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Abstract—The article is devoted to the analysis of neural
networks consisting of generalized neural elements.

The first part of the article proposes a new neural network
model — a modified network of generalized neural elements
(MGNE-network). This network developes the model of gener-
alized neural element, whose formal description contains some
flaws. In the model of the MGNE-network these drawbacks are
overcome. A neural network is introduced all at once, without
preliminary description of the model of a single neural element
and method of such elements interaction. The description of
neural network mathematical model is simplified and makes
it relatively easy to construct on its basis a simulation model
to conduct numerical experiments. The model of the MGNE-
network is universal, uniting properties of networks consisting
of neurons-oscillators and neurons-detectors.

In the second part of the article we prove the equivalence
of the dynamics of the two considered neural networks: the
network, consisting of classical generalized neural elements, and
MGNE-network. We introduce the definition of equivalence in the
functioning of the generalized neural element and the MGNE-
network consisting of a single element. Then we introduce the
definition of the equivalence of the dynamics of the two neural
networks in general. It is determined the correlation of different
parameters of the two considered neural network models. We
discuss the issue of matching the initial conditions of the two
considered neural network models. We prove the theorem about
the equivalence of the dynamics of the two considered neural
networks. This theorem allows us to apply all previously obtained
results for the networks, consisting of classical generalized neural
elements, to the MGNE-network.

I. INTRODUCTION

Modeling and studying neural networks is now one of the

priority research areas. At the same time, there is a certain

lack of models of the neural element, on the one hand, rather

simple, and on the other hand,potentially capable of spawning

neural networks with complex behavior. It is also important

to have the opportunity to study the obtained neural networks

by both analytical and numerical methods.

The well-known Hodgkin-Huxley model [1], for exam-

ple, is mathematically complex and allows only computer

research. The same is true for simplifications of the Hodgkin-

Huxley system of equations, as well as for phenomenolog-

ical continuous models like the Hindmarsh-Rose model [2],

FitzHugh-Nagumo [3]–[4], Morris-Lekar [5], Wilson-Cowan

oscillator[6] et al. It is difficult to introduce the mechanism of

mutual influence of neurons into all these models; therefore, it

is difficult to consider large networks based on these models.

On the other hand, many classical discrete models, such as

perceptrons [7], Hopfield networks [8], self-organizing maps

[9], show too simple behavior. This does not allow their

effective use for solving complex cognitive tasks. Modern

neural network models, such as convolutional [10] or recurrent

networks [11], also have fairly simple behavior. The discrete

nature of these models and effective learning algorithms [12]

made it possible to achieve great progress in solving many

practical problems. However, their dynamics are significantly

different from the continuous biological processes that occur in

the human brain. It seems likely that the new generation neural

networks should not only take into account the outstanding

achievements of discrete neural network models, but also

approach biological continuous systems in order to solve truly

complex cognitive problems.

II. GENERALIZED NEURAL ELEMENT

On the way of building this model in [13]–[14] we introduce

model of a generalized neural element (GNE), originally called

the generalized neural automat. Its full formal description is

given in [15].

A. Global model parameters

The generalized neural element is a neural model that

operates in continuous time t and is given by the set of

parameters p; r; α; TR; n; m; q1, q2, . . . , qn and Tm. Positive

values p, r, α, TR and Tm do not change over time and are

the same for all elements included in the neural networks

consisting of GNE. The number of inputs n and outputs m
for each element is fixed,but, generally speaking, may not be

the same for different elements, depending on the architecture

of a particular neural network.

The inputs of each element are characterized by the values

q1, q2, . . . , qn, where n is the number of inputs of this element.

The synaptic weights qi determine the effectiveness of the

input. Each such weight characterizes a unidirectional synaptic

connection that connects the output of one element and input

another. Now and in the future we will consider only links

with positive weights.
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The internal state of an element at time t is given by

three functions: u(t), s(t) σ(t). The function s(t) having

the following values:

s(t) =

⎧⎪⎨⎪⎩
sensibility

generation of impulse

refractory

.

