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Abstract—The main ideas of the metagraph data model and 
the metagraph agent model are discussed. The metagraph 
approach for semantic complex event processing is presented. 
The metagraph agent implementation based on Functional 
Reactive Programming is proposed. 

I. INTRODUCTION 
Currently, models based on complex networks are 

increasingly used in various fields of science, from 
mathematics and computer science to biology and sociology.  

According to [1]: “a complex network is a graph (network) 
with non-trivial topological features – features that do not occur 
in simple networks such as lattices or random graphs but often 
occur in graphs modeling of real systems.” The terms “complex 
network” and “complex graph” are often used synonymously. 
According to [2]: “the term ‘complex network,’ or simply 
‘network,’ usually refers to real systems while the term ‘graph’ 
is generally considered as the mathematical representation of a 
network.” In this article, we also acknowledge these terms 
synonymously. 

One of the most important types of such models is 
“complex networks with emergence.” The term “emergence” is 
used in general system theory. The emergent element means a 
whole that cannot be separated into its component parts. As far 
as the authors know, currently, there are two “complex 
networks with emergence” models that exist: hypernetworks 
and metagraphs.  

The hypernetwork model [3] is mature, and it helps to 
understand many aspects of complex networks with an 
emergence. It is the hypernetwork model used by Professor 
Konstantin Anokhin to build a brain model based on a 
cognitome approach [4]. 

It is now essential to offer not only a model that is capable 
of storing and processing Big Data but a model that is capable 
of handling the complexity of data. The article [5] discusses in 
detail the advantages of the metagraph model in comparison 
with the hypergraph and hypernetwork models. From the 
authors' point of view, the metagraph model is more flexible 
and convenient than a hypergraph and hypernetwork model for 
use in information systems. 

The metagraph model data processing is based on a multi-
agent approach. However, the issue of the effective software 
implementation of metagraph agents is still open. Currently, 

there is no doubt that it is the functional approach in 
programming that makes it possible to make such 
implementation effectively. Therefore, the work is devoted to 
the implementation of a multi-agent paradigm using functional 
reactive programming. The advantage of this implementation is 
that agents can work in parallel, supporting a functional 
reactive paradigm. 

The article is organized as follows. The section II discusses 
the main ideas of the metagraph model. The section III 
discusses the metagraph agent model. The section IV discusses 
the Semantic Complex Event Processing approach and its’ 
correspondence to the metagraph model. The section V (which 
is the novel result presented in the article) discusses the 
metagraph agent implementation based on Functional Reactive 
Programming. 

II. THE BRIEF DESCRIPTION OF THE DATA METAGRAPH MODEL

Metagraph is a kind of complex network model, proposed
by A. Basu and R. Blanning in their book [6] and then adapted 
for information systems description in our articles [5, 7]: 

, , , ,MG V MV E ME  (1) 

where MG – metagraph; V – set of metagraph vertices; MV – 
set of metagraph metavertices; E – set of metagraph edges; 
ME – set of metagraph metaedges. 

Metaedge is an optional element of the metagraph model 
aimed for process description. 

Metagraph vertex is described by a set of attributes: 

, ,i k iv atr v V (2) 

where vi – metagraph vertex; atrk – attribute. 

Metagraph edge is described by a set of attributes, the 
source, and destination vertices and edge direction flag: 

, , , , , | ,i S E k ie v v eo atr e E eo true false  (3) 

where ei – metagraph edge; vS – source vertex (metavertex) of 
the edge; vE – destination vertex (metavertex) of the edge; 
eo – edge direction flag (eo=true – directed edge, 
eo=false – undirected edge); atrk – attribute. 
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The metagraph fragment: 

, ( ),i j jMG ev ev V E MV ME  (4) 

where MGi – metagraph fragment; evj – an element that 
belongs to the union of vertices, edges, metavertices, and 
metaedges. 

The metagraph metavertex: 

, , ,i k j imv atr MG mv MV  (5) 

where mvi – metagraph metavertex belongs to set of metagraph 
metavertices MV; atrk – attribute, MGj – metagraph fragment. 

Thus, metavertex, in addition to the attributes, includes a 
fragment of the metagraph. The presence of private attributes 
and connections for metavertex is a distinguishing feature of 
the metagraph. It makes the definition of metagraph holonic – 
metavertex may include a number of lower-level elements and, 
in turn, may be included in a number of higher-level elements. 

The vertices, edges, and metavertices are used for data 
description while the metaedges are used for process 
description. The metagraph metaedge: 

, , , , ,i S E k j ime v v atr MG me ME  (6) 

where mei – metagraph metaedge belongs to set of metagraph 
metaedges ME; vS – source vertex (metavertex) of the 
metaedge; vE – destination vertex (metavertex) of the 
metaedge; atrk – attribute, MGj – metagraph fragment. 

