16 shared cache banks
one megabyte each instead of eight banks of two megabytes,
which is practically the same.

Relative execution speed was measured instead of instruc-
tions per cycle (IPC) and miss rates are in bytes per cycle
instead of misses per kilo instructions (MPKI) as traces do not
show instructions. Average values were calculated as geometric
mean. Relative errors were calculated as:

err(a, b) = max(a/b; b/a)− 1.

SPEC CPU2006 benchmark suite was used with train input
data, as ref versions show similar cache miss statistics yet run
roughly ten times longer on the native machine, which had
limited availability for experiments. One test (462.libquantum)
was excluded as too short for good precision. One most
representative trace interval of 300 million wide commands
was executed for each test in the CMP simulator. For multi-
threaded scenarios, single-threaded instances of each test were
executed simultaneously on different cores.

The resulting single-core performance in fast configuration
of the real machine and the CMP simulator relative to ideal
architecture simulator is shown in Figure 6a.

In single-core scenarios with fast memory, the average error
was 18 percent. This order of precision was expected since
only one small interval of each test was used for simulation;
by properly choosing several intervals, the error could be
reduced significantly [19]. Additionally, the simulator tends
to overestimate the performance as it doesn’t model various
minor delays occurring in real cores. On the one hand, most
of them could be added in the model and it will not cause a
major simulation speed loss. On the other hand, some part of
this overestimation represents how the real microarchitecture
could be improved by reducing these delays. Therefore, both
kinds of improvements are better to be made together.

Then the CPU and memory frequencies were switched to
slow mode, four tests were run simultaneously and the increase
in execution time was measured, caused by the reduction of
memory bandwidth available per core by eight times, increased
memory access time and reduced L3 cache capacity per core.
The resulting IPC reduction relative to the previous scenario is
shown in Figure 6b. While single-core performance was overall
overestimated by the simulator, its reduction was predicted
with the average error of only 2.6 percent and the average
accuracy improved to 15 percent.

Miss rates measured for L2 and L3 caches are shown
in Fig 7. They include all types of requests and were
calculated in bytes per ideal execution cycle, assuming every
request to be 64-byte, to represent the test’s memory through-
put requirements. The average relative errors in L2 and L3
miss rates are mostly dictated by tests with low miss rates
and are, therefore, meaningless. The average absolute errors
were 0.30 B/c and 0.25 B/c, respectively, which is within one
percent of the corresponding maximum miss rates. Therefore,
it can be concluded that caches are modelled adequately.

Overall, the measured errors correspond to the precision of
the model and are sufficient for early design space exploration
of future CMPs.

The four-core simulation stressed all the components but
the on-chip network, which was small and had a good margin
of throughput. It was therefore decided to compare the network
model to an accurate RTL model of 16x16 mesh network
under random traffic, which is the main pattern of traffic in
the simulations. Since the CMP simulator has full and direct
control over the network throughput and fairness based on
packet counters, only packet latency needs to be examined.

As a harder challenge and more likely candidate for the
future CMPs, an EVC-based design of the real network [34]
was considered. The results of the comparison are shown
in Fig 8. Sim denotes the default model with a constant
delay per hop of two cycles and a trivial implementation of
throughput restriction by ejecting packets once in 4 cycles. The
graph resembles that of a classical network, just as expected.
Then the simple throughput limiter was relaxed twice and a
counter-based one was added so as to achieve the necessary
slope of the graph (Sim-T). Finally, an offset was added to
the packet delays at network outputs as a function of current
network throughput so as to eliminate the error on the rest of
the graph Sim-L. As a result, the error of the model below the
throughput limit was within one cycle.

B. Performance

Simulation performance was measured on the following
host machine configuration used for all the experiments:

CPU: Xeon E5 2698 v3 (16 cores, 32 threads) @ 3.2 GHz

RAM: 4x16 GB DDR4-2133 CL12

SSD: 1024 GB Samsung PM981

HDD: 6000 GB Western Digital WD60EFRX

Traces were captured to the HDD, then their selected parts
were stored on the SSD for CMP simulation. Judging by CPU
load during simulation, the SSD offered sufficient speed.
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Fig. 6. Execution speed on the real machine and the simulator relative to the architectural simulator and its relative slowdown

Fig. 7. Cache miss rate measured on the real machine and the simulator, normalized to cycles of the architectural simulator
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Fig. 8. Packet latency vs network throughput under random traffic

All speed measurements were performed by running 30
instances in parallel. Each instance consumed up to 2 GB
of memory, so 64 GB of RAM were sufficient. With fewer
instances, speeds are significantly higher due to Intel’s hyper-
threading, Turbo Boost and Smart Cache technologies.