The function σ(t) is equal to one when the element gen-

erates output impulse (spike). This impulse arrives at all m
outputs of a given element. At other times, σ(t) = 0.

Input impulses σ1(t), σ2(t), . . ., σn(t) depend on time point

t. Namely, σi(t) = 1 at all such times t, when impulse enter

by the i-th entrance. At other times, σi(t) = 0.

We introduce auxiliary functions σm
1 (t), σm

2 (t), . . ., σm
n (t).

For each individual i = 1, 2, . . . , n, we set σm
i (t) = 1for all

t ∈ [ts; ts+Tm], where ts is such that simultaneously s(ts) =
{sensibility} and σi(t

s) = 1. At other times, σm
i (t) = 0.

B. Dynamics of an element

We now describe the functioning of the generalized neural

element. At any time point t one of the three following options

is possible.

I. Let s(t) = {generation of impulse}. Then u(t) = p,

σ(t) = 1; for arbitrarily small ε > 0: s(t+ε) = {refractory}.

II. Let s(t) = {refractory}. Then u(t) = 0, σ(t) = 0;

s(tsp1 + TR) = {sensibility}, where

tsp1 = max
τ<t

{τ : σ(τ) = 1}. (1)

III. Let s(t) = {sensibility}. Then σ(t) = 0, and the mem-

brane potential function u(t) is determined by the differential

equation:

u̇ = α(r + q(t)− u), (2)

where the function q(t) is defined as follows:

q(t) =
n∑

i=1

qiσ
m
i (t).

The initial state for the equation (2) is taken the value of u(t0),
which is defined as follows:

u(t0) = u(t0 − 0),

t0 =

{
t∗, if t∗ > tsp1 + TR

tsp1 + TR, if t∗ ≤ tsp1 + TR

,

where tsp1 is determined by (1),

t∗ = max{t+; t−}, t+ = max
i

max
τ≤t

{τ : σi(τ) = 1},

t− = max
i

max
τ≤t

{τ : σm
i (τ) = 1, σm

i (τ + 0) = 0},

where tsp1 — the moment of the last impulse of this element,

t+ — the time of the last input signal to this element, t− —

the moment of the last completion of any input influence on

this element.

An element enters a generation of impulse state if the value

of the membrane potential u(t) is equal to the threshold value

p. That is s(tsp2 ) = {generation of impulse}, where

tsp2 = min
τ>t

{τ : u(τ) = p}.
If the inequality u(τ) < p holds for all u(τ) < p, then s(τ) =
{sensibility} for all τ > t. In this case, the element does not

generate a pulse. The analyzed cases completely exhaust the

behavior of the generalized neural element.

Formally defined membrane potential dynamicsof the gen-

eralized neuronal element corresponds to the development of

the potential of a biological neuron. It is consistent with the

”base neural model” [16] and is close to the model of biologi-

calneuron, built on the basis of differential equations with de-

lay [17]. At the same time, the GNE model is characterized by

simplicity of operation and allowsavoid technical difficulties

associated withintegration of systems of differential equations

with delay. In addition, the GNE model is generalized. In

particular, for p < r, the element behaves like a neurons-

oscillators, and for p > r it is like a neurons-detectors.

This relatively simple model allows you to build neural net-

works with complex behavior (in particular, dynamic attractors

of neural activity) and control this behavior in advance using

synaptic weights [14]; to adapt one and several generalized

neural elements [15]; investigate the behavior of the model

under the influence of bursting [18] and others. All this shows

the promise of both the model itself and the neural networks

it generates.

However, the formal description of the GNE model does

not demonstrate its basic simplicity. Difficulties arose due

to the fact that at first a model of a single neural element

was introduced, the description of which made it difficult to

formalize a dynamically changing external influence. Then, on

the basis of the element model, one or another neural network

was built, the configuration of which changed depending on

the problem to be solved. As a result, the formal description of

the model turned out to be overloaded with technical details,

and the neural networks generated by the model did not seem

to belong to a single neural network class. To overcome these

shortcomings, this article introduces a modified network of

generalized neural elements.

