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Abstract—The paper is dedicated to optimization of machine
learning and neural networks applications by replacing common
servers with Single Board Computer (SBC) clusters to minimize
mounting and service expenses, simplify node mounting process
and organize parallel computing in IoT applications. Authors
focus on former experience of using distributed computing,
mainly, light-weight and cost-optimized SBCs to classify use-
cases, then, choose an appropriate hardware platform enabling
sufficient data processing and easy hot-replacement of nodes. This
task requires organizing an efficient software architecture to make
use of advantages of SBCs. A comparison for various SBSs is
presented. Authors suggest their formerly-designed architecture
with changes allowing using it for neural network applications.
Authors pay attention to thorough parameter examination based
on numerous tests. Parameter timelines are presented. The paper
describes a number of test-cases to validate the efficiency of
suggested architecture based on common use-cases. Performance
analysis and cluster scalability potential estimation are conducted
as well to estimate an efficient number of nodes required for
future tasks.

I. INTRODUCTION

Nowadays, IoT-based technologies (Internet of Things)
become an indispensable part of our daily life. Our dependence
upon the Internet and the devices is increasing at a fast
pace. Key communication technologies enabling using IoT are
WSN (Wireless Sensor Network), machine-to-machine (m2m)
communication, human-machine interaction, web services, in-
formation systems, etc [1]. Domain intaken IoT technology
implementation has grown dramatically over the last decade.
One of the most popular IoT applications is smart houses
and home automation. Interconnected devices which may
be controlled remotely, smart metering applications to save
energy, water, and other resources are the state of art issues.

Constantly emerging modern IoT device management sys-
tems support more sophisticated deep-learning technologies
making use of neural networks to capture and analyze the
environments. Amazon Echo intended to comprehend and
implement human voice commands is one of the examples
[2]. Deep learning applications for IoT devices often require
pseudo-real-time functionality, such as security camera-based
recognition tasks, requiring low latency to respond target
events: strangers in the house or unattended objects left in
subway or airport [3], [4].

Convolutional neural networks (CNN) have been inten-
sively researched and used in large-scale data processing due
to their comparable classification accuracy [5], [6]. However,
executing CNNs locally on mobile and embedded devices
requires large computational resources and has great memory
consumption that are not usually possible in IoT platforms.
Moreover, by drastically increasing the number of devices
connected to the Internet, the network latency increases.

CNN consumes a lot of computational resources and re-
quires powerful computers (supercomputers) with the latest
GPU. But supercomputers consume a lot of energy, are ex-
pensive and takes a lot of space. Another option is to use
common clusters which are still expensive. An alternative
to common clusters (a number of interconnected desktop
computers) is Single Board Computer (SBC) clusters. Interests
in Single board computer clusters are raising since the first
Raspberry Pi was in 2012 [7]. SBC clusters domain is still
being researched and developed. New more powerful SBCs
are emerging every year. One of such devices is RockPro64
[8] released in June 2018. The distributed computing domain
requires fare scalability as well as cluster price optimization.

In this paper, we present RockPro64 cluster. We design
ROCK-CNN, an architecture for locally distributed convo-
lutional neural network for RockPro64 cluster adaptive for
resource-constrained IoT devices. CNN model implementation
use cases, such as dealing with images, texts and time series
data, are displayed.

There is no particular researches, where RockPro64 clus-
ters’ performance was tested. To evaluate the RockPro64
cluster, performance tests were conducted and compared to
existing SBCs such as a Raspberry Pi 3B+ [9] and Odroid C2
[10]. Parameters such as a temperature, memory footprint and
performance were tested.

