
Fault Tolerant Central Saga Orchestrator in RESTful 
Architecture

Konstantin Malyuga, Olga Perl, Alexandr Slapoguzov, Ivan Perl
ITMO University

St.Petersburg, Russia
konstantin.malyuga@gmail.com, ovkalyonova@itmo.ru, slapoguzov@gmail.com, ivan.perl@itmo.ru

Abstract—Microservices RESTful architecture is al-
most a standard for e-commerce web applications today.
It brings domain isolation, development and support
independence. In the same time it increases complexity
of cross-domain interactions. The case when distributed
changes should not break consistency of microservice
states is one of challenging task that might appear
during development of such systems. Defining sagas in
central orchestrator that performs changes in microser-
vices one by one and controls compensations in case
if failure occurs is one of the well-known approaches
today. It solves the problem of consistency but creates
new vulnerable area in fault tolerant environment.
Usage of saga cluster and additional optimizations of its
structure are modeled, evaluated and proposed in this
paper. Provided fault tolerant solution with improved
time and memory characteristics.

I. Introduction

Microservices architecture brings data isolation in
scope of concrete domain. Only domain service allowed
interacting with domain data usually stored in database
[1]. It is no longer possible to apply changes in multiple do-
mains at once or to perform rollback of changes in database
in case of failure. All changes should be performed through
the service API as well as implementation calls should be
implemented as part of service.

There are few widespread ways to organize data con-
sistency in microservices environment:

• Two-phase commit protocols (2PC) to support dis-
tributed transactions. Implementation of such pro-
tocol should be additionally integrated to a system
that will performs changes in services only when all
services have prepared their data for changes and
waiting for additional signal to perform commit[2].
Locked data that is going to be updated should be
immutable during transaction that leads to either
additional delays on commit wait or potentially
data lost if no DB locks actually applied[3]. Also,
changes in services should be made to support
2PC protocol that handles distributed transaction
flow. Due to these reasons this approach is not
so popular in the modern e-commerce applications
[4].

• Eventual consistency approach implemented in
saga patter. Saga is a described sequence of
changes to be applied in microservices one by one
and compensation algorithm for each request that

should establish consistent state in services in case
of changes failure[5]. Compensation actions does
not differ from requests to apply direct changes so
that services might not require additional changes
in case of saga pattern introduction.
Usage of this approach does not violate isolation
advantage of microservices architecture and allows
avoiding additional modification of endpoints so
that RESTful architecture of services might still
exists.

There are two types of saga implementation [6]:

• Choreography. In this case microservices are linked
to the chain of sequential calls as depicted at Fig.
1. Each service will perform changes on event or
request, emits successful event and awaits for the
whole saga to proceed. In case of failure during
local changes service should emit failure event to
the previous service. This previous service should
apply compensation logic and send failure event to
a previous service of it.
Expectation for successful or failed response for
service does not imply introducing additional data
states as 2PC does.

• Orchestration. This type of sagas depicted on Fig.
2. It requires implementation of saga orchestrator
that controls sagas calls sequential. Orchestrator
sends commands to services in the chain one by
one, awaiting for successive response. In case of
failure it sends compensation calls to the services
where changes was already made to return such
services to the previous state.

Fig. 1. Sequentially chained services in choreography saga

Implementation of sagas in choreography manner
brings changes to microservices that takes part in chain
of calls and couples services closely. Commands and com-
pensations mechanism often designing for every pair of
services but there are series of frameworks that simplifies
this process [7]. Performance assessments shows [6] that
choreography works faster due to no additional transport

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



channels. This type of sagas recommended for begging
sagas integration and for simple and small sagas [4].

On the other hand, orchestration allows using abstrac-
tion over services logic and useful in complex applica-
tions to loose coupling. Absence of necessity to update
service API or it’s behaviour during saga integration is
also an advantage of orchestration based sagas. However,
organization of external component increase complication
and brings additional time expenses that appear because
additional communication overhead becomes part of every
command in saga flow.

Fig. 2. Managed by central orchestrator services in orchestrational
saga

New saga might be implemented as a new coordinator
every time. In this case introduction of a new saga be-
comes complex process due to new service configuration
and deployment should be prepared but not only saga
flow declaration. That is why having all sagas of the
system central orchestrator might become more satisfying
approach. It means sagas are implemented as components
of one service, so that development of a new saga logic
requires no overhead for engineering.

II. Cluster organization

Creation of important central component that governs
set of important system flows introduces new point of
failure. In case of central orchestrator, failures on such
component able to ruin data consistency in case of shut-
down during saga.