C. Formulation of the problem

Based on the model of a generalized neural element, we

consider an arbitrary network of generalized neural elements

(GNE-network). Then we introduce a mathematical model of

a modified network of generalized neural elements (MGNE-

network). Elements of such a network will have a certain

similarity with generalized neural elements (GNE), but the

network will be introduced immediately.

Next, we prove the equivalence of the functioning of the two

neural networks considered: the GNE-network and the MGNE-

network. This will allow to transfer all previously obtained

results to the class of modified networks. Such an approach

will emphasize the clarity and fundamental simplicity of the

considered neural networks and their belonging to a single

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 195 ----------------------------------------------------------------------------



class, including for the convenience of further analytical and

numerical research.

D. Network of generalized neural elements

Consider an arbitrary neural network consisting of N
numbered generalized neural elements, generally speaking, a

fully connected architecture. Elements with numbers i and j
(i, j = 1, . . . , N ) are connected by a synaptic connection with

a non-negative weight qi,j (qi,i = 0) .

The parameters p, r, α, TR and Tm are the same for all

network elements. The number of inputs n and outputs m
with this description is also the same for all network elements

and is N −1. This arbitrary network consisting of generalized

neural elements will be referred to as the GNE-network. A

model is considered.

E. Initial state

The dynamics of this model is uniquely determined by the

initial stateat the zero moment of time. Let us set the initial

state of the GNE-network. This means that you need to specify

the state of all elements at the zero moment of time, that is,

sk(0) (k is the element number). For simplicity, we assume

that at the zero moment of time, no element generates an

impulse.

Further, for elements for which sk(0) = {sensibility}, you

must specify the values of membrane potentials uk(0) (k =
1, . . . , N ); which neighboring elements influence each given

element (if any),and how much time each such impact will

last. Let us denote the time interval of such an influence from

the i-th element on the k-th element (i, k = 1, . . . , N ) as T i,k
0 .

If there is no influence, we will assume T i,k
0 = 0.

For those elements for which sk(0) = {refractory}, we need

to specify the time after which they will leave the refractory

period. Denote this value for the k-th element as Rk
0 (k =

1, . . . , N ). The initial state of the GNE-network is established.

III. THE MODIFIED NETWORK OF GENERALIZED NEURAL

ELEMENTS

We now introduce a new model — a modified network

of generalized neural elements (MGNE-network). So that the

designations of the parameters of the new network do not

duplicate the parameters of the old network (but there is a

correspondence between them), in all such cases we will use

the upper underscore.

A. Global model parameters

Consider a neural network of N numbered elements that

also function in continuous time t. A network is defined by

the following set of parameters:

• p — membrane potential threshold;

• r — equilibrium value of membrane potential;

• α — speed parameter;

• TR — duration of refractory period;

• W = (wij)
N,N
i=1,j=1 — synaptic weights matrix, wij ∈

0 ∪ �+;

• M = (mij)
N,N
i=1,j=1 — synaptic exposure indicators

matrix, mij ∈ 0, 1.

Positive real parameters p, r, α, TR and the matrix W are

established in advance and do not change during the dynamics

of tne network. The elements of the matrix M change in the

course of the the dynamics of tne network. The elements of

the matrices W and M have the following meaning: wij

is the weight of the synaptic connection leading from the i-
th element to the j-th element; mij is a binary indicator of

synaptic influence, which is transmitted via a link leading from

the i-th element to j-th element. Namely, if at the moment of

time t there is no influence, then mij(t) = 0; if there is an

influence, then mij(t) = 1.

B. Dynamics of such element and initial state

The behavior of an arbitrary k-th element of an MGNE-

network at the time t is determined by two time-dependent

functions:

• Sk(t) — state of element, Sk(t) ∈ {0, 1} ∀t ∀k;

• Uk(t) — membrane potential value, −1 ≤ Uk(t) ≤
p ∀t ∀k.