We organize this paper as follows: in section II, related
works on SBC clusters are presented; problem statement and
development pipeline are shown in section III; preliminary
architecture of ROCK-CNN is described in section IV; we
introduce three use-cases of CNN model in section V (object
recognition, sentiment analysis and time-series data); experi-
ments using High performance LinPack tests are provided in
section VI, where performance, temperature, memory footprint
were tested for RockPro64 cluster. Finally, we summarize the
results in conclusion (section VII).
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II. RELATED WORKS

Superficial investigations had led to the conclusion that
supercomputers are widely used for multi-modal pseudo-real-
time analyses, but they are still not a panacea as they are very
resource-consuming and expensive, while concurrent and par-
allel data processing is more efficient than resource-consuming
processing [11]. In this section, we focus on overview and
analysis of the existing experience of using SBC clusters to
organize a cheaper regarding to supercomputers, but still, a
powerful way to process such data using machine learning and
neural networks. Our research has shown that the optimization
of resource costs by using SBC clusters is not a fresh trend,
but every task requires using different approaches and cluster
organization. In this section, we strive to classify the existing
methods and apply one of the classes‘ methods with some
domain- and data-specific changes to solve our tasks (Table
I).

The above mentioned SBC applications include number of
use-cases. First of all, it is possible to use the technology
for educational purposes to supply educational and learning
process (Table I). Students could learn and understand practi-
cally how to work with a parallel distributed system including
running various frameworks based on different platforms to
measure sets of parameters such as bandwidth, energy ef-
ficiency, temperature, latency, and conduct experiments for
further investigations.

Another use-case is edge computing (Table I). The tech-
nology is crucial for 5G networks enabling a dramatic in-
crease in number of devices connected to network. Moving
computational resources closer to end-user (end-device) is
possible cost-efficiently only when using Fog computing or
Edge computing, which results in data transmission latency
improvement [27]. The cost that is necessary for adding extra
node is less than to expand nodes in a traditional cluster.
Moreover, SBC clusters can be configured to be more robust
to hardware failures by offering computational and storage
redundancy [7] to produce a more reliable system.

One more use-case accompanied by DNN (deep neural
network) or CNN (convolutional neural network) when the re-
sources are limited, enables to partition, distribute and schedule
data processing tasks for highly-efficient and less resource-
consuming tasks within a cluster of locally connected (within
a local network) relatively cheap devices are still a challenge
[24]. Existing projects MoDNN [25] and DeepThings [24]
deploy DNN/CNN on lightweight end-point platforms such
Raspberry Pis and Android smartphones. The DNN/CNN par-
tition decision is based on computational capabilities and RAM
of end-point devices. MapReduce as a balancing model is used
at runtime in MoDNN project, however it is not an open-
source product. DeepThings uses heuristic load-balancing al-
gorithm, however it is not supported any more. Nevertheless,
DeepThings model could be enhanced and used as a basic
model.

The mentioned above use-cases can not only be used
separately, but could form a set of complementary decisions
for one solution.

TABLE I. SBC USE-CASES

Use case Work/Year End devices Task

Education Glasgow [12] 56 Raspberry Pi - cloud computing
2013 - cloud data

center cluster
Iridis Pi [13] 64 - computing
2014 Raspberry - performance in

Pi Model B Hadoop distributed
system

Bolzano [14] 300 - cloud computing
2013 Raspberry Pis research

- mobile data center
Pibrain [15] 8 Raspberry - developing concurrent
2014 Pi Model B programs to run on

PiBrain
GCHQ- 66 - different experiments
Bramble [16] Raspberry with various techniques,
2015 Pi Model B approaches, libraries,

frameworks
Wee 16 Raspberry - running Linpack tests
Archie Blue [17] Pi Model
2017 3Bs
Pfalz- 25 - educational activities
graf [18] Raspberry for High performance
2014 Pi Model B computing

Edge Helmer [19] 7 Raspberry - cloudlets
computing 2016 Pi 2

Claus [20] 300 Raspberry - docker container
2016 Pi architecture for SBC

clusters
Gand [21] 8 Raspberry - a container
2020 Pi 2B management platform

deployed on a
cluster of SBCs

Lorenzo [22] 300 Raspberry - deploying
2017 Pis OpenStack Swift platform

on an SBC cluster
Marcos[23] - not mentioned - distributed
2018 data stream processing

Distributed Deep- 6 Raspberry - distributed execution of
neural network Things [24] Pi 3 CNN-based applications

2018 on tightly resource-
constrained IoT edge
clusters

MoDNN [25] 4 LG Nexus 5 - distributed mobile
2017 computing system for

DNN applications
DDNN [26] not - distributed deep
2017 mentioned neural network

III. PROBLEM STATEMENT AND DEVELOPMENT PIPELINE

Based on the review we defined and efficient deployment
of CNN in a RockPro64 cluster as one of our goals as well
as producing a number of metrics to validate the efficiency.
Resultant clusters with a properly deployed CNN could be
used for edge computing as well in the future.

