
An Approach for Complex Event Streams Processing
and Forecasting

Viktor Morozov, Mikhail Petrovskiy
Lomonosov Moscow State University

Moscow, Russia

v.morozov.ml@gmail.com, michael@cs.msu.su

Abstract—Building complex event representation and event
forecasting are two important problems which are usually solved
separately. In this work we propose general approach that allows
to incorporate all available information about events, such as
numeric, categorical and binary features and even some text
descriptions. We propose ways to build latent representation of
complex events using one of dimensionality reduction methods
(matrix factorization, neural autoencoders) together with fore-
casting further occurrences of these events. The experimental
results compare combinations of different methods for event
representation and forecasting.

I. INTRODUCTION

Event flow processing and forecasting tasks can be found
almost in any area nowadays. In practice these tasks are solved
when predicting the prices in stock markets, forecasting the
traffic flows, amount of further purchases, number of taxi
orders and almost any timestamped data processing. In this
work we consider event as set of features and timestamp.
Mainly we focus on complex events, i.e. events with complex
structure. Event is considered complex if it is described by
features of different types: numeric, categorical, binary and
text descriptions.

As another example we could mention forecasting real
world events. Usually these events are described by several
categorical features (country, city, etc.), numerical ones and
text descriptions. Efficient use of all available information
might significantly improve forecasting results.

It can be noticed that the aforementioned description of
event does not require equal time intervals between any two
events. It means that we cannot directly apply common well-
studied approaches for time series forecasting. Also, taking
into account complex structure of such events is not clear how
to aggregate event categorical features or text descriptions over
some time interval, e.g. day, week or month.

Taking all this into account, following challenge arises: we
should be able to transform complex object descriptions into a
numerical latent feature space with minimal information loss
and use historical information about changes of these latent
features to perform forecasting.

To handle this challenge we propose general approach,
which allows to take into account all available event features.
This approach includes two main parts: building latent event
representation together with its aggregation and forecasting
further events. We could mention two desired properties of
event representation: it should be possible to interpret and
aggregate latent event descriptions. Then we represent original

complex features in latent space and aggregate them in any
way we want, obtaining multivariate time series. Finally we
can perform event forecasting based on this latent represen-
tation, which is well-studied task of multivariate time series
forecasting.

In this work we focus on solving two forecasting tasks:
predicting probability of event occurring during some time
interval and predicting number of events that will occur during
some period. Since predicting probability of unspecified event
does not make sense, we would like to notice, that during
solving these tasks we split events in two parts: events of
interest and other events. It means that we are interested in
forecasting events with specific properties (e.g. price increase
in stock market, not just any price behaviour). Further in
forecasting tasks we denote these events of interests as just
events for simplicity.

We define the task of forecasting probability as predicting
probability p of the event during the next aggregation time
interval. Since predicted probability lies in [0, 1], this task
could be naturally reduced to the classification.

The task of forecasting number of events is similar to
previous one, but instead of predicting probability p, we will
predict number of events that will occur during the next
aggregation time interval. Therefore our target variable is event
counter and it lies in [0,+∞). From the definition it follows
that we can consider this task a regression.

II. RELATED WORKS

Forecasting, especially for time series, has a good study
history in the literature. While solving this task, authors often
focus on forecasting or modeling multivariate time series. This
kind of data has numeric values (also known as observations)
and equal time intervals between the observations. Such regular
structure does not require any special latent representation. In
case if authors are solving forecasting task using less regular
structured data, they mainly focus on creating handcrafted
features based on expert knowledge.

First subtask that authors have to solve when predicting
further events is representation of these events. In case if
data itself is time series it is not necessary and authors
focus on research of forecasting approaches. Most common
and well-studied approach for time series modeling is using
methods like ARIMA for univariate time series or Vector
ARIMA for multivariate ones [1]. Recently deep learning also
has been applied to time series forecasting, mostly utilizing
advantages of recurrent neural networks (RNN) and especially

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Long short-term memory networks (LSTM) [2]. Laptev et
al. incorporate LSTM ability of learning both long-term and
short-term patterns while predicting completed taxi trips during
periods such as holidays or weekends [3].

Recent area of deep learning research also includes ap-
proaches that use Convolutional neural networks together with
RNN or LSTM networks. Shengdong et al. propose frame-
work for traffic flow forecasting using the aforementioned
combination of neural network architectures [4]. Guokun et
al. also propose using this general idea in more common task
of modeling temporal patterns in time series [5].

Tasks which include data more complex than time series
require developing special representation for the data, or at
least performing feature extraction in order to use well-studied
forecasting approaches. It is important to notice that if features
are handcrafted, it is not always possible to apply them to
another task.

Gupta et al. use handcrafted features based on domain ex-
pertise together with historical features for predicting popular-
ity trend of events in microblogging platforms such as Twitter
[6] . Objects (events) considered in this work are short text
messages. After extracting features, authors reduce prediction
task to classification task with several classes representing
future behaviour of popularity trend. Similar approach based
on replacing prediction task with classification is presented in
[7].