The function of the state of element Sk(t) has the following

meaning. If at an arbitrary time instant t: Sk(t) = 1, then the

k-th element is in a state of sensibility. If at an arbitrary time

instant t: Sk(t) = 0, then the k-th element is in a state of

refractory.

Let us set the initial state of the MGNE-network at the zero

moment of time:

• for each k we fix Sk(0) = {0, 1}, i.e. part of the elements

is in a state of sensibility, part — in a state of refractory;

• if for an arbitrary k-th element Sk(0) = 0, then Uk(0) =
Uk
0 , Uk

0 ∈ [−1, 0) ;

• if for an arbitrary k-th element Sk(0) = 1, then Uk(0) =
Uk
0 , Uk

0 ∈ [0,min(r, p));
• mij = 0 ∀i, j is the absence of the initial effect of the

elements on each other.

Turning to the description of the dynamics of the MGNE-

network, we introduce some definitions.

We will say that at the moment of time t∗ a 0-event occurs

for the k-th element, if ∃k : Sk(t∗) = 0, Uk(t∗) = 0. The

biological meaning of the 0-event is the exit of the k-th

element from the state of refractory.

We will say that at the moment of time t∗ a p-event occurs

for the k-th element, if ∃k : Uk(t∗) = p. The biological

meaning of the p-event is the generation of the k-th element

of the nerve impulse (spike).

Under the influence of these events in the MGNE-network

the following changes occur.

If at the time moment t∗ a 0-event occurs for the k-th

element, then

• Sk(t∗ + 0) = 1 (the k-th element goes into a sensibility

state);

• mik = 0 ∀i (eliminates external influence on the k-th

element).
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If at the moment of time t∗ a p-event occurs for the k-th

element, then

• Sk(t∗ + 0) = 0 (the k-th element generates an impulse

and immediately goes into a state of refractory);

• Uk(t∗ + 0) = −1 (depolarization of the membrane

potential);

• mkj = 1 ∀j (the k-th element begins to affect the

remaining network elements).

If at the time moment t∗ in the MGNE-network several

events occur for different elements, first, all 0-events are

processed in an arbitrary order (for example, in ascending

element numbers),then all the p-events, also in an arbitrary

order.

Between events, binary values Sk(t) do not change. Only

the values of membrane potentials Uk(t) change. We define

the mechanism of these changes, thereby setting the network

dynamics at arbitrary points in time.

At zero time there are no events in the MGNE-network.

Starting from zero time and to the first event in the considered

network the dynamics of an arbitrary k-th element at an

arbitrary time instant t is defined as follows.

If Sk(t) = 0, then Uk(t) is the solution of the differential

equation

U̇k =
1

TR

(3)

with the initial state Uk(t0) = Uk(0) = Uk
0 .

If Sk(t) = 1, then Uk(t) is the solution of the differential

equation

U̇k = α(r +

N∑
i=1

mikwik − Uk) (4)

with the initial state Uk(t0) = Uk(0) = Uk
0 .

The dynamics of the MGNE-network between any pair of

consecutive events is determined in a similar way at time

points t1 and t2 (t1 < t2). For the initial state, t1 with known

values of Uk(t1) ∀k is taken as the time point.

The presentation of the modified network model of gener-

alized neural elements is completed.

The function graph “Fig. 1” shows the example of possible

dynamics of k-th element of the MGNE-network provided

r > p. The function of the membrane potential Uk(t) changes

stepwise at the moments of p-events of other elements. In

particular, at the moments of p-events of other elements,

the exponential asymptotic behavior of the function Uk(t)
varies depending on the elements of the matrix W . Thus, the

influence of the elements within the MGNE-network on each

other is determined by the weights of the connections between

them. Namely, the larger the weight wik, the faster the p-event

(spike generation) for the k-th element.

The equation (4) is similar to the equation proposed by

J. Hopfield in 1984 for describing the continuous network [7],

but much simpler than it,because between each pair of events

is an equation with constant coefficients. The equation (4)

does not containand the lagging argument, which distinguishes

Fig. 1. Example of dynamics of the k-th element of the MGNE-network

it favorably from the Hopfield-type neural network models

described by the delay equations [8].