Trace capture speed was difficult to measure precisely for
this reason and due to very different test execution time.
Overall, fast-forwarding runs with the speeds between 1 and
3 MHz and trace capturing has speeds of around 300 KHz,
which is sufficient to complete the capture of most tests in a
few days, in parallel. More of interest is the CMP simulator
performance, which has to be run as many times per test as
many CMP configurations are in the design space.

The simulation speed of a 1024-core CMP in two con-
figurations is shown in Fig 9. They included 1024 cores with 1
MB L2 cache, eight memory channels with 8:1 RAM:CPU
frequency ratio, 32x32 mesh network, 1024 2 MB 32-column
non-inclusive S-NUCA shared cache banks with either
Partitioning First mechanism or ZCache and Futility Scaling
with the associativity of 1024; the rest was the same as used
previously. The directory was not modelled assuming its good
implementation and therefore negligible effect [1]. The
simulator was compiled with g++ 4.6.2 after profiling on a
1024-core 410.bwaves simulation for 20 million cycles.

Smaller CMPs are simulated accordingly faster, e.g. single-
core configurations run at several MHz.

Using memory traces, the speed in instructions per second
cannot be measured. However, assuming that ideal model
executes one command per cycle (which is not far from true)
and using the measured relative slowdown, the 1024-core
model, on average, simulates 0.91 or 0.56 million commands
per second depending on configuration. Since every wide
command consists of four instructions, these speeds correspond
to up to 3.6 MIPS. Running 30 simulators in parallel yields,
therefore, up to around 100 MIPS in total.

V. EXAMPLE OF USE: A KILO-CORE SIMULATION

One of the major decisions needed to make while con-
sidering a CMP scalability is what measures must be taken
to mitigate the increasing cache and memory latencies. A
32x32 CMP described previously was therefore simulated with

one single-threaded program running and the shared cache
configured as a private or hybrid (Fig 10a). As the shared cache
had 2 GB of total capacity which could not be warmed up
during a short simulation (limited by 500 million cycles in this
study), the hybrid scheme with always forced home-bank hit
was also simulated, as if the whole program data was fully
cached (which is likely). Lower and upper bounds on the hybrid
scheme performance were thereby obtained.

The worst relative speed increased from 0.472 to
0.549...0.628. This result indicates that the hybrid scheme is
not a silver bullet, the main priority in future CMP design
must be to reduce network latencies. On the other hand, such
slowdown is acceptable, so the idea of a single distributed
shared cache for all cores is still viable. Basic S-NUCA scheme
was also simulated and showed that roughly one percent gain
comes from the hybrid optimization, so more effective cache
latency optimizations need considering.

Another question that required experiments was shared
cache associativity. It is known from the literature that a
partitioning mechanism, necessary to implement cache QoS
policies, may reduce the performance severely if the as-
sociativity in insufficient [27]. A simple Partitioning First
mechanism was simulated with cache associativity of only 32,
which was expected to perform poorly, and a Futility Scaling
mechanism on top of the sophisticated ZCache scheme with the
effective associativity of 1024. Surprisingly, the results showed
practically no difference (Figure 10b). This could be caused
by the non-inclusive L2-L3 communication scheme used. It
needs further validation and analysis, but at least it is known
that both schemes must be considered.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described a cycle-accurate trace-based
simulator fast enough even to simulate kilo-core CMPs. Due to
highly-accurate architectural model used for trace generation,
it may take weeks for very large tests, but as it needs to
be performed once for each program to simulate, this speed
is just acceptable. More importantly, every single-threaded
instance of the CMP simulator runs with speeds of several
kilohertz, which, used with adequately selected trace intervals
of a few hundred millions of cycles, allows to simulate a
whole benchmark suite on a mainstream 16-core computer in
just a few days. Comparing a number of different potential
configurations of a large CMP thereby becomes possible.

The average accuracy of the simulation results is 15–18
percent. It is not comparable with the most precise techniques
of this kind, yet is sufficient to get the overall picture of how
the system will perform. Since our approach has no principal
tradeoffs in simulation precision of the considered scenarios
compared to other trace-based techniques, our future work will
be to approach the precision of the most precise methods.

Although we have not implemented multithreaded program
support by now due to the limitations of the architectural
simulator, the SunchroTrace method, known to combine good
speed and accuracy, appears to be compatible with our method.
This is another avenue of our future work.
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Fig. 9. 1024-core CMP simulation speed in: a) clocks b) memory accesses

Fig. 10. Mean execution speed per core in a kilo-core simulation relative to single-core
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