To incorporate text data Dey et al. classify text to one of
predefined categories using LSTM and use classifier scores in
order to obtain multivariate time series from texts [8]. After
the processing is done, these numeric features could be easily
concatenated with any other features, although this approach,
especially categorizing text, is task-specific.

It is also important to consider anomaly detection task as a
subtype of event forecasting. In case if our events to forecast
are extremely rare, we could assume them to be anomalies and
apply approaches used in anomaly detection field. Anomaly
detection is well-studied area, including both classic methods,
such as one-class classifiers and more recent ones, such as
neural autoencoders [9], [10]. Ranjan considers the problem
of predicting rare sheet break events for paper manufacturing
[10]. Author proposes propose to train an autoencoder model
on non-anomalistic data. After training is finished, author
declares event as abnormal if the reconstruction error of the
autoencoder is big enough. Main assumption is that distribution
of anomalies differs from distribution of regular events.

III. PROPOSED APPROACH

In order to handle complex structure of objects, we propose
the approach, which consists of two main parts. The first
one is aimed at transforming complex-structured objects to
low-dimensional numeric latent space, so that we are able
to aggregate latent representations of objects over the time.
The second part of the approach allows us to perform event
forecasting. This part aggregates latent features of events over
the time, thus obtaining multivariate time series, and performs
its further forecasting. General structure and main steps of the
proposed approach are depicted in Fig. 1. Along with these
parts we propose general technique that allows us to interpret
latent representation.

�� ���
�� ���

�� ���

�� ��

��
� ��

��

� ��

��

� ��

��
� ��

��

� ��

��

� ��

��

��
� ��

��
��
� ��

�
��

����
��

���

�
��

���

����
� ��

� ���

��
� ��

�

�

� � � � ���� ��������� ����

� � ������

Fig. 1. Structure of the proposed approach

Further in this section we describe specific parts of the ap-
proach in more details. Firstly we formulate developing latent
event representation for complex events, and then discuss the
interpretability of the proposed representation. Then we present
an approach how to make any representation interpretable by
given text descriptions for at least some of events. Finally, we
introduce forecasting techniques which are applicable using
any of the aforementioned event representations.

A. Building Latent Representation

Given the temporal irregularity of events, we require that
it is possible to aggregate latent representation over arbitrary
time intervals. Before building this latent representation, we
preprocess features of the complex object in the following way.
We keep numeric and binary feature as-is, each categorical
feature is converted into one or more binary feature using one-
hot encoding technique. Text descriptions can be transformed
into numeric features in several ways such as tf-idf, LDA,
word2vec, LSTM embeddings; in this work we choose Latent
Dirichlet allocation. As a result, all kinds of features are
transformed into numeric after such preprocessing.

It is important to mention, that after feature processing
we obtain a set of numeric features (initial features), which
is suitable representation itself. However, a lot of binary
features generated with one-hot encoding technique are re-
dundant because each of them corresponds to the specific
value of the categorical feature. Categorical features (e.g. city

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 306 --

or country) can take a tens or hundreds of different values,
resulting in a large number of binary features. We assume that
such dimensionality reduction approach as decomposition or
autoencoder are capable of extracting meaningful topics from
initial features obtained after preprocessing, simultaneously
reducing dimension of initial feature space.

1) Matrix decomposition: Let n be the number of events
and d be the number of features for each event. Let V be
the original event description matrix, V ∈ Rn×d. Each row
of the matrix V corresponds to some event and describes this
event with d features. Decomposition task is defined as finding
such matrices W ∈ Rn×k, H ∈ Rk×d that minimize ||V −
W · H|| for given V , k � d. It is important to notice that
matrix H shows correspondence between original features and
new latent features. Matrix W describes events in terms of
new latent features. These latent features also known as topics,
so further we call the matrix W the event − topic matrix
and H the topic − feature matrix. As a baseline idea of
developing suitable representation we use Non-negative matrix
factorization (NMF) [11] and Principal Component Analysis
(PCA) [12] dimensionality reduction methods. Both of them
are able to find decomposition for matrix V , although the first
one is easier to interpret, because its topics are essentially non-
negative linear combinations of the original features.

NMF solves decomposition task in iterative fashion by non-
negative initialization of W,H and updating both matrices H
and W by the following rules:

Hn+1
[i,j] = Hn

[i,j]

((Wn)
TV)[i,j]

((Wn)TWnHn)i,j]

Wn+1
[i,j] = Wn

[i,j]

(V (Hn+1)T)[i,j]

(WnHn+1(Hn+1)T)[i,j]

As soon as the process converges, we obtain matrices W,H .

To derive representation z′ ∈ Rk for any event e′ using
NMF we should multiply its feature vector x′ ∈ Rd by HT ∈
Rd×k.

2) Autoencoder latent representation: Another way to find
hidden features is to train an autoencoder neural network [13].