All this makes it easy to explore MGNE-networks of

arbitrarily large size and arbitrary topology,as well as simulate

their dynamics on a computer in numerical research.

IV. EQUIVALENCE OF THE DYNAMICS OF THE TWO

CONSIDERED NEURAL NETWORKS

Let us turn to the proof of the equivalence of the dynamics

of the two neural networks considered: the GNE-network and

the MGNE-network.

A. Equivalence definition

First introduce the definition of the equivalence of the

dynamics of a generalized neural element and a separate

element of the MGNE network.

Definition 1. We will say that the generalized neural element
and the element of the MGNE-network with the number k
have equivalent dynamics,if in the same time scale and at any
arbitrary time moment t the following is done:

• if a generalized neural element generates an impulse,
then a p-event occurs for the k-th element of the MGNE-
network;

• if the generalized neural element is in a state of refrac-
tory, then for the k-th element of the MGNE-network
Sk(t) = 0;

• if the generalized neural element is in a state of sensi-
bility, then for the k-th element of the MGNE-network
Sk(t) = 1.

Next we introduce the definition of the equivalence of the

dynamics of the neural networks in general.

Definition 2. We will say that the GNE-network and the
MGNE-network have equivalent dynamics if

• on these two networks the same number of items;
• in these two networks can be numbered elements so that

each i-th generalized neural element and i-th element of
the MGNE-network have equivalent dynamics.
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B. The correspondence between the parameters of the models

Next, we establish a correspondence between the parameters

of the models of the GNE-network and the MGNE-network.

Namely:

N = N, p = p, r = r, α = α,
TR = TR, wij = qi,j , Tm = +∞.

(5)

It is also necessary to agree on the initial states for the

GNE-network and the MGNE-network. Namely, let it be at

zero time:

Sk(0) =

{
1, sk(0) = {sensibility}
0, sk(0) = {refractory} (6)

It is also necessary to synchronize the values of the mem-

brane potentials of all elements at the zero point in time:

Uk(0) =

{
uk(0), if sk(0) = {sensibility}
−Rk

0/TR, if sk(0) = {refractory} (7)

Finally, we impose the state of the absence of external

influence in the GNE-network at zero time:

T i,j
0 = 0 ∀i, j. (8)

In the MGNE-network, this corresponds to the condition

mij = 0 ∀i, j. It has already been imposed when setting the

initial state of the MGNE-network.

C. Theorem about equivalent dynamics

We formulate and prove the following theorem.

Theorem 1. Let an arbitrary GNE-network and MGNE-
network be given, whose parameters satisfy the formulas (5),
and the initial state are selected according to the formu-
las (6) — (8).

Then this GNE-network and the MGNE-network have equiv-
alent dynamics in the sense of definition 2.

Proof. The condition N = N means that there are an equal

number of elements in the GNE-network and the MGNE-

network. Consistently numbering the elements in these net-

works. Consider a generalized neural element (included in

this GNE-network) and an element of this MGNE-network

with the same arbitrary number k. It is necessary to show that

these elements have equivalent dynamics, that is, to check the

conditions of Definition 1 at an arbitrary time instant t.
We first consider the situation with t = 0. As already noted,

there are no events in the MGNE-network at the zero point of

time. There are no events in the MGNE-network at the zero

point of time too. That is neither the impulse generation by

any element nor the output of any element from the state of

refractory occurs either in the GNE-network. The formula (6)

provides a consistent choice of the state of the k-th generalized

neural element and k-th element of the MGNE-network. Thus,

the conditions of Definition 1 are satisfied for t = 0.

Now consider the time interval (0; t1), where t1 is the

moment of the first time event in the MGNE-network. The for-

mula (7)–(8) and the equation (2) of model of the generalized

neural element ensure that for t ∈ (0; t1) in GNE-networks

neither does the generation of an impulse by any element, nor

the output of any element from the state of refractory.