Introduction of active-passive availability pattern to
the structure of central orchestrator allows achieving high
availability of a system and improves its tolerance to
failures [8]. Such cluster solution should include active
(master) and passive (slave) nodes. Each active node
controls saga flow and replicates flow information to the
passive nodes.

Researches often [4] [6] rely on event type of services
communication using message brokers like RabbitMQ or
Kafka when propose saga architecture. However, usage of
HTTP endpoints to communicate with services to perform
local changes does not contradict with initial idea of sagas
[5]. It allows orchestrator to receive result of command
immediately without intermediate components.

If saga relies on messaging mechanism, master node
failure during local transaction process allows to continue
saga after cluster startup due to one of the slaves may re-
trieve or receive response message of a microservice instead
of master instance that went down. It is possible since
messages persisted in message broker so that system might

wait until slave instance will start up, retrieve message and
continue current saga so that cluster will be restored.

However, additional struggles might be faced if saga
relies on REST HTTP calls. As depicted in Fig. 3, if
master node goes down during request-response proce-
dure call to microservice before response received it is
no longer possible to identify if local changes succeeded
or failed even if slave node will replace failed master
node. Due to specified reason additional restriction in fault
tolerant environment should be applied: implementation
of RESTful service methods for saga usage should be
idempotent so that cluster failure during one of local
transaction would not leave services in inconsistent state.
Otherwise, repeat of request to non-idempotent endpoint
might lead to changes duplication that can bring undesired
changes accumulation. And skipping of endpoint call after
cluster startup might lead to absent of required changes in
local transaction so distributed data structure will become
inconsistent.

Fig. 3 shows saga local transaction that takes less time
than cluster restore. It is possible that local transaction
will take more time than cluster restore so that second
call that restored cluster performs will lead to parallel
processing of it. Still, idempotency of affected endpoint
allows avoiding conflicts or accumulation of changes.

It is important to mention that having only idempo-
tent endpoints involved to saga becomes restriction that
might not contradict with current system but take part
during saga extension in future. In some cases endpoints
change to make them idempotent can take less effort than
integration of message broker for communication purposes
during saga. But amount of required changes overall might
overweight migration to messaging system in terms of
complexity.

Replication of event based sagas does not require ad-
ditional communication between nodes of saga cluster due
to all nodes can be subscribed on message type that active
node sends to service.

Meanwhile, HTTP requests to service from active node
of saga cluster should be anticipated by replication calls in
order to prepare for active node failure during operation.
This is why replication in RESTful environment has a
drawback in increase of total saga time. Evaluation of
replication time will allow assessment of this drawback.
Nevertheless, replication of current saga state in more than
one nodes might be performed in parallel so that result
delay before each local transaction call depends only on
the maximum time all replication calls.

Execution of sagas in master-slave cluster structure al-
lows applying different optimizations for sagas replication
data storage and communication between replicas that can
minimize replication time, coordinator recovery time and
memory requirements.

A. Meaning data optimization
Request and progress data amount have effect on trans-

fer and storage time and also defines required storage
capacity of cluster. It might occur that saga introduced to

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 279 ----------------------------------------------------------------------------



Fig. 3. One saga local transaction with master node failure

the system after it was defined so that endpoints and/or
requester provides more data than it’s required for saga
operation.

Analysis of sagas might be performed and only meaning
request and progress data might be replicated due to sagas
are predefined flow with a priori known structure. Meaning
data is request and progress information in minimal vol-
ume that is only required to continue saga progress and
to perform compensation calls in case of failure during
progress. Analysis of meaning data will not affect each saga
execution because sagas have predefined structure. That
means calculation of meaning data should be performed
for saga only during initialization.

In specific cases meaning data can be only identifiers of
resources to be changed during next saga calls so that rest
of service information received in the response becomes
redundant. Also, self-descriptive endpoints information
(HATEOAS) could be excluded from replication due to
its redundancy in context of automated saga flow.

Usage of RDF Mapping Language might be required
considering specific of case when different endpoints in-
cluded to saga could even have different data representa-
tion. It also allows to change system data representation to
optimize preservation during replication. Having different
format of replication could reduce replicated data size
even more. For instance XML response payload can be
replicated as JSON data.