An autoencoder is a neural network architecture, where
input and output layers have same dimensionality, with one or
more internal (hidden) layers connecting them. The internal
layer represents low-dimensional code of the input data, en-
forcing autoencoder to find reasonable hidden representation
for the input instead of just remembering its input signal.
Hidden representation that preserves most relevant features of
the input allows to at least approximately reconstruct the input.
Autoencoder consists of two parts: encoder, that performs
mapping of the input to the code and decoder, that maps the
code to the output, obtaining reconstruction of the input.

While solving our task of building latent representation, we
use deep feedforward autoencoder with multiple layers that
transforms an object x ∈ Rd into z ∈ Rk in a non-linear
fashion and then attempts to reconstruct x from z. Given the
reconstruction x′ ∈ Rd, autoencoder is trained to minimize
reconstruction loss L(x, x′) (e.g. L(x, x′) = ||x − x′||). The
main goal of the autoencoder is to find an efficient encoding

for set of objects and that makes autoencoder model suitable
for our task of building latent representation.

After training neural autoencoder it is possible to use its
first part (encoder) to obtain code z∗ from an arbitrary input
x∗ and use z∗ as a latent representation.

Non-linear input transformations leads to complex latent
space, but in this case it is also quite complicated to find
meaningful interpretation for each topic (i.e. for each element
of z∗). We discuss this problem in III-B.

When using autoencoder to build latent space, we incor-
porate knowledge from anomaly detection field, using recon-
struction error as an additional feature. Main assumption is
that abnormal events fit poorly in input distribution, hence
factorization or autoencoder will not reconstruct input accurate
enough. Although reconstruction error is available in matrix
decomposition as well, autoencoder is much more flexible
because of its non-linearity and its reconstruction error is more
meaningful.

B. Interpretability

As we mentioned above, important property of latent event
representation is its interpretability. Given this property, it is
possible to analyse forecasting results and understand data
transformation better.

By its nature, NMF and PCA latent features are just linear
combinations of the original event features. NMF by virtue
of its non-negativity could be understood in the most natural
way: bigger weights on certain original features mean bigger
influence of these features to the corresponding topic. In case
if feature weights do not have to be positive (as in PCA),
negative contribution of feature to the topic is a bit harder to
understand intuitively.

More formally, found latent features (topics) can be in-
terpreted using matrix H ∈ Rk×d. To interpret i-th topic
we select K ∈ Z, 0 < K < d largest values from i-
th row of matrix H and state that i-th topic depends on
K corresponding features. Also we can measure individual
contribution of the original j-th feature in i-th topic according
value of H[i,j]. In this way we obtain topic interpretation based
on the contribution values of the original features.

When more complex approaches for building latent repre-
sentation are used (e.g. neural autoencoders), it is not clear how
to interpret latent features. Here we propose human-friendly
way to do so by extracting keywords from at least partly
available text descriptions, and then using them to interpret
latent features. Description of this algorithm is provided below.

At the very beginning we select only events that contain
text descriptions. Then we apply classic text preprocessing
techniques to these descriptions such as conversion to lower
case, removing punctuation and stop-words, stemming or nor-
malizing form. After such preprocessing we obtain normalized
keywords for each text description, then we compose dictio-
nary W of size |W | that is a union of all extracted keywords.
Following step is to create |W | (one per keyword) additional
binary features for each event, representing presence or ab-
sence of the corresponding keyword in the event description.
After building these features we calculate value vi,j for i-th

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 307 --

topic Ti and j-th keyword binary feature vector Bj over all
selected events. The value of vi,j is calculated as follows:

vi,j =
ri,j

max
k �=i

rk,j
, where ri,j = 1− corr(Ti, Bj)

2,

and it inversely proportional to how j-th keyword is important
for i-th topic. Finally for each topic we use top-K keywords
that have the smallest values wi,j for this topic as keyword
interpretation of this topic. Details of the algorithm are shown
in Algorithm 1. As shown in IV, even less than 20% events
with text description is enough to get reasonable keywords and
interpretive topics.

Algorithm 1 Topic interpretation algorithm

Input. Matrix with latent features for each event T =
{ti,j},∈ Rk×n, event text descriptions d′j , number of
desired keywords for each topic K
Output. set of K keywords for each topic θi, i = 1..k
initialize: θi = ∅, i = 1..k;
for j = 1 to n do
dj ← preprocess(d′j);
kwj ← extract keywords(dj);

end for
W ←

n⋃
j=1

kwj , W = {wi};

B ← {bi,j}, bi,j = Iwi∈dj , B ∈ R|W |×n;
for i = 1 to k do

for j = 1 to |W | do
ri,j ← 1− corr(Ti, Bj)

2;
vi,j ← ri,j

max
k �=i

rk,j
;

end for
end for
for k = 1 to K do

j = argmin
{j:wj /∈θi}

vi,j

θi ← add wj

end for

This approach does not rely on any latent space structure,
hence it is applicable for any hidden representation. And as
auxiliary result we can obtain keyword description for any
event as a combination of topic keyword descriptions if we
select keywords from each topic description proportionally to
the values of topics for the event.

