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Abstract— according to American Cancer Society breast 
cancer is the most common cancer type in women. For most 
effective treatment choice and patients’ state of health prediction 
it is necessary to make a differential diagnosis to determine 
breast cancer subtype. The tumor subtype is determined by 
immunohistochemical or immunocytochemical studies, which 
evaluate the expression levels of steroid hormone receptors, 
proliferative protein Ki-67, and oncoprotein CerbB-2 
(HER2/neu). HER2-positive subtypes are most adverse (about 25-
30% of all cases). In case of indefinite CerbB-2 expression 
fluorescence in situ hybridization (FISH) investigation is utilized. 
In most cases, this study is held by visual estimation of 
fluorescent image parameters by pathologist and thus is 
subjective. We need to employ automatization techniques to 
decrease human factor impact and increase reproducibility of the 
analysis result. FISH analysis automatization for HER2 
amplification can be divided into three tasks: nucleus 
segmentation, signal detection and presentation of the results 
according to ASCO/CAP recommendations. In this article results 
for nucleus segmentation task using different machine learning 
algorithms are presented. The image database for investigations 
consisted of RGB fluorescent images, as well as gray scale images 
for each individual fluorophore. The best result was achieved 
using the random forest algorithm on gray-scale images of 
individual fluorophores. 

I. INTRODUCTION 
Oncological diseases take second place in the list of leading 

mortality causes according to WHO [1]. Latest open cancer 
disease statistics states more than 18 million new cases of 
cancer in 2018 and according to the forecast for 2040 this 
number will increase to about 40 million [2]. Most common 
cancer type in women is breast cancer (BC) [3]. BC mortality is 
about 30% from the number of new cases [3]. 

Decreasing of BC mortality requires the development of 
early disease detection, differential diagnosis methods and 
effective treatments. The choice of treatment tactics depends on 
the breast cancer subtype which is assigned via differential 
diagnosis. Breast cancer subtype is determined by the 
expressions of steroid hormone receptors (estrogen and 
progesterone receptors, ER and PR, respectively), proliferative 
protein Ki-67, and oncoprotein CerbB-2 (HER2/neu). Reaction 
for ER, PR and Ki-67 expression evaluation gives nuclear 
staining and reaction with antibodies to CerbB-2 gives 

membrane staining. Automatization problem for nuclear 
staining was considered in detail by Dobrolyubova Daria [4]. 

HER2/neu positive (25–30% of all cases) and basal cell 
tumors (8–20% of all cases) are the most adverse subtypes of 
BC. The ASCO/CAP 2018 recommendations for HER2-status 
evaluation in IHC study are listed in table I [5]. 

TABLE I. HER2-SATUS ACCORDING TO ASCO/CAP RECOMMENDATIONS 

Score Description

0 No staining is observed or membrane staining that is incomplete 
and is faint/barely perceptible and in 10% of tumor cells 

1+ Incomplete membrane staining that is faint/barely perceptible and 
in >10% of tumor cells 

2+ Weak to moderate complete membrane staining observed in >10% 
of tumor cells 

3+ Circumferential membrane staining that is complete, intense and in 
>10% of tumor cells 

In the case of an indefinite reaction (2+), either a repeated 
study or determination of the amplification of the HER2 gene 
using the fluorescence in situ hybridization method (FISH) is 
required to clarify the HER2 status. 

Special fluorescent probes that are complementary to 
specific DNA sites (for example, DAKO HER2FISH) are used 
for FISH studies. Amplification of the HER2 gene is assessed 
by counting the number of signals referred to HER2 gene probe 
(red signal) and centromeric region of the 17th chromosome 
probe (green signal) (Fig. 1). An average copy number of the 
HER2 gene per core and the ratio of red and green labels is 
determined in at least 20 cores and HER2 amplification is 
assessed (table II) [5]. 

TABLE II. HER2 GENE AMPLIFICATION IN FISH STUDY ACCORDING TO 
ASCO/CAP RECOMMENDATIONS 

Amplification Description

HER2 gene amplification Average HER2 copy number  6.0 
signals/cell 

Undetermined Average HER2 copy number  4.0 and < 
6.0 signals/cell 

No HER2 gene 
amplification 

Average HER2 copy number < 4.0 
signals/cell 
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Fig. 1. Examples of fluorescent images with (right) and without (left) HER2 
gene amplification 

Image registration during a FISH study is carried out using a 
fluorescence microscope and a highly sensitive digital camera. 
In most laboratories, an oncologist implements signal counting 
visually. To increase reproducibility of the analysis, it is 
necessary to apply automated image analysis methods. 