Most of the software packages for common clusters need to
be recompiled and optimized for deploying machine learning
libraries and CNN in SBC clusters. Existing works on deploy-
ment of CNN in SBS such as MoDNN [25] and DeepThings
[24] are still under research and there is still no open-source
version and supported solutions.

The preliminary flow of the research steps is displayed
in Fig. 1. Efficient partitioning, deployment, balancing and
scheduling a CNN inference within locally connected resource-
constrained of IoT edge device cluster is still a challenging
task.

IV. ARCHITECTURE OF THE SYSTEM

The proposed 4-layer architecture is based on our previous
works [28]. The architecture of the system named ”ROCK-
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Fig. 1. Development pipeline

CNN” is displayed in Fig. 2. The first layer is a data collecting
layer. Various IoT devices such as video cameras, temperature
and/or humidity sensors, smart watches, etc. generate a flow
of data that needs to be analyzed to be applied for other tasks.

The second layer is a light-weight analysis layer, consisting
of micro-services such as image/video, text, time-series data
bundles REST APIs. The services filter the data to fit the data
type and inform the source devices if data is not recognized.
In this work, we are investigating three use-cases to deal with
various data formats. The first micro-service is related to tasks
for computer vision such as face recognition, object detection,
object classification, etc and denies the content if it does not
fit. Another case is related to NLP and sentiment analysis
in particular. Sentiment analysis is an extremely useful tool
to monitor the trends and people‘s opinions, especially for
marketing purposes in a particular domain (restaurants, tours,
hotels etc). Analyzing reviews and feedbacks in social media or
other review platforms (eg. TripAdvisor) enables optimization
of business-processes to fit user or client requirements. The
third micro-service is intended to accept and pre-analyze time
series such as ECG, measurements from sensors, etc. The
purpose of the pre-processing layer is to filter and sort the
incoming data, to reject the one not intended for any of the
services, and to free up the core of processing irrelevant data.

All the data recognized as relevant and supported is an-
alyzed in SBC cluster. Head node or master node as a core
managing component plays the main role in delegating tasks
to nodes of the cluster. CNN-based data analyses are the most
resource-demanding components [24]. Prior to execution, Core
Manager accepts structural parameters of CNN model as an in-
put and provides them to CNN Partitioner module. Partitioner
module has its own parameters decomposes any incoming
data frames from local data sources into distributable and
light-weight inference local tasks according to pre-computed
CNN partitioner parameters. Then Scheduler monitors and
distributes tasks among the nodes. If the task queue is empty
for particular nodes, they start stealing tasks from the nodes
that are organized in a peer-to-peer connection. As soon as all
the nodes have done processing, results are collected, merged
and sent to the head node. At the processing stage CNN
frameworks (DeepThings [24], Tensorflow [29], MXNET [30]
etc.) could be used depending on the tasks.

The last layer is responsible for result representation. We

Fig. 2. Architecture of ROCK-CNN

have organized the layer to represent the result of three use-
cases: 1) object recognition and face detection to count the ob-
jects passed through the gate; 2) sentiment analysis to deal with
text for business applications to optimize business-processes
in the representation of produced goods; 3) time-series data
such as ECG, EEG, and others for medical applications to
predict the disease or to estimate the required steps when
weather forecasts of internal climate timelines are processed
to eliminate the possible effects.

V. USE-CASES OF CNN MODEL

A. Object recognition

Object detection is one of the use cases of CNN model.
Example of CNN model for object detection is presented in
Fig. 3.

CNN model for object detection has numerous layers such
as convolutional, subsampling (pooling), fully connected, etc.