C. Event Forecasting

Event forecasting task can be encountered when solving
almost any forecasting problem. Usually, there are one of two
most important sub-tasks is solved: forecasting probability of
the event or forecasting number of events that will happen.

Naturally, the task of forecasting probability of the event
during given time interval is a binary classification task with
positive (event will happen, y = 1) and negative (event will
not happen, y = 0) classes.

The task of forecasting number of events is a regression
task, where the aim is to forecast value of the event counter
(y ∈ N0).

0 10 20 30
0

20

40

60

80

100

120

Histogram of counter values

0 1 2 3
0

10

20

30

40

50

60

Histogram after log-transform

Fig. 2. Logarithmic transform of the target variable

In the regression task our target value is a counter, and in
real world it has skewed distribution, which is often close to
either Poisson or log-normal distribution. In order to reduce
the skewness we propose using logarithm as a link function
for the regression and forecast not the number of events y, but
its logarithm y′ = log(y + 1) instead.

Example of how log-transform affects the skewness of the
target distribution is depicted in Fig. 2

Forecast of y′ is μ = E[log(y + 1)], and the proper
reconstruction of the E[y] is computed as follows [14]:

E[y] = eμ+
σ2

2 − 1,

where σ is a standard deviation of the y′. Estimate of the σ
could be computed as a mean squared error over the validation
set.

Let us define all events as Eall and events of interest (i.e.
events to be forecasted) as Ein. First of all we should generate
labels ye for each event e:

ye =

{
1, if e ∈ Ein

0, otherwise

Further reasoning is based on the assumption that each
event e has the timestamp te and the set of latent features xe

that describes the e.

As soon as event representation is built, we obtain latent
features for each event. These features are numerical, hence
we can aggregate them over any time period, obtaining multi-
variate time series. Firstly, we choose aggregation time interval
duration Δt, splitting timeline into intervals of size Δt. Then
for each time interval Ti we get averaged latent feature values
and aggregated label values of events:

x̄i =
1

|{j : tej ∈ Ti}|
∑

{j:tej∈Ti}
xej

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 308 --

ȳi =

⎧⎪⎨⎪⎩
∑

{j:tej∈Ti}
yej , for regression task

max
{j:tej∈Ti}

yej , for classification task

To work with text descriptions when they are partly pre-
sented we can use two different approaches:

1) Calculate embeddings for each text description of the
event ei and then concatenate these embeddings with
numeric features xi

2) Calculate embeddings for merged text description
from each time interval Ti and then concatenate it
with aggregated numeric features x̄i

Due to sparsity in the text description presence, we use the
second approach.

In order to add explicit autoregressive component we
propose two additional numeric features, the total number of
events Aalli and number of events of interest Aini occurred
during previous time interval. More formally, these features
defined as follows:

Aini
=

∑
{j:tej∈Ti−1}

yej ,

Aalli = |{j : tej ∈ Ti−1}|
Such kind of features provide our model with additional
historical information. Although these features can be called
hand-crafted, they are not task-dependent, hence applicable in
solving any other problem.

1) Problem formulation: After such procedure we have
multivariate time series data, where x̄0, x̄1, ... are observa-
tions. Since we forecast target variable given some historical
data, we use L previous time intervals during predicting
process. We formulate problem as forecasting ŷi+1 given
x̄i−L+1, x̄i−L+2, ..., x̄i, where ŷi+1 is a predicted value of
ȳi+1.

We propose two ideas of how to perform this fore-
cast. First and baseline one is to concatenate features
x̄i−L+1, x̄i−L+2, ..., x̄i in a single vector, add features men-
tioned in III-A and III-C if desired and then use linear
or tree-based machine learning model (e.g. Random Forest,
Linear/Logistic Regression).

Second way is to build Long short-term memory neural
network (LSTM) [15].

LSTM neural network architecture is based on the idea
of Recurrent neural networks. In short, RNN is a class of
neural networks used in sequence processing tasks. Their
main advantage is loops in the architecture and reuse of its
internal state. Due to these particular qualities, RNN networks
can process sequences of variable length, but they struggle
to handle long sequences due to exploding and vanishing
gradients problems. It means that gradients that are back-
propagated through time can vanish or explode, i.e. tend to
zero or to infinity correspondingly. LSTM architecture was
developed to overcome these problems, introducing cell and 3
gates: input gate, output gate and forget gate.

Cell in LSTM is a memory part, intuitively it allows to
keep information about dependencies in sequence. The input

gate controls the part of new sequence element information that
we will consider, the output gate controls which information
in the cell is used to compute the output and the forget
gate controls which information in the cell will be erased
(forgotten). LSTM block architecture allows gradients back-
propagating through cell remaining unchanged, thus solving
aforementioned gradient-related problems.

Usage of LSTM model differs from our baseline models in
forecasting task. In LSTM, we sequentially pass feature vectors
into the model starting from x̄i−L+1 to x̄i . Then we train the
model in a way that its output ŷi+1 on final layer is as close
as possible to the desired ȳi+1.