Fig. 4 contains example of response from service.
It contains HATEOAS links with autogenerated request
paths and bunch of data fields. Part of that fields might
be excluded from replication if analysis of saga during

<account>
<account_number>123</account_number>
<owner_id>456</owner_id>
<country_code>FR</ country_code>
<balance currency=" eur ">100.00</ balance>
<r e s t r i c t i o n s>

. . .
</ r e s t r i c t i o n s>

<l i n k s>
<l i n k r e l=" d e p o s i t " h r e f=" u r l /123/ d e p o s i t " />
<l i n k r e l=" withdraw " h r e f=" u r l /123/ withdraw " />
<l i n k r e l=" t r a n s f e r " h r e f=" u r l /123/ t r a n s f e r " />
<l i n k r e l=" c l o s e " h r e f=" u r l /123/ c l o s e " />

</ l i n k s>
</ account>

Fig. 4. Service XML response with HATEOAS

{
" account_number " : 123 ,
" owner_id " : 456

}

Fig. 5. Replication data after optimization

initialization process shows that not all fields will be re-
quired during next commands and possible compensations.
HATEOAS data could be excluded due to saga already
contains information about commands and compensations
to perform. Also change of data representation might
reduce total size of replicated data. Fig. 5 shows the result
of described changes application.

B. Optional data preservation optimization

Absence of data preservation on hard drive for replicas
in case of small amount of progress data might improve
preservation time and memory requirements due to saga
progress might be not saved in cluster itself. Small amount
of data mentioned because avoiding of hard drive usage
brings additional restrictions: sagas that was optimized
this way should store data of saga in memory until it ends.

Intermediate variation of this optimization is to store
only failed sagas data due to such information may be
used later to eliminate reason of failure.

Application of first described optimization might reduce
memory load to improve benefit of current optimization.
However, restriction will still, so this optimization could
be applied optionally, considering current server load and
saga meaning data size.

Worth mentioning that the history of sagas that was
performed with this optimization will not be stored in
cluster itself. It is still possible to track history by querying
services that was involved to saga, but such process could
be very complex due to data of different services is isolated
in microservices architecture. Preservation of only failed
sagas could reduce time and memory requirements so that
data preservation could be part of saga final process in
case of compensations invoked.

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 280 ----------------------------------------------------------------------------



III. Modeling

Total time of replication TR, defined as max replication
time of concrete saga that depends on replication coef-
ficient r(1..). It consists of two main parts that creates
noticeable delay: data transfer time TT and preservation
time TP .

TR = max
{r}

(TR(r)) (1)

= max
{r}

(TT (r) + TP (r)) (2)

One saga time consumption TSAGA includes replication
on every node and local transaction time TL. Both of them
depend on properties of concrete local transaction n.

Replication variables TT and TP depends on meaning
data coefficient k(0..1), that specifies what part of actual
payload D required either to proceed with next saga local
transactions or to perform compensation of previous local
transactions.

TSAGA(r) =
n∑
1

(TL(n) + TR(n)) (3)

TR(n) = max
{r}

(TT (k(n)D(n)) + [TP (k(n)D(n))]) (4)

Compensation should be send to every service that have
performed local changes already during saga failure on
node f . In this case TSAGA should be calculated differently.

TSAGA(r) =
f∑
1

(TL(n) + TR(n)) +
f−1∑

1
(TL(n) + TR(n))

(5)

Here TL(n) is time to perform compensation call and
TR(n) is time to replicate compensation data. Absence of
necessity in compensation for f service defines f − 1 as
upper bound of second sum.

Presence of TP depends on memory optimization at-
tribute CM . If it is enabled then TP defined as optional
operation, time consumption on data preservation might
be reduced. On the other hand, preserving such data
only in random access memory might lead to overflow if
orchestration cluster is under the heavy load. CF marks
that data should be persisted after a saga failure if memory
optimization used in a system. Algorithm 1 specifies how
to define if TP affects saga time consumption.

Algorithm 1 Preservation time impact on saga time
consumption

if CM then
if CF and saga failed then

TP

else
0

end if
else

TP

end if

Memory threshold value MT H for mentioned optimiza-
tion should be specified for a system to determine is it safe
to rely on memory optimization.

Local transaction time consumption TL does not de-
pend on meaning data coefficient due to request data of
service endpoint is constant same as response payload
value.

Calculation of meaning data payload and coefficient is
not a part of TSAGA due to saga algorithm is a priori
determined that means it can be calculated on the saga
initialization step.

Memory requirements MSAGA of cluster also depends
on meaning data coefficient k and replication coefficient r:

MSAGA = r

n∑
0

[

⎧⎪⎪⎨
⎪⎪⎩

k(n)D(n), if !CM

if CM and MRAM ≤ MT H

if CM and CF

0, otherwise

]

(6)

Ability to avoid data preservation depends on currently
available RAM value MRAM .