B. Sentiment Analysis

The general CNN model for sentiment analysis is shown
in Fig. 4.
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Fig. 3. CNN model of an object recognition, as an example

Fig. 4. Sentiment Analysis model architecture

First of all, sentences that need to be analyzed are trans-
ferred into a matrix. The rows of each sentence matrix are
represented as a word vector. We perform convolution in the
matrix applying filters. After that maximum pooling function
is applied to each feature map. Finally, softmax function
consumes the vector from a fully connected layer and produces
a result as positive/negative sentiment output.

C. Time-series data

A large diversity of data is stored in a time-series format:
these are climate control measurements, medical test results,
stock indices, etc. They can be used in a variety of applications
as a forecast and disease prediction source or to identify
stock market anomalies. Researches have proved that CNN
for time series classification has a number of advantages over
other methods: they form highly noise-resistant models able

to present informative deep features [31] independent of the
current time. In the Fig. 5 we depict the general architecture
of the CNN model for time-series data.

Fig. 5. Time-series data model architecture

On the transformation stage, various functions are applied
to input time-series data such as smoothing, discretization etc.
In local convolution step, 1-D convolution with different filter
resolutions is applied and the maximum pooling is used. Every
convolutional layer is followed by a maximum pooling layer.
During the full convolution step, all the outputs of previous
stages are concatenated and more convolutional and maximum
pooling layers are engaged. Then, results are merged and to
form a flat vector which is used as an input to a layer connected
to softmax function. As a result, a predicted distribution is
formed.

VI. EXPERIMENTS

A. Experimental SBC-based environment

The cluster consists of 24 RockPro64 single board com-
puters (SBCs). In our experiments, we use only 22 nodes.
RockPro64 is a 64-bit computer built on a Rockchip RK3399
hexa-core system-on-chip integrating a dual-core ARM Cortex
A72 2 GHz and quad-core Cortex A53 processors provided
with a quad-core Mali-T860MP4 GPU and up to 4GB of
LPDDR4 dual-channel system memory runned by Ubuntu
Mate operating system. A 64 Gb Multi-Media card (eMMC)
is embedded. The cluster provides a MikroTik CRS326-24G
switch and a MikroTik hap-ac2 router. The SBC cluster is dis-
played in Fig. 6. Six coolers prevent SBCs from overheating.

B. High Performance Linpack

RockPro64 cluster‘s performance was tested using High
Performance Linpack (HPL) tests. HPL is a portable and open-
source software package that enables to test the dense linear
systems to measure the Floating Point Operations per second
(FLOPS) on distributed-memory computers [33]. It was chosen
as a widely used and freely-available kit supporting most of the
relevant systems[34]. For distributing tasks among the nodes
a Message Passing Interface (MPI) is used that allows to
communicate with processes executing the same task. As an
implementation of MPI, MPICH (Message Passing Interface
CHameleon) was used. HPL requires applying BLAS (Basic
Linear Algebra Subprograms) to perform basic vector and
matrix operations [33]. It includes three functional levels:

1) vector operations;
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Fig. 6. RockPro64 cluster

2) matrix-vector operations;
3) matrix-matrix operations.

As a library for linear algebra, ATLAS (Automatically
Tuned Linear Algebra Software) was used.

C. Performance

The performance of the cluster was tested and HPL.dat file
was generated according to the characteristics of RockPro64.
Cluster performance is presented in Fig.7.

Fig. 7. Comparison of performance

We compared RockPro64 with existing research [7] where
performance of Raspberry Pi 3 B+ and Odroid C2 on 16
SBCs are tested. RockPro64 cluster has 22 nodes achieving

100 GFlops. All measurements stop at 80 % memory usage
because of some RAM resources are required for the operating
system.

Comparison of Raspberry Pi 3B+, Odroid C2, and Rock-
Pro64 is presented In Table II. Most of the research works are
comparing Raspberry Pi models with Odroid C2 and others
[7],[32]. A comparison of RockPro64 with other SBCs is not
discussed in researches yet. RockPro64 is one of the most
powerful SBC released by Pine64 guaranteeing at least a 5-
years support [8]. We have built a RockPro64 cluster displayed

TABLE II. COMPARISON OF SBCS

Raspberry Pi 3B+ Odroid C2 RockPro64

RAM (GB) 1 2 4
LPDDR2 LPDDR2 LPDDR 4
SDRAM SDRAM

SoC 4 x ARM 4 x ARM 4 x ARM
Cortex-A53 Cortex-A53 Cortex-A53

2x ARM
Cortex A72

CPU Broadcom Amlogic Rockchip
BCM2837B0 S905 RK3399

Pocessor 4 4 6
cores

Processor 1,4 1,5 1,8
speed (GHz)

GPU Mali-450 VideoCore Mali-T860
IV MP4

Input power, 5 4.8 - 5.2 12
voltage(V)

Price ($) 35 46 79

in Fig. 6 to test and optimized the use-cases as the most
powerful and productive one scarifying price expenses.