To perform qualitative evaluation of regression forecasts we
use mean absolute scaled error (MASE) [16]. MASE is often
applied in time series forecasting tasks because of the desirable
features of this metric. Among them are invariance to the data
scale, adequate behavior when y → 0 and symmetry: penalties
for underestimating and overestimating of y are equal.

Mean absolute scaled error metric is defined as follows:

MASE(y, ŷ) =
MAE(y, ŷ)

1
N−1

N∑
i=2

|yi − yi−1|
,

MAE(y, ŷ) =
1

N

N∑
i=1

|yi − ŷi|,

where y is ground truth event counter value and ŷ is predicted
counter value.

For the classification task we use area under ROC curve
(ROC AUC) metric [17]. ROC AUC is invariant to the class
imbalance and more representative than simple accuracy met-
ric.

IV. EXPERIMENTS

In this section, we use the real Global Terrorist Database
for the evaluation of the proposed approach. We also provide
comparison of different approaches of building latent repre-
sentation and forecasting, including both classic models and
novel neural network architectures.

A. Data description

For the experiments we use the Global Terrorism Database
(GTD), it is the most comprehensive unclassified database of
terrorist attacks in the world. It is an open-source database,
which contains information on domestic and international
terrorist events around the world since 1970, and now includes
more than 190,000 events. For each event, a wide range of
information is available, including the date and location of the
incident, the weapons used, nature of the target, the number
of casualties, and when identifiable the group or individual
responsible. Details of the experimental dataset are described
in Table I.

We select events that occurred between 2002 and 2008,
size of aggregation time interval Δt equal to 3 days and define
events of interest as Bombing/Explosion events that took place
in Iraq. The size of aggregation time interval Δt = 3 was
chosen empirically, but its value is highly dependent on the

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 309 --

TABLE I. DATASET DESCRIPTION

Dataset Global Terrorism Database

Data type Tabular

Attributes country, city, attacktype1, nkill, nwound...

Attribute types Numeric, categorical, binary, text

Time Span 01/01/1970 - 31/12/2015

Records More than 190’000

Location Worldwide

nature of the task. In case if events of interest are rare, it is
reasonable to increase Δt. And if the goal is, for example, to
forecast events for the next week, the value of Δt should be
equal to 7.

Train/test split performed according to temporal structure
of data, training part has first 70% of data and testing part
has last 30%. The 70/30 proportion is a classic way to split
data into training and testing sets, it provides enough data for
training yet not too little amount of data for validation.

It is important to notice that we did not aim at the solving
a particular problem with greatest possible accuracy, the main
goal was to show that proposed general approach is applicable
for solving forecasting task. Hyperparameters such as interval
Δt, number of topics k and others were chosen empirically,
and there is strong possibility of increasing forecasting accu-
racy with thorough selection of these hyperparameters.

In order to perform processing of the dataset with complex
events, we do the following transformations:

• Replace every rarely-presented feature attr (less than
5% of events have it) with special binary feature
has attr = 1, if feature is presented in the event
description and 0 otherwise.

• Use decision tree-based impute technique to fill miss-
ing features nkill and nwound based on known
attributes.

• Replace categorical features using one-hot encoding
technique

• Discard features we decided to be non-necessary or
redundant (e.g. text decoding of such features as attack
type id)

• Transform text descriptions into numeric vectors using
Latent Dirichlet allocation.

After we obtain numeric features xi for each event. Cor-
responding labels yi are extracted as said in III-C.

B. Building latent representations

Further we denote number of events n, number of latent
features k, number of original features d and event-feature
matrix V ∈ Rn×d. After processing our dataset we had
n = 35834, d = 414. In this work we evaluated performance
using number of latent features (topics) k equal to 10 and 50.
Both baseline and autoencoder approaches are firstly trained
on training set, then using approach-specific way we derive
latent representation for events from testing set.

Fig. 3. Example of NMF topic interpretation

Fig. 4. Autoencoder architecture details

As a baseline approach we use non-negative matrix factor-
ization. An example of how we could interpret NMF features
using 9 larges feature contributions is depicted in Fig. 3. Along
the abscissa axis original features are depicted. The ordinate
values are obtained based on 2nd row of matrix H and they
represent contribution of each of the original features to the
topic (e.g. original feature weaptype1 Firearms is included in
the linear combination (topic) with the largest coefficient, it
means that this feature has the strongest influence on topic
values).

Moving on to more complex methods of building latent
representation, we describe autoencoder model. We built feed-
forward deep autoencoder model using classic architecture
with 3 layers in encoder and 3 layers in decoder. All of the acti-
vation functions are Rectified linear unit (ReLU), more detailed
description of the autoencoder architecture is presented in Fig.
4. During training procedure we pass into autoencoder input
feature vectors x ∈ Rd, obtain their reconstruction x′ ∈ Rd

and minimize reconstruction mean absolute error (MAE) loss
function:

MAE(x, x′) = |x− x′|

Between encoder and decoder we obtain latent representation
of the input signal also known as code: z ∈ Rk. Training takes
100 epochs, i.e. 100 iterations over whole training set. Leaning
rate is set to 2 ·10−3, and exponential weight decay is applied
as follows: after every epoch learning rate is multiplied by
0.96.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 310 --

TABLE II. EXAMPLES OF KEYWORD EXTRACTED FOR LATENT TOPICS

Topic Keywords

0 used, sources, available, majority, listed, database, ...