In case of MT H exceeds data should be stored to
make cluster be able to continue saga with required data
during saga iteration. However, such data might be deleted
either right after saga finished successfully, or removed by
background job. Deletion of stored data right after saga
ends simplifies implementation but brings performance
impact even if such process performed simultaneously with
saga operationing. It can be critical during high load.

Having background job that clears redundant saga data
could solve performance issue. Such job could be invoked if
cluster load is not high, so having additional process won’t
affect system performance.

IV. Evaluation

Numeric values of parameters in model vary in a big
range and depend on concrete saga implementation and
cluster structure.

To determine how application of additional optimiza-
tions in saga cluster data flow affects saga time consump-
tion and memory requirements, evaluation of modern cloud
RESTful solutions was performed.

A. Source values
As specified in [9], median values of JSON and XML

payloads in REST systems are 1545 and 2606 bytes re-
spectively. Median data size D = 2000 bytes for services
involved in saga was selected to not rely on concrete data
representation that could be used in API.

Storage [10] and network [11] benchmarks for cloud sys-
tems provides an assessment of network and memory char-
acteristics of services that are deployed in popular cloud
provider systems such as Amazon Web Services, Microsoft
Azure, Oracle Clouds and IBM Smart Cloud. AWS was
picked to define network TT and memory TP properties

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 281 ----------------------------------------------------------------------------



in current research. Throughput for memory was defined
as 1 GB/s and network throughput = 125MB/s so that
goodput ≈ 110MB/s.

Coefficient of meaning data strongly depends on end-
point implementation and on semantic of saga. For in-
stance, from many fields that will be returned in response
from service 1 only ID will matter in next commands or
compensations. And vice versa, all of the fields in response
might be required for either next commands or possible
compensations. Due to this reason coefficient of meaning
data k(n) for sagas in evaluation varies in range [0.1, 1].
Time of local transaction TL that represents delay between
request and response to one service in saga for commands
and compensations also depends on service implementa-
tion and character of changes in the service. Range of
TL = [100, 500] was defined based on recommendation [12]
in 200ms for response delay.

Every command during saga might fail and trigger
compensation calls chain that adds additional delay to
TSAGA. Probability of command failure empirically defined
as PF = 0.5. Minimal amount of commands in each
saga n = 3 for the reason that having two calls in saga
orchestrator is probably redundant complexity and should
be transformed to direct call of services [4]. The upper
bound of n = 8 chosen as one of common values for this
property [6]. Increase of upper bound of local transactions
in saga leads to accumulation of failure probability and
compensation chain length.

Evaluation performed on cluster with replication factor
r = 3 for 50000 sequentially invoked sagas N .

B. Time evaluation
Result of time evaluation with different optimization

represented in Table IV-B. Calculated values shows that
the impact of any optimizations related to data shrink that
could affect either data transfer or storing time do not
carry sufficient weight.

The reason of such low impact is relatively big value
of TL which might include heavy database interactions or
even side services communications.

TABLE I. Time optimizations of saga

Optimizations TSAGA reduction %
No saga data save 0.00070

No saga data save, meaning data transfer 0.00093
Failed saga data save 0.00066

Failed saga meaning data save and transfer 0.00089
All sagas meaning data and transfer 0.00026

However, optimization of replication time that takes
place before each local transaction and during compensa-
tion calls chain significantly improved (fig. 6).

Two first bars ("Failed sagas data", "No save") shows
that optimizations related to storage manipulations almost
not affects replication time either it was skip of successfully
ended sagas or all sagas data preservation. Next three
bars brings bigger impact. Each of them implies data
optimization. The reason for this is reduction of network
load between nodes if meaning data optimization used.

Failed
sagas
data

No
save

Meaning
data

Failed
sagas

meaning
data

No save
meaning
transfer

0

20

40

60

80

10.57 11.11

76.28 78.79 78.91

Fig. 6. Time optimizations of replication

Replication factor does not affects amount of optimization
due to only bigger delay on replication defines total delay.

It is obvious that the biggest reduction of storage usage
appears to be if all optimizations used. But difference in
preservation of only failed sagas data and no preservation
at all defined as 0.12%.

Overall time optimizations contribution appears to be
insignificant against the saga duration. It also shows that
drawback of consecutive replication before each command
and compensation call can be assessed as insignificant too.

C. Memory evaluation

Relative optimizations of memory requirements de-
picted in Fig. 7.