Automatization for HER2 amplification assessment in FISH 
analysis can be divide into following steps: 

nucleus segmentation and separation individual nuclei in
agglomerations;
signal detection inside individual nuclei;
medical decision support by representing calculated
parameters.

To assess the state of FISH analysis automation for 
determining the amplification of the HER2 gene, we considered 
the work of the world's leading teams in this field [6–10]. 

The automation problem can be solved using, for example, 
simple threshold segmentation method proposed by Xingwei 
Wang and colleagues in [6]. The authors of the article proposed 
a method for automating FISH cervical cancer research. 
However, this approach cannot be used for FISH images of 
breast biopsy specimens, since in some cases autofluorescence 
of pepsin underprocessed cytoplasm is observed (Fig. 2). It is 
related to the fact that pepsin treatment is a standardized 
procedure that does not take into account the characteristics 
difference in biological tissue. 

Fig. 2. Different quality of real-life fluorescent images 

Tomasz Les and colleagues [7] used a watershed method to 
segment nuclei. Disadvantage of this method is big number of 
false boundaries, and skipping some nuclei with low contrast 
relative to the background (Fig. 3). 

Fig. 3. Nuclei segmentation using watershed algorithm 

The proposed approach can give an inaccurate estimation of 
signals distribution statistics in nuclei, since some nuclei are 
falsely divided into two or more parts and some are skipped. 
The article indicates the need for an expert to select informative 
nuclei after automatic image labeling. In this case a complete 
agreement between the results of the algorithm and the expert 
comment on a sample of 10 patients was obtained. 

Falk Zakrzewski and colleagues used a large selection of 
images of high-quality slides, consisting of 299 images 
annotated with bounding box and class for each nucleus (5 
classes in total: low, normal and high grade, uncertain, and 
artifact), and 301 images annotated with nuclei and signals 
bounding boxes [8]. In the study two convolutional neural 
networks (CNN) with the RetinaNet architecture implemented 
using the Keras library were used. As a result, on test database 
consisted of 57 images the accuracy of the nucleus detection 
algorithm was 48–97% and the accuracy of the signal detection 
algorithm was 44–97%, the accuracy of determining the 
amplification of the HER2 gene was 96%. One of the key 
advantages according to the authors is a two-stage nucleus 
classification, which leads to an increased algorithm robustness. 

Henning Höfener and colleagues created an automated 
density-based algorithm for counting FISH amplification signals 
for HER2 status assessment [9]. Signals on FISH images 
regularly can’t be easily detected as they make up clusters and 
thus the quality of HER2 status assessment depends on 
observer’s experience. In the article authors proposed density-
based CNN for counting signals that showed the best results 
among difference of Gaussian, CNN-detect and CNN-
accumulate methods. This approach showed more robust on 
signal clusters and consequently mean normalized absolute 
errors for CEN17 signals, ERBB2 signals, and all signals 
combined were the least. 

Gedmante Radziuviene with colleagues made a comparison 
study between automated and manual CEP17 and HER2 
counting [10]. Automated signal counting was made after 
manual nucleus segmentation and StrataQuest v.205 software 
application. The results showed that automated methods are still 
insufficient for clinical use as they underestimate both CEP17 
and HER2 signals. 
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An analysis of these studies allows us to formulate the 
following statements: 

information on the results of listed algorithms is not
enough to select the most accurate solution to the
problem of nucleus segmentation and separation of
agglomerates;
major efforts were applied to deploy robust algorithm for
automated signal counting on FISH images;
due to the peculiarities of fluorescent images, there is a
trade-off between the quality of the images used for
automation and the accuracy of the segmentation and
classification algorithms.

In this article various algorithms for solving the nucleus 
segmentation problem in FISH images of various quality 
(Fig. 2) will be discussed. 

II. MATERIALS AND METHODS

A. Equipment and database 
Image database was collected in Hertsen Moscow Oncology 

Research Institute. Slides for FISH were prepared using DAKO 
fluorescent probes, their spectral characteristics are shown on 
the figures 4, 6, 8 for DAPI, FITC and TexasRed, respectively 
[11]. Images were captured by Zeiss Axio Imager A1 
fluorescence microscope with a MetaSystems CoolCube1 
digital camera (resolution 1360 x 1024 pixels). There are 
Chroma SP100V2 (DAPI), Chroma MF101 (FITC) and Chroma 
SP103V1 (Texas Red) filters installed in the microscope, their 
transmission characteristics are presented on  5, 7, 9, 
respectively [12]. MetaSystems Isis 5.0 software was used for 
image registration. Due to the software features, the exported 
images had resolution of 990 x 878 pixels. 