1 shot, civilian, distributed, bomb, detonated, ...

2 taliban, shrine, perpetrators, tamil, rebels, group, ...

3 released, hostage, kidnapping, status, abduction, ...

4 indicated, military, police, civilian, detonating, ...

C. Keyword topic description

From the training data 19335 events with text descriptions
are selected. According to III-B, we obtain dictionary of size
2311 and a set of keywords for each of topics. An example of
the acquired topic keywords is presented in Table II.

D. Forecasting

We use aggregation time interval Δt equal to 3 days, and
after aggregating data according to III-C we get 569 time
intervals in training set and 256 in testing one.

1) Forecasting probability of event: Probability of event
occurring is a classification task with labels will occur (y = 1)
and will not occur (y = 0). To solve this task we use both base-
line machine learning classifier models such as RandomForest
[18], LogisticRegression, and a novel LSTM neural network.

During experiments the following LSTM architecture is
used: sequence length varies from 10 to 30, being exactly
equal to L. Dimensions of the hidden layer and the memory
cell are equal to dimensionality of latent space and vary from
10 to 50. We use softmax activation function applied to LSTM
output values to get probability estimates. During training we
use learning rate equal to 10−3 and number of epochs equal
to 50.

Feature generation and classifier training are performed as
said in III-C1, for baseline models we perform grid-search
over the hyperparameters. Results of classifier performance
depending on latent representation building technique are
presented in Table III for experiments without text and in IV
for experiments with text.

In the table III and all subsequent ones, ’NMF10’ means
that NMF feature extraction method is used with the number
of topics k = 10, ’AE50’ stands for autoencoder feature
extraction approach with number of topics k = 50. ’+A’ means
additional autoregressive features introduced in III-C, ’+R’
means additional reconstruction error feature introduced in
III-A, ’+AR’ means that both autoregressive and reconstruction
features are used. RFC stands for Random Forest Classifier,
LogReg represents Logistic Regression and LSTM represents
Long Short-term Memory network, described in III-C1. An
example of classification model output is depicted in Fig. 5

2) Forecasting amount of events: To solve the task of
forecasting amount of the events we use RandomForest (RFR),
LinearRegression (LinReg), and LSTM models. For LSTM we
use the same architecture as described in IV-D1, but instead of
sigmoid activation after output layer we apply linear activation.
We also follow the process described in III-C1, for baseline
models we performed grid-search over hyperparameters.

Fig. 5. Example of classification model performance

TABLE III. CLASSIFICATION: WITHOUT USING TEXT (ROC AUC)

LSTM
L=10

LSTM
L=30

LogReg
L=10

LogReg
L=30

RFC
L=10

RFC
L=30

AE10 0.616 0.641 0.439 0.417 0.484 0.509

AE10+A 0.747 0.749 0.654 0.578 0.583 0.598

AE50 0.651 0.655 0.567 0.574 0.656 0.637

AE50+A 0.743 0.752 0.655 0.552 0.658 0.578

AE10+R 0.696 0.656 0.480 0.608 0.509 0.566

AE10+AR 0.764 0.744 0.653 0.572 0.609 0.615

AE50+R 0.547 0.544 0.605 0.588 0.443 0.623

AE50+AR 0.761 0.760 0.655 0.551 0.659 0.606

NMF10 0.618 0.605 0.577 0.526 0.637 0.606

NMF10+A 0.746 0.746 0.653 0.561 0.701 0.670

NMF50 0.691 0.711 0.537 0.446 0.650 0.533

NMF50+A 0.740 0.783 0.658 0.580 0.638 0.671

TABLE IV. CLASSIFICATION: USING TEXT (ROC AUC)

LSTM
L=10

LSTM
L=30

LogReg
L=10

LogReg
L=30

RFC
L=10

RFC
L=30

AE10 0.597 0.657 0.505 0.563 0.679 0.361

AE10+A 0.764 0.747 0.642 0.599 0.673 0.665

AE50 0.655 0.678 0.523 0.550 0.624 0.631

AE50+A 0.752 0.745 0.645 0.493 0.681 0.614

AE10+R 0.608 0.628 0.523 0.564 0.424 0.474

AE10+AR 0.795 0.758 0.642 0.576 0.644 0.619

AE50+R 0.505 0.553 0.523 0.552 0.575 0.616

AE50+AR 0.736 0.759 0.644 0.523 0.674 0.504

NMF10 0.612 0.743 0.476 0.563 0.652 0.615

NMF10+A 0.601 0.753 0.644 0.544 0.674 0.567

NMF50 0.776 0.688 0.484 0.547 0.575 0.498

NMF50+A 0.741 0.753 0.645 0.569 0.688 0.625

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 311 --

Fig. 6. Example of regression model performance

TABLE V. REGRESSION: NOT USING LOG-TRANSFORM, NOT USING TEXT (MASE)

