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Abstract—The curve or surface fitting problem to the given
data set is treated as the one of comparison of the distance
function with its suggested approximation. The comparison is
performed in terms of statistical characteristics for the two sets
of random variables. The approach is exemplified via the sets
generated by single ellipse or a pair of ellipses.

I. INTRODUCTION

The curve or surface fitting problem is one of the nonlinear
optimization challenges with multiple applications in cluster-
ization, computer graphics and computer vision, image and
video processing [1], [2], [3], [4]. Given data set

P = {pi}, pi ∈ R
n, i = 1, N, n ∈ {2, 3},

the problem is stated as of selection the manifold best fitting
to P in the meaning of minimization of an appropriate metric.
This manifold is frequently selected in an implicit form

G(X) = 0, X ∈ R
n, n ∈ {2, 3} (1)

where G stands for a polynomial, whereas metric is taken as
a sum of squares of the (geometric) distances from the points
from P to (1):

N∑
i=1

d2(pi, G) → min .

For practical reasons, the solution to this problem is sought in
the set of polynomials of the lowest possible degree. However,
even in the case degG = 2, i.e. quadric polynomials, solution
is met several obstacles one of which is related to the problem
of distance evaluation from a point to a quadric. For the aims of
parametric synthesis, the distance is to be represented explicitly
as a function of parameters involved into the problem, i.e.
the coordinates of a point and coefficients of G(X). Such
a formula is hardly expected for the general case of G(X)
and, therefore, in modeling practice, the true distance function
is replaced by its easier evaluated approximations. Dozens of
such approximations have been suggested in current literature
for the case of planar quadrics; for the qualitative comparison
of some of them we refer to [5], [6], [7].

Extensions of these formulas to the 3D case or to the higher
order planar curves is not always possible. An example of
such a universal formula is given by the so-called Sampson’s
distance [8], [9], [10], [11]:

d1(pi, G) =
|G(pi)|

‖∇G(pi)‖ . (2)

Here ∇G stands for the gradient column vector and ‖ · ‖ is
the Euclidean norm.

A new point-to-algebraic-manifold distance approximation
can be expressed by the formula

d2(pi, G) = (3)

|G(pi)|
‖∇G(pi)‖ ·

(
1 +

∇GT (pi) · H(G(pi)) · ∇G(pi)

2‖∇G(pi)‖4 G(pi)

)
.

Here T stands for transposition, H(G) is the Hessian of G(X).

The validity of this approximation has been verified in
[12] for the case of 2D and 3D quadrics [12] and for some
planar algebraic curves in [13]; in the latter paper, this visual
comparison of the level curves dj(X,G) = const with the
offset (equidistant) curves to (1).

In the present paper we deal with the formula (3) validation
for arbitrary algebraic curves via generation of data set with
predefined estimations of the distance values. This approach
should be treated as a generalization of analysis of the point-
to-ellipse approximations carried out in [5], [6], [7].

II. PLANAR CURVES AND VISUALISATION

We start a visual comparison of the formulas (2) and (3)
with the verified in [12] case of the quadric

G(X) := XTAX + 2BTX − 1 = 0 ,

where A = AT ∈ R
n×n, n ∈ {2, 3}, and {X,B} ⊂ R

n

are the column vectors. Formula (2) is represented as

d1 =
1

2
· |G(pi)|√

(Api +B)T (Api +B)
. (4)

and formula (3) is represented as

d2 = d1

(
1 +

1

4

(Api +B)TA(Api +B)

[(Api +B)T (Api +B)]2
G(pi)

)
. (5)

As an example we take the ellipse

G1(x, y) :=
x2

16
+ y2 − 1 = 0

with the aspect ratio = 4 to better visualize distortions, which
both formulas (4) and (5) produce. Here on Fig. 1 and Fig. 2
and further in this section we show level curves dj(X,G) =
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Fig. 1. Level curves d1 = const for ellipse G1(x, y) = 0 (indicated bold)

Fig. 2. Level curves d2 = const for ellipse G1(x, y) = 0 (indicated bold)

const from 0.25 to 3.00 in increments of 0.25. Analysis of the
appearance of distortions in certain areas was in [12].