Fig. 4. Excitation (left) and emission (right) spectral characteristics for DAPI 

Fig. 5. Transmission characteristics of Chroma SP100V2 (DAPI), blue – 
excitation, red – emission, black – dichroic mirror 

Fig. 6. Excitation (left) and emission (right) spectral characteristics for FITC 

Fig. 7. Transmission characteristics of Chroma MF101 (FITC), blue – 
excitation, red – emission, black – dichroic mirror 

Fig. 8. Excitation (left) and emission (right) spectral characteristics for 
TexasRed 

Fig. 9. Transmission characteristics of Chroma SP103V1 (Texas Red), blue – 
excitation, red – emission, black – dichroic mirror 

Image database consists of RGB images and gray-scale 
images for each of the DAPI, FITC, and TexasRed (TR) 
fluorophore channel. All images were saved without any color-
correction operations. Median (size 3x3) and Gauss filters (size 
3x3, sigma 0.5) were applied. Further, these images were 
manually annotated with edges of nuclei by a pathologist. This 
annotation was carried out on the DAPI channel images, since 
nuclei contours were most contrast and sharp. The resulting 
database contained 30 series of images: RGB, DAPI, FITC, TR. 
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B. RGB image nucleus segmentation 
Due to the fact that exporting one RGB image instead of 3 

images for different channels is less laborious, we first consider 
what results can be obtained using RGB images. 

All images were collected in a single array, in which the 
columns represent the color coordinates (features) and the class 
label – target (1 – for nuclei and 0 - background). We suggest 
that visualization could be helpful to understand types of 
distribution in target classes and assess the degree of 
segmentation task complexity (Fig. 10). 

Fig. 10. Scatter plot and pair plot for RGB color space 

The scatter plot of RGB components shows that the clouds of 
pixels belonging to different classes strongly overlap. From the 
pair plots we can conclude that separation of the distributions in 
the channels R and G is difficult. Hereinafter plots in diagonal 
illustrates histograms of each color component (feature) 

according to its class label (target). Plots under diagonal 
illustrates edges for 95% of histogram weight for concrete 
component pair and target (1 – nuclei, 0 – background). Plots 
above diagonal illustrates scatter plot projection on 2D feature 
axis. 

. Nucleus segmentation using additional color spaces 
The original RGB color space was complemented by the 

HSV, Lab, LUV, XYZ, YCrCB, YUV spaces. For machine 
learning algorithms, it is preferable to have independent 
features. 

The correlation coefficients for some pairs of color 
components modulo was close to 1, since the transformations of 
these color components pairs are linearly dependent. Color 
coordinates with an absolute correlation coefficient more than 
0.9 were excluded from further analysis. Thus, for further 
research, we used only the R, G, B channels of the RGB space, 
the H, S, V channels of the HSV space, the a, b channels of the 
Lab space, and the Cr channel of the YCrCb space (Fig. 11). 

Fig. 11. Correlation coefficient heatmap for color components with absolute 
value of correlation coefficient <0.9 

To increase the learning speed of the algorithms, 
dimensionality reduction using the principal component analysis 
(PCA) was applied. Explained variance ratio without removing 
components is presented in Table III. 

TABLE III. EXPLAINED VARIANCE RATIO FOR ALL PCA  
COMPONENTS 

Component   Explained variance ratio 
1 0.4728
2 0.2351
3 0.1357
4 0.0992
5 0.0498
6 0.0052
7 0.0018
8 0.0003
9 0.0000 (8e-6)
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It was decided to leave only 5 components, since the number 
of features was halved, and the amount of information was 
reduced only by 0.7%. The figure below (Fig. 12) shows the 
scatter plot of the background (triangles) and the nuclei (circles) 
pixels for the first three components of the PCA. 

Fig. 12. Scatter plot for 3 components of PCA 

Visualizing only three components represents a strong 
overlap of classes. 

A visualization of the distribution of samples across five 
components is shown in Fig. 13. 

Fig. 13. Pair plot for 5 components of PCA 

Fig  13 shows that visual separation of classes after 
artificially expanding the number of features and then reducing 
the dimension using PCA is not improved compared to a model 
using only RGB coordinates. 