LSTM
L=10

LSTM
L=30

LinReg
L=10

LinReg
L=30

RFR
L=10

RFR
L=30

AE10 1.218 1.204 1.119 1.191 1.241 1.265

AE10+A 1.050 1.050 0.909 1.074 0.890 0.909

AE10+R 1.092 1.096 1.121 1.193 1.239 1.287

AE10+AR 1.054 1.072 0.911 1.102 0.886 0.910

AE50 1.119 1.155 1.180 1.657 1.244 1.257

AE50+A 1.084 1.055 1.632 1.616 0.883 0.904

AE50+R 1.040 1.039 1.209 1.580 1.243 1.278

AE50+AR 1.059 1.056 1.632 1.758 0.876 0.916

NMF10 1.218 1.194 1.096 1.422 1.094 1.182

NMF10+A 1.056 1.069 0.895 1.177 0.894 0.929

NMF50 1.136 1.128 1.336 1.112 1.092 1.155

NMF50+A 1.076 1.061 1.468 1.181 0.913 0.912

Results of regressor performance depending on latent rep-
resentation building technique are presented in table VIII for
experiments without using text and in table VII for experiments
with text. Additionally we compare performance of the regres-
sion without using logarithm as a link function, corresponding
results are presented in tables V and VI.

Example of forecast obtained with regression model is
presented in Fig. 6.

3) Performance analysis: As we can see, in classification
task LSTM network leaves other models far behind. Intro-
ducing auxiliary features (+A, +AR) increases forecast per-
formance for the classification task by up to 40%, depending
on model. It means that autoregressive component is quite
important for accurate forecasts. Usage of text descriptions
allows us to achieve better result (+1.5%), but its applicability
strongly depends on model type and latent representation.

Regression task results are a bit similar, but best-
performing model is RandomForest Regressor instead of
LSTM network. Again, auxiliary features heavily boosted
preciseness of forecast (up to 30% depending on the model).
In contrast with the classification result, text usage decreases
forecast quality by 1.5-2%, which means that text information

TABLE VI. REGRESSION: NOT USING LOG-TRANSFORM, USING TEXT (MASE)

LSTM
L=10

LSTM
L=30

LinReg
L=10

LinReg
L=30

RFR
L=10

RFR
L=30

AE10 1.104 1.151 1.292 2.151 1.295 1.323

AE10+A 1.084 1.058 1.025 1.924 0.898 0.925

AE10+R 1.148 1.133 1.312 1.920 1.287 1.306

AE10+AR 1.047 1.067 1.029 1.745 0.896 0.929

AE50 1.148 1.120 3.492 1.862 1.300 1.307

AE50+A 1.046 1.068 3.082 1.810 0.899 0.918

AE50+R 1.124 1.136 2.840 1.967 1.305 1.307

AE50+AR 1.057 1.051 2.152 2.126 0.895 0.919

NMF10 1.171 1.068 1.241 2.921 1.171 1.187

NMF10+A 1.077 1.059 0.973 2.280 0.894 0.933

NMF50 1.168 1.108 3.534 1.212 1.123 1.148

NMF50+A 1.072 1.062 3.094 1.205 0.902 0.910

TABLE VII. REGRESSION: USING LOG-TRANSFORM, NOT USING TEXT (MASE)

LSTM
L=10

LSTM
L=30

LinReg
L=10

LinReg
L=30

RFR
L=10

RFR
L=30

AE10 1.128 1.100 1.017 1.020 1.139 1.141

AE10+A 1.054 1.014 1.028 1.729 0.848 0.875

AE50 1.059 1.035 1.127 3.075 1.073 1.105

AE50+A 1.017 1.012 1.171 6.938 0.836 0.886

AE10+R 1.105 1.068 1.046 1.087 1.135 1.151

AE10+R+A 1.031 1.022 1.006 1.869 0.829 0.872

AE50+R 1.052 0.979 1.141 5.021 1.107 1.116

AE50+R+A 1.072 1.024 8.402 9.042 0.834 0.872

NMF10 1.055 1.088 1.108 1.263 1.010 1.047

NMF10+A 1.025 1.032 1.008 1.582 0.862 0.898

NMF50 1.006 1.003 5.073 1.060 1.026 1.063

NMF50+A 1.070 1.015 9.072 1.354 0.856 0.916

TABLE VIII. REGRESSION: USING LOG-TRANSFORM, USING TEXT (MASE)