Fig. 3 and Fig. 4 illustrate how formulas (2) and (3)
perform in the case of the complex high-order reference curve
[2]

G2(x, y) :=

(
y5 + x3 − x2 +

4

27

)(x
2
+ 1

)
= 0.

Fig. 3. Level curves d1 = const for high-order curve G2(x, y) = 0
(indicated bold)

Fig. 4. Level curves d2 = const for high-order curve G2(x, y) = 0
(indicated bold)

Despite the fact that the distortions seem huge, the usage
of Sampson’s distance in the fitting process on noised random
point cloud based on curve G2(x, y) = 0 shows an appropriate
result [3].

For the last example in this section we choose a well-known
curve, so-called Folium of Descartes

G3(x, y) := x3 + y3 − 3xy = 0.

Fig. 5. Level curves d1 = const for Folium of Descartes G3(x, y) = 0
(indicated bold)

Fig. 6. Level curves d2 = const for Folium of Descartes G3(x, y) = 0
(indicated bold)

The level curves for both formulas (2) and (3) have neither
visible significant distortions nor excessive curvature bias.

In the following sections there will be more quantitative
analysis.

III. QUANTITATIVE ASSESSMENTS

The best ellipse fitting problem has been intensively studied
in the literature. Since we are able to treat the general type of
algebraic curve, we concern ourselves with the case of a pairs
of ellipses which is of importance to the multiple ellipse fitting
problem [14], [15], [16]. We consider both cases, namely when
the ellipses are separated or, on the contrary, have a nonempty
intersection.

The test data set is composed in the following way. We
utilize the analytical expressions for the offset curves and
compose a grid from these curves on varying the distance from
0.1 to 3.0 in increments of 0.1. We then find the intersections
of these curves with lines passing through the center of one
of the ellipses. In this way, we generate about 3500 of points
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with nearly equally distributed distance values in the interval
[0.1, 3.0].

The quality of distance approximations by the formulas (2)
and (3) will be estimated with the aid of characteristics similar
to those utilized in [6].

A. Linearity

To find a linear correlation between the true distance value
and its approximates, we compute the Pearson correlation
coefficient. The compute it, we first find the mean value μi

for distance approximation for the points of the set lying at
the distance zi from the curve.

L̂ =

∑
i(zi − zi)(μi − μi)√∑

i(zi − zi)2
∑

i(μi − μi)
2
. (6)

Together with L̂ we also compute its counterparts L̂+ and

L̂− for the equidistant curves lying outside or inside the treated
curve (assuming distances inside and outside are signed, or can
be made so). The closer to ±1 is the value (6), the closer to
linear is the dependency of true value on the distance to it
approximation.

B. Curvature bias

To investigate the deviation ranges of the approximations
from the fixed Euclidean distance, we calculate the variance
σ2
i for the points of each offset (equidistant) curve lying at the

distance zi from the initial curve. Similar to those utilized in
[6] we combine local measures σ2

i to give a global measure

Ĉ =
∑
i

σ2
i . (7)

Together with Ĉ we also compute its counterparts Ĉ+ and Ĉ−
for the equidistant curves lying outside or inside the treated
curve.

The closer to 0 is the value (7), the better fitting quality
can provide considered distance approximation.

C. Asymmetry

We compute the mean approximate signed distance μ+
i and

μ−
i along corresponding offset contours inside and outside the

treated curve. Then we calculate asymmetry at each contour
pair as the normalized difference in their mean approximate
distances

ai =
|μ+

i − μ−
i |

μ+
i + μ−

i

.

Again, similar we produce a global measure

Â =
∑
i

ai

which would be better to be close to zero to produce the better
fitting by the considered distance approximation .

IV. RESULTS

We treated two pairs of random ellipses, one pair is sepa-
rated, another one has nonempty intersection. The assessment
measures discussed in the previous section was computed for
every pair. In addition, in each case a level curves dj = const
visualization similar to the one discussed above is provided.

A. Ellipses with nonempty intersection

To produce the quantitative assessments we take the pair
of ellipses

G4(x, y) := (x2 + 9(y − 20)2 − 3600)×
(x2 + xy + y2 − 20x− 60y − 1000) = 0,

scaled in comparison to those who were visualized on Fig. 7
and Fig. 8.