Each optimization brings tangible memory require-
ments reduction. In systems with low saga failures rate,
save of only failed sagas makes the biggest reduction
relative to other values. This is why difference in current
calculation appears to be the maximum difference between
all optimization impact values (59.02%).

Application of only meaning data preservation of only
failed sagas does not increase difference noticeably. Yet, in
case of not only failed sagas data preservation, application
of meaning data optimization creates a more noticeable
effect.

Relative value of memory optimization in saga cluster
does not depends on replication factor, unlike total mem-
ory requirements. In such cases usage of both optimizations
could be more desired.

Absence of data replication should be considered in case
if increase in memory requirements due to cluster structure
use is undesirable solution.

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 282 ----------------------------------------------------------------------------



Meaning data save Failed sagas
data save

Failed sagas
meaning data save

0

20

40

60

80

100

34.07

93.09 95.97

Fig. 7. Memory optimizations of saga

V. Conclusion

Usage of sagas to control microservices in REST fault
tolerant system requires to choose one of the next ap-
proaches:

• choreography mechanism that couples services and
supports both;

• message broker that allows to repeat message re-
trieve;

• orchestrator build as cluster that sends HTTP
requests to idempotent endpoints.

Considering widespread of REST architecture, possi-
bilities of having interchange payload with redundancy
and cost of architectural changes, the last option might
become preferable. Different optimizations of saga central
orchestrator cluster was shown in this paper:

• analysis of response payload from service to repli-
cate and preserve only meaning data;

• optionality of data preservation.

Optimizations can be used together in different degree. As-
sessment of time and memory parameters based on modern
cloud benchmarks values and data structure statistics was
performed. It shows relatively low time consumption before

every local transactions for replication might be reduced
even more. And memory requirement of cluster might be
reduced significantly. Thereby application of optimizations
during cluster structure implementation in central saga
orchestrator can lead to minor losses comparing to orches-
trator without fault tolerant structure.

However, having idempotent endpoints might be cru-
cial constraint to use proposed architecture. If REST
system requires integration of distributed data consistency
support and some of endpoints involved to data modi-
fication flow are not idempotent so that modification of
them required in any way, we propose to use original event
choreography or orchestration to simplify flow organiza-
tion. Such solution will eliminate possible risks of having
difficulties with idempotent endpoints later.

References

[1] F. Li, J. Fröhlich, D. Schall, M. Lachenmayr, C. Stückjürgen,
S. Meixner, F. Buschmann “Microservice Patterns for the Life
Cycle of Industrial Edge Software”, in Proc. EuroPLoP’18 Conf.,
2018, art. 4, pp. 111

[2] G. Samaras, K. Britton, A. Citron, C. Mohan, “Two-phase com-
mit optimizations and tradeoffs in the commercial evironment”,
in Proc. IEEE Conf., April 1993, pp. 17-22.

[3] J. Nimis, P.C. Lockemann, K. Krempels, E. Buchmann, K.
Böhm. Towards Dependable Agent Systems. Springer, Berlin,
Heidelberg, pp. 465-501

[4] C. Richardson, Microservices Patterns. Manning Publications,
2017.

[5] H. Garcia-Molina, K Salem, “Sagas”, in Proc. SIGMOD Conf.,
Dec. 1987, pp. 249-259.

[6] C. K. Rudrabhatla, “Comparison of Event Choreography
and Orchestration Techniques in Microservice Architecture”,
IJACSA, vol.9, Issue 8, 2018.

[7] X. Limon, A. Guerra-Hernandez, A.J. Sanchez-Garc, J.C.P.
Arriaga, “SagaMAS: a software framework for distributed trans-
actions in the microservice architecture”, CONISOFT, Oct. 2018

[8] K. S. Ahluwalia, A. Jain , “High availability design patterns”, in
Proc. PLoP Conf., Oct. 2006, pp. 1-9.

[9] C. Rodriguez, M. Baez, F. Daniel, “REST APIs: A Large-Scale
Analysis of Compliance with Principles and Best Practices”,
ICWE, June 2016, pp. 21-39

[10] H. Lee, G.C. Fox, “Fair Benchmarking for Cloud Computing
systems”, IEEE CLOUD, May 2019

[11] L. Gillam, B. Li, J. OLoughlin, A.P.S. Toma, “Fair Benchmark-
ing for Cloud Computing systems”, Journal of Cloud Computing,
Feb. 2013

[12] P.G. Talaga, S.J. Chapin, “Reducing Latency and Network
Load Using Location-Aware Memcache Architectures”, WE-
BIST, April 2012, pp 53-69

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 283 ----------------------------------------------------------------------------