LSTM
L=10

LSTM
L=30

LinReg
L=10

LinReg
L=30

RFR
L=10

RFR
L=30

AE10 1.057 1.051 1.216 5.461 1.149 1.172

AE10+A 1.044 1.021 1.071 2.431 0.850 0.875

AE50 1.069 1.030 1.429 1.835 1.098 1.101

AE50+A 1.047 1.024 1.283 2.097 0.859 0.869

AE10+R 1.087 1.050 1.260 2.983 1.156 1.173

AE10+R+A 1.041 1.030 1.082 4.846 0.843 0.868

AE50+R 1.058 1.048 3.185 2.193 1.083 1.106

AE50+R+A 1.035 1.029 9.062 1.089 0.843 0.891

NMF10 1.085 1.121 1.283 2.061 1.015 1.075

NMF10+A 1.036 1.006 1.098 6.303 0.844 0.927

NMF50 1.114 1.175 5.817 1.112 1.056 1.060

NMF50+A 1.047 1.028 3.428 3.692 0.861 0.914

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 312 --

useful in some tasks and useless or even harmful in the others.
Results with using logarithm as a link function are presented
in tables V, VIII. Usage of this link function improves our
forecast performance by 5-6%.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a general approach for event
forecasting task, which is flexible enough to be adjusted
with different forecasting models and different latent repre-
sentation building techniques. Firstly, the latent representation
for complex event features is built. Secondly, forecasting is
performed for either classification or regression task. Since the
approach is general, it is possible to choose desired methods
on both steps from a variety of applicable methods. Finally, we
present comprehensive comparison results in Tables III – VI.
Additionally, we propose method to extract keywords for latent
features using partly available event text descriptions. This
addition is valuable if latent features have to be interpretive.

As a future research direction, we believe that joint training
of autoencoder for latent representation and LSTM for fore-
casting can improve performance of this approach by enforcing
autoencoder to extract latent features in a way that they are
useful for further forecasting.

REFERENCES

[1] M. Yasuko and S. Yasushi and F. Christos and I. Tomoharu and Y.
Masatoshi, “Fast mining and forecasting of complex time-stamped
events”, Proc. of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Aug. 2012.

[2] N. Tax and I. Verenich and M. La Rosa and M. Dumas, “Predictive
business process monitoring with LSTM neural networks”, Lecture
Notes in Computer Science, 2017.

[3] N. Laptev and J. Yosinski and L. Erran and S. Smyl, “Time-series
extreme event forecasting with neural networks at Uber”, Time-series
Workshop, 2017.

[4] S. Du and T. Li and X. Gong and Z. Yu and S. Horng, “A hybrid
method for traffic flow forecasting using multimodal deep learning”,
CoRR, 2018.

[5] G. Lai and W. Chang and Y. Yang and H. Liu, “Modeling long- and
short-term temporal patterns with deep neural networks”, CoRR, 2017.

[6] G. Manish and G. Jing and Z. ChengXiang and H. Jiawei, “Predicting
future popularity trend of events in microblogging platforms”, Proc.
of the 75th Annual Meeting of the American Society for Information
Science and Technology (ASIS & T), vol.49, Jan. 2012, pp. 1-10.

[7] J. Beunza and E. Puertas and E. Garca-Ovejero and G. Villalba and
E. Condes and G. Koleva and et al., “Comparison of machine learning
algorithms for clinical event prediction (risk of coronary heart disease)”,
Journal of Biomedical Informatics, vol. 97, 2019.

[8] D. Lipika and M. Hardik and V. Ishan, “Predictive analytics with
structured and unstructured data - a deep learning based approach”,
IEEE Intelligent Informatics Bulletin, vol. 18, Dec. 2017.

[9] Extreme rare event classification: a straight forward solution for a real
world dataset, Web: https://towardsdatascience.com/extreme-rare-event-
classification-a-straight-forward-solution-58a20ef56ef5.

[10] Extreme rare event classification using autoencoders in Keras,
Web: https://towardsdatascience.com/extreme-rare-event-classification-
using-autoencoders-in-keras-a565b386f098

[11] D. Lee and H. Seung, “Algorithms for non-negative matrix factoriza-
tion”, Proc. of the 13th International Conference on Neural Information
Processing Systems, vol. 13, 2000, pp. 535541.

[12] S. Mishra and U. Sarkar and S. Taraphder and S. Datta and D. Swain
and R. Saikhom et al., “Principal component analysis”, International
Journal of Livestock Research, Jan. 2017.

[13] W. Wang and Y. Huang and Y. Wang and L. Wang, “Generalized
autoencoder: a neural network framework for dimensionality reduction”,
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, June 2014, pp. 496-503.

[14] N. Johnson and S. Kotz and N. Balakrishnan, “Lognormal Distribu-
tions”, Continuous univariate distributions, vol. 1, 1994.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
computation, vol.9, Dec. 1997.

[16] R. Hyndman, “Another Look at Forecast Accuracy Metrics for Intermit-
tent Demand”, The International Journal of Applied Forecasting, vol.
4, 2006, pp. 43-46.

[17] A. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms”, Pattern Recogn., vol. 30, July 1997,
pp. 1145-1159.

[18] L. Breiman, “Random Forests”, Machine Learning, vol. 45, Oct. 2001,
pp. 5-32.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 313 --