Distance approximation (3) takes the form

d2 :=
M · |G4|
2
√
kN2

here
M := 814x12 + 6644x11y − 137200x11+

76796x10y2 − 3201920x10y + 24152400x10+

374388x9y3 − 23294560x9y2 + 410609200x9y−
. . .

+1643684348160000000y5 + 352168819200000000y4−
202128721920000000000y3 − 26034048000000000000y2+

10581580800000000000000y + 33592320000000000000000,

N := 17x6 + 64x5y − 1320x5 + 623x4y2 − 26040x4y+

178400x4 + 1344x3y3 − 83040x3y2 + 1392000x3y−
. . .

+1377y6 − 204120y5 + 9525600y4 − 117936000y3−
1257120000y2 + 18144000000y + 129600000000,

k := ((x2 + 9(y − 20)2 − 3600)(2x+ y − 20)+

2x(x2 + xy + y2 − 20x− 60y − 1000))2+

((x2 + 9(y − 20)2 − 3600)(x+ 2y − 60)+

(x2 + xy + y2 − 20x− 60y − 1000)(18y − 360))2.

TABLE I. NORMALIZED ASSESSMENT RESULTS L̂, L̂+ AND L̂− FOR

ELLIPSES WITH NONEMPTY INTERSECTION

̂L ̂L+
̂L−

d1 1.0000000 1.0000000 1.0000000

d2 0.9997189 0.9999210 0.9997744

Looking at the Fig. 9 and the Table I we can note that
both approximations (2) and (3) exhibit linear relationship with
Euclidean distance at least close to curve bounds. Formula (2)
outperforms formula (3) not only inside initial curve as we
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Fig. 7. Level curves d1 = const for ellipses G4(x, y) = 0 (indicated bold)

Fig. 8. Level curves d2 = const for ellipses G4(x, y) = 0 (indicated bold)

could suppose due to the visualization analysis, but the outside
too. Global measure also is better for d1.

As we might assume after viewing some visualizations
that emphasize the unstable behavior of formula (3) inside the
curve, the best performed formula in the asymmetry category
should not be easily determined, but Fig. 10 shows that new
point-to-algebraic-manifold distance approximation performed
well.

Fig. 11 shows the variance of the distance approximations
for each level contour. Variance increases fast with Euclidean
distance from the curve, especially for the internal points.

In addition, looking at the Table II, we can note, that
outside the initial curve formula (3) shows considerably better
results in curvature and asymmetry assessments.

TABLE II. NORMALIZED ASSESSMENT RESULTS Â, Ĉ , Ĉ+ AND Ĉ−
FOR ELLIPSES WITH NONEMPTY INTERSECTION

̂A ̂C ̂C+
̂C−

d1 1.0000000 1.0000000 1.0000000 1.0000000

d2 0.1401102 0.5829589 0.2283491 0.8366350

Fig. 9. Mean distances μi of approximated distances d1 (black) and d2 (grey)
along offset curves plotted against the corresponding Euclidean distances

Fig. 10. Asymmetry Â of approximated distances d1 (black) and d2 (grey)
along offset curves plotted against the corresponding Euclidean distances

B. Separated ellipses

Again, we take the pair of ellipses

G5(x, y) := (x2 + 16y2 − 1600)×
(x2 + xy + y2 − 100x− 130y + 3600) = 0

scaled in comparison to those who were visualized on Fig. 12
and Fig. 13.

Here we give the implicit equation of equidistant curves in
the form

Eqv(x, y, z) = 0,

where

Eqv := (x8 + 34x6y2 + 28x6z − 6200x6 + 321x4y4−
486x4y2z − 150600x4y2 + 166x4z2 − 138200x4z+

14410000x4 + 544x2y6 − 1506x2y4z − 777600x2y4+

. . .

−107520000000y2 + 225z4 − 765000z3+

722250000z2 − 122400000000z + 5760000000000)×
(9x8 + 18x7y − 2640x7 + 45x6y2 − 7740x6y − 27x6z+

403400x6 + 54x5y3 − 14940x5y2 − 72x5yz+

1369600x5y + 7620x5z − 42540000x5 + 72x4y4−
. . .