This makes it easy to consider the dynamics of changes in

the membrane potential of the k-th generalized neural element

and k-th element of the MGNE-network at once over the entire

span of (0; t1). Depending on the state of the generalized

neural element, two cases are possible.

If sk(0) = {refractory} and by condition (6) Sk(0) = 0,

then condition Uk(0) = −Rk
0/TR ensures the output of the

k-th generalized neural element from the state of refractory

and the 0-event for the k-th element of the MGNE-network

(taking into account the equation (3)) at the same time instant

Rk
0 . In particular, sk(t) = {refractory} and Sk(t) = 0 for

t ∈ (0; t1).
If sk(0) = {sensibility} and by condition (6) Sk(0) = 1,

then condition Uk(0) = uk(0) provides the following. The

equation (2) of the dynamics of a membrane potential of a

k-th generalized neural element takes the form u̇k = α(r −
uk) with the initial state uk(0) = uk

0 . The equation (4) of

the membrane potential dynamics of the k-th element of the

MGNE-network takes the form U̇k = α(r−Uk)with the same

initial state Uk(0) = Uk
0 . Obviously, their solutions uk(t) and

Uk(t) coincide as t ∈ (0; t1). This means that the generation of

impulse given k-th generalized neural element (with uk(t) =
p) and the p-event for a given k-th element of the MGNE-

network will occur at the same time.

At least, if there is no external influence on the considered

elements in their networks. If such an external effect occurs,

then a consistent form of the equations (2) and (4) will

also provide the same dynamics of changes in membrane

potentialsfor the k-th generalized neural element and the k-

th element of the MGNE-network. Let’s demonstrate it a bit

later. For the time being, for t ∈ (0; t1) the conditions of

Definition 1 are fulfilled.

At the moment of time t1 some event occurs for the

j-th element (including, possibly, j = k) of the MGNE-

network. Considering the dynamics of the j-th generalized

neural element with t ∈ (0; t1), it is easy to verify that it

is at the time point t1 this j-th generalized neural element

either generates an impulse or goes out of a state of refractory.

Namely, if in the MGNE-network a 0-event occurs for the j-th

element, then the j-th generalized neural element goes out of

a state of refractory.

If, however, an p-event for the j-th element occurs in the

MGNE-network, then the j-th generalized neural element gen-

erates an impulse. This is achieved by matching the parameters

of the networks (4) and the coordinated specification of the

initial state (6) — (8). The actions during the processing of a 0-

event and a p-event occurring in the description of the MGNE-

network model result in the state Sj(t)and the dynamics of the

membrane potential of the j-th element of the MGNE-network

(and all the others in the case of a p-event) are changed so

thatconditions of Definition 1 are met at t = t1.

Moreover, changes in the matrix M of indicators of synaptic

effects (in the case of a p-event) lead to a change in the right

side of the equation (4) for some elements of the MGNE-
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network (it is possible that the k-th element). But exactly the

same changes for GNE with the same numbers undergo the

right side of the equation (2), which describes the dynamics

of the GNE membrane potential. This is due to the stepwise

form of the functions σm
i (t) and the condition Tm = +∞.

Now consider the time interval (t1; t2), where t2 is the

moment of the next time event in the MGNE-network. In this

interval, the reasoning is carried out in a similar way. Then

we can consider the point in time t2 and so on.

Since both models are deterministic, the conditions of

Definition 1 remain valid for arbitrary k-th GNE and k-th

element of the MGNE-network. This means that the GNE-

network and the MGNE-network have equivalent dynamics in

the sense of definition 2. The theorem is proved.

V. CONCLUSION

This theorem allows us to apply all previously obtained

results for the networks, consisting of classical generalized

neural elements, to the MGNE-network.

The MGNE-network is able to dynamically store a given

sequence of impulses. If we accept the hypothesis about the

wave nature of memory, then the MGNE-network can be

considered as a model of a neural population that stores a trace

of memory. Moreover, the values of the mismatch between

events are information carriers. The results obtained can be

used in problems of researching the capabilities of networks, as

well as in their practical implementation on neurocomputers.
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