D. Temperature

During testing the RockPro64 cluster, the temperature was
measured with a rate of 10 seconds. The data of sensor temper-
ature is accessible through the sys catalog of the file system.
The standard path is /sys/class/thermal/thermal zone0/temp. In
the Fig. 8 we compare two nodes: master node nearest to
coolers and the node located on the opposite side far away from
coolers. During the first 15 minutes, the coolers were turned

Fig. 8. Temperature timeline for master node and node-18

off and the tests were running, so the maximum temperature of
the master node is about 80◦C. But compared to another node
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the temperature in the master node raises drastically because of
running additional tasks. Coolers are turned on 15 minutes later
the master‘s node temperature drops dramatically compared to
node18 due to its location.

A comparison of two nodes compared to the master node
is presented in Fig. 9.

Fig. 9. Comparison of temperature for nodes

Node-14 is closer to coolers as a master node. Within
the first 15 minutes, node-18 and node-14 behave differently
as far as temperature is considered, node-14’s temperature is
increasing dramatically. The reason is that the nodes are not
balanced and not optimized for parallel task processing, and
an appropriate load balancer has to be configured and used to
schedule a distribute the tasks equally.

In Fig. 10 is shown the average temperature of CPU in
each node for 3 hours. The scheme of location each node

Fig. 10. Temperature timeline for master node and executing nodes

is presented in Fig. 11. The maximum temperature is 52◦C,
minimum 42◦C. Average temperature of nodes, that are near
the cooler, is less than others.The risk of destruction is 125◦C.

Fig. 11. Distribution of nodes in a rack

E. Memory footprint

The memory footprint of each node is presented in Fig.12.
Every node was tested within different memory consumption
percentage configurable in the configuration file prior to run-
ning the tests. A current maximum of 22 nodes consuming
80% of memory has shown the performance of 100 GFlops.
All the nodes have shown the performance of 80 GFlops when
loaded with 20% memory usage displaying a fare rate of
efficiency.

Fig. 12. Memory footprint

VII. CONCLUSION

In this paper, we presented a RockPro64 cluster that con-
sists of resource-constrained SBCs. We proposed a preliminary
architecture of ROCK-CNN for distributed CNN and evaluated
it with use-cases for basic tasks using a CNN model. The
performance of RockPro64 has been tested by running Linpack
HPL tests and has shown 100 GFlops for 22 nodes. Compared
to Raspberry Pi 3B+ it is almost twice more powerful and may
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be used in applications requiring optimal performance-price
ratio. An organized RockPro64 cluster has shown the efficiency
of the cooling system allowing continuous data processing
with no overheating. The maximum temperature of the nodes
does not exceed 52◦C during the tests while stated junction
temperature is 125◦C, however experiments has shown that
node load balancing is still not perfect and appear to be a
challenging task.

To organize a CNN cluster-based platform we used an
already developed for our previous research architecture, which
still had to be adopted for new tasks.A verified 4-layer archi-
tecture was taken along with total core renovation: semantic
web services were replaced with neural network- and machine
learning-oriented component such as load balancer, partitioner
and a set of models introduced to new architecture. Produced
architecture references to third-party as DeepThings [24] as
well to improve data processing by adopting open-source
functionality of the latter.

Future work requires a detailed and thorough analysis of
presented use-cases for CNN-models: face recognition, senti-
ment analysis and time-series data and performance analysis
for each case as well as an improvement work on load
balancer to make an efficient use of resources. Designing and
developing a scheduler to distribute tasks among the ROCK-
CNN nodes is the task of high priority, too.
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