D. Nucleus segmentation using phluorophores channels 
We did primary visual analysis with scatter and pair plot just 

like we did it for RGB color space (Fig. 14). 

Fig. 14. Scatter plot and pair plot for phluorophores channels 

Plots are similar to those for RGB color space: classes are 
still hardly separable (especially in FITC and TR channel). 

E. Proposed algorithms 
To find the best algorithm for solving the segmentation 

problem, linear classification algorithms (Linear, Ridge, Lasso, 
Logistic Regression), nonlinear algorithms (Linear, Ridge, 
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Lasso, Logistic Regression with polynomial feature 
transformation), ensemble algorithms (Balanced random forest, 
RUSBoost) and a convolutional neural network (CNN) based on 
the Unet architecture were used. 

1) Linear regression classifier

One of the most simple and fastest classification algorithms 
[13]. The main idea is to solve regression task to minimize the 
following functional: 

2
2min || ||

w
Xw y

where X - feature matrix, w – weight vector, y – target 
vector. 

Finally, the classification task is to determine which side of 
the inflating hyperplane lies concrete sample with its concrete 
features. 

This approach in some cases can lead to overfitting so we 
need to enter some penalties, i.e. L1 and L2. 

2) Lasso regression classifier

This classifier is linear regression classifier improved with 
L1 penalty. The lasso coefficients minimize a penalized residual 
sum of squares [13]: 

2
2 1

1min || || || ||
2w

samples

Xw y a w
n

where a is regularization parameter. 

3) Ridge regression classifier

This classifier is built on ridge regression. The ridge 
coefficients minimize a penalized residual sum of squares [13]: 

2 2
2 2min || || || ||

w
Xw y a w

where X - feature matrix, w – weight vector, y – target 
vector. 

The classifier first converts binary targets to {-1, 1} and then 
treats the problem as a regression task, optimizing the same 
objective as above. The predicted class corresponds to the sign 
of the regressor’s prediction. 

In practice this method is very fast and its results are similar 
to more complex logistic regression. 

4) Logistic regression classifier

Logistic regression classifier is a linear model, that 
minimizes next functional in case of L1 regularization [13]: 

1, 1

min || || log(exp( ( )) 1)
n

T
i iw c i

w C y X w c

where C – inverse of regularization strength, c – bias. 

And in case of L2 regularization [13]: 

, 1

1min log(exp( ( )) 1)
2

n
T T

i iw c i
w w C y X w c

5) Ensemble algorithms

Combining a large number of weakly correlated classifiers 
into a single classifier allows to avoid overfitting and get an 
unbiased error on the test data. 

The two most popular ensemble algorithms are random forest 
and ADABoost [14]. 

In this study, we use the imbalanced learn library with its 
balanced random forest (BRF) implementation (the number of 
estimators is equal to 100, unlimited maximum depth), and 
instead of ADABoost, the RUSBoost algorithm is used, which 
is optimized for working with unbalanced samples (the number 
of estimators is equal to 50 and the maximum estimator depth 
equals to 1). 

6) Convolutional neural network

In this research we utilize CNN with Unet architecture 
proposed in [15] with adding batch normalization layers before 
each activation layer. 

For deep learning the image database was divided into 
training, validation and testing parts in the ratio of 70:20:10, 
respectively. The training process was carried out with mini-
batches of 3 images. Data augmentation was not used, since the 
overfitting was insignificant in this sampling, and any data 
augmentation led to a validation and test accuracy decrease (Fig. 
15). 

Fig. 15. CNN learning process without (left) and with (right) augmentation 

E. Metric and training process 
Sorensen-Dice coefficient as training and validation metric 

was used, it is calculated by the following formula [16]: 

Dice = 2*|True Pred|/True Pred 

where Dice – Dice coefficient, True – true segmentation 
mask and Pred – predicted segmentation mask. 

The training process of linear, nonlinear and ensemble 
algorithms was carried out for a stratified 5-fold split with 
balancing class weights. Previously, data was scaled by 
subtracting the mean and dividing by the variance. 

For the comparison we also deployed the transition to 
polynomial features to improve the quality of linear algorithms. 
Due to the ascending computational costs with increasing 
degree of polynomial transition, the 3-d degree was chosen. 
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III. RESULTS 
A. RGB color space 

The results obtained using the listed algorithms are presented 
in table IV. 