+251965000000yz − 269836560000000y+

9z4 − 185900z3 + 1331320000z2−
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Fig. 11. Variance Ĉ of approximated distances d1 (black) and d2 (grey)
along offset curves plotted against the corresponding Euclidean distances

Fig. 12. Level curves d1 = const for ellipses G5(x, y) = 0 (indicated
bold)

3668093000000z + 2360923200000000).

All the quantitative measures were computed and repre-
sented at Fig. 14, Fig. 15, Fig. 16, Table III and Table IV. The
description of the obtained results in general repeats the above
for the case of intersecting ellipses. We just emphasize slight
difference among the variance values inside and outside the
initial curve.

TABLE III. NORMALIZED ASSESSMENT RESULTS L̂, L̂+ AND L̂− FOR

SEPARATED ELLIPSES

̂L ̂L+
̂L−

d1 1.0000000 1.0000000 1.0000000

d2 0.9993255 0.9994992 0.9993132

TABLE IV. NORMALIZED ASSESSMENT RESULTS Â, Ĉ , Ĉ+ AND Ĉ−
FOR SEPARATED ELLIPSES

̂A ̂C ̂C+
̂C−

d1 1.0000000 1.0000000 1.0000000 1.0000000

d2 0.1895881 0.3343521 0.4503979 0.3347797

C. Overview of results

Based on the visualization results, we outline the fact that
in the both cases of multiple ellipses the features of level curves
dj = const do not change in comparison with a single ellipse

Fig. 13. Level curves d2 = const for ellipses G5(x, y) = 0 (indicated
bold)

Fig. 14. Mean distances μi of approximated distances d1 (black) and
d2 (grey) along offset curves plotted against the corresponding Euclidean
distances

case. This may indicate that increasing number of treated
ellipses will not lead to appearance of huge distortions as in
the case of curve G2(x, y) = 0.

The Sampson’s distance approximation linearity assess-
ment twice was better, but the difference was not huge. We
can consider both formulas (2) and (3) as linear with respect
to the Euclidean distance.

In general, new point-to-algebraic-manifold distance ap-
proximation have good properties close to ellipses and may be
used in the curve fitting problems including multiple ellipse
fitting.

V. CONCLUSION

We discuss here the problem of evaluating the validity
of a new point-to-algebraic-manifold distance approximation
formula. We represent the qualitative and quantitative com-
parison of the new point-to-algebraic-manifold distance ap-
proximation formula (3) with the well-known and widely
applicable Sampson’s distance formula (2) . We concentrate to
the potential benefits of application of the formula (3) in the
implicit algebraic curves fitting problem and in the multiple-
ellipse fitting. Comparison is performed not only for a single
ellipse, which is usually done in other studies, but also for more
complex curves - a pair of intersecting and non-intersecting
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Fig. 15. Asymmetry Â of approximated distances d1 (black) and d2 (grey)
along offset curves plotted against the corresponding Euclidean distances

Fig. 16. Variance Ĉ of approximated distances d1 (black) and d2 (grey)
along offset curves plotted against the corresponding Euclidean distances

ellipses and several higher-order algebraic curves with different
properties.

A qualitative comparison of approximate distance formulas
(2) and (3) is performed by constructing level curves di =
const for all the treated curves. The results are shown in Fig.
1 – 8, 12, 13. For distant from the initial curves level contours
we detected that formula (2) have larger deviations outside,
and formula (3) inside the initial curves.

A quantitative comparison of formulas was made for pairs
of ellipses according to the important practical measures -
linearity and curvature bias (both calculated inside and outside
the treated curve, and overall), asymmetry. This is carried
out via the generation of the data set of test points with the
known distance values. The calculated values of measures are
shown in Tables I – IV. Fig. 9 – 11, 14 – 16 demonstrates
the dependence of the studied measures on the corresponding
Euclidean distance. The results of the comparison demonstrate
that formula (3) exceeds formula (2) in a number of criteria.

For further research remains the inversion of this approach,
i.e. the best manifold fitting problem for the given data set.
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