TABLE IV. AVERAGE DICE COEFFICIENT FOR DIFFERENT ALGORITHMS IN 
RGB COLOR SPACE 

Algorithm Average Dice coefficient 
Linear regression classifier 0.6664 
Linear regression classifier 
(polynomial features, n=3) 

0.6664 

Lasso regression classifier 0.6664 
Lasso regression classifier 
(polynomial features, n=3) 

0.6664 

Ridge regression classifier 0.8116 
Ridge regression classifier 
(polynomial features, n=3) 

0.8896 

Logistic regression classifier 0.8808 
Logistic regression classifier 
(polynomial features, n=3) 

0.8965 

BRF 0.9270 
RUSBoost 0.8903 

Unet 0.9089 
The table shows that in some cases polynomial features did 

not increase the Dice coefficient. For linear regression classifier 
and Lasso regression classifier, this can be explained with the 
fact that weights of additional polynomial features in the trained 
model are orders of magnitude less than initial features. 

B. RGB and additional color spaces 
Average Dice coefficients for the same set of algorithms for 

sampling obtained using the sequential expansion of the number 
of features with components from other color spaces and 
reduction of dimension by the PCA are presented in table V. 

TABLE V. AVERAGE DICE COEFFICIENT FOR DIFFERENT ALGORITHMS USING 
COMPONENTS FROM DIFFERENT COLOR SPACES 

Algorithm Average Dice coefficient
Linear regression classifier 0.6664 
Linear regression classifier 
(polynomial features, n=3) 

0.6664 

Lasso regression classifier 0.6664 
Lasso regression classifier 
(polynomial features, n=3) 

0.6664 

Ridge regression classifier 0.8385 
Ridge regression classifier 
(polynomial features, n=3) 

0.9061 

Logistic regression classifier 0.8822 
Logistic regression classifier 
(polynomial features, n=3) 

0.9081 

BRF 0.9265 
RUSBoost 0.8923 

Unet 0.9110 
Lack of change in Dice coefficient for linear and Lasso 

regression classifiers in this case is explained analogously to the 
results interpretation for RGB color space. 

C. Phluorophores channels 
It was determined that the RGB images’ channels exported 

by Isis software do not coincide with the gray-scale images of 
individual fluorophore channels. Therefore, the training 
algorithms were applied to an array consisting of gray-scale 
images for three fluorophores. The results are shown in table VI. 

In this case, adding polynomial features led to the Dice 
coefficient increase for linear and Lasso regression classifiers, 

since some of the new generated features had similar weights in 
comparison with the initial features. This means that part of the 
polynomial features made it possible to obtain some new 
information about the data. Perhaps an increase in the number of 
polynomial features can lead to a further Dice coefficient 
increase for these two algorithms. A Dice coefficient decrease 
coefficient for logistic regression may be explained with 
overfitting on the training data, which led to a decrease in the 
Dice coefficient on the test sampling in cross-validation. 
TABLE VI. AVERAGE DICE COEFFICIENT FOR DIFFERENT ALGORITHMS USING 

PHLUOROPHORES CHANNELS 
Algorithm Average Dice coefficient

Linear regression classifier 0.6664 
Linear regression classifier 
(polynomial features, n=3) 

0.6743 

Lasso regression classifier 0.6664 
Lasso regression classifier 
(polynomial features, n=3) 

0.7428 

Ridge regression classifier 0.8119 
Ridge regression classifier 
(polynomial features, n=3) 

0.8555 

Logistic regression classifier 0.8819 
Logistic regression classifier 
(polynomial features, n=3) 

0.8543 

BRF 0.9300 
RUSBoost 0.8934 

Unet 0.9113 

IV. CONCLUSIONS 
Despite the presence of a sufficiently large number of works 

on the automation of FISH studies to determine the 
amplification of the HER2 gene, it can be noted that currently 
there is not enough information for choosing optimal solution to 
the problems of nucleus segmentation, agglomerate separation 
and signal detection. 

In this paper various classes of algorithms and different 
approaches in image preprocessing for solving the nucleus 
segmentation problem were compared. As a result of the 
research on the available annotated image database, the 
following conclusions can be drawn: 

 using separate grayscale phluorophores images leads to 
the segmentation quality improvement in comparison with the 
results obtained in RGB and extended RGB feature spaces. The 
Dice coefficient in this case is the maximum for almost all 
applied algorithms; 

 artificially expanding the color channels of RGB 
images with subsequent compression by the PCA gives a slight 
segmentation quality improvement in most cases; 

 Balanced random forest is the algorithm with the 
highest Dice coefficient. The Dice coefficient for this algorithm 
was the largest for all three data compilation approaches; the 
maximum value was 0.93. 
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