It is assumed that a metagraph fragment contains vertices 
(or metavertices) as process nodes and connecting them edges. 
A metagraph fragment can also contain nested metaedges, 
which makes the description of the metaedge recursive. 

 

Fig. 1. The example of data metagraph 

The example of data metagraph (shown in Fig. 1) contains 
three metavertices: mv1, mv2, and mv3. Metavertex mv1 
contains vertices v1, v2, v3 and connecting them edges e1, e2, 
e3. Metavertex mv2 contains vertices v4, v5, and connecting 
them edge e6. Edges e4, e5 are examples of edges connecting 
vertices v2-v4 and v3-v5 are contained in different metavertices 
mv1 and mv2. Edge e7 is an example of the edge connecting 
metavertices mv1 and mv2. Edge e8 is an example of the edge 
connecting vertex v2 and metavertex mv2. Metavertex mv3 
contains metavertex mv2, vertices v2, v3, and edge e2 from 

metavertex mv1 and also edges e4, e5, e8 showing holonic 
nature of the metagraph structure. 

The example of a directed metaedge is shown in Fig. 2. 
The directed metaedge contains metavertices mvS, … mvi, … 
mvE and connecting them edges. The source metavertex 
contains a nested metagraph fragment. During the transition to 
the destination metavertex, the nested metagraph fragment 
became more complex, new vertices, edges, and inner 
metavertices are added. Thus, metaedge allows binding the 
stages of nested metagraph fragment development to the steps 
of the process described with metaedge. 

 

Fig. 2. The example of the directed metaedge 

III. THE DESCRIPTION OF THE METAGRAPH AGENT MODEL 
The metagraph model is aimed for complex data 

descriptions. However, it is not intended for data 
transformation. To solve this issue, the metagraph agent 
(agMG) intended for data transformation is proposed.  

The choice of a multi-agent approach is quite evident 
because this approach is currently widely used in intelligent 
systems. This approach is proposed to be used for industry 4.0 
[8], product life cycle management [9, 10], robotics systems 
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[11], including social robotics [12]. Therefore, we also use a 
multi-agent approach for metagraph processing. 

There are two kinds of metagraph agents: the metagraph 
function agent (agF) and the metagraph rule agent (agR). Thus 
agMG = agF | agR. 

The metagraph function agent serves as a function with 
input and output parameter in the form of metagraph: 

, , ,F
IN OUTag MG MG AST  (7) 

where agF – metagraph function agent; MGIN – input 
parameter metagraph; MGOUT – output parameter metagraph; 
AST – abstract syntax tree of metagraph function agent in the 
form of metagraph. 

The metagraph rule agent is rule-based: 

, , ,R STag MG R AG  
, : ,MG

i i jR r r MG OP  
(8) 

where agR – metagraph rule agent; MG – working metagraph, 
a metagraph on the basis of which the rules of an agent are 
performed; R – set of rules ri; AGST – start condition 
(metagraph fragment for start rule check or start rule); MGj – a 
metagraph fragment on the basis of which the rule is 
performed; OPMG – set of actions performed on metagraph. 
The antecedent of a rule is a condition over the metagraph 
fragment; the consequent of a rule is a set of actions performed 
on metagraph. 

On the one hand, the principle of operation of metagraph 
rules is relatively simple and is based on metagraph calculus 
[13]. On the other hand, effective metagraph rewriting 
techniques are quite sophisticated and are currently being 
actively developed. Meanwhile, the classical graph 
transformation techniques developed for the transformation of 
flat graphs [24] are not explicitly suitable for the metagraph 
model. These techniques can only be used with restrictions if 
the metagraph is represented as a flat graph [17]. However, 
such a representation was designed exclusively for efficient 
storage of metagraph data, whereas data processing using such 
a representation can violate the semantics of the metagraph 
model. 

Metagraph rules can be divided into open and closed. The 
consequent of an open rule is not permitted to change the 
metagraph fragment occurring in rule antecedent. In this case, 
the input and output metagraph fragments may be separated. 
The open rule is similar to the template that generates the 
output metagraph based on the input metagraph. 

The consequent of a closed rule is permitted to change the 
metagraph fragment occurring in rule antecedent. The 
metagraph fragment changing in rule consequent cause to 
trigger the antecedents of other rules bound to the same 
metagraph fragment. However, an incorrectly designed closed 
rules system can cause to an infinite loop of metagraph rule 
agent. 

Thus, the metagraph rule agent can generate the output 
metagraph based on the input metagraph (using open rules) or 
can modify the single metagraph (using closed rules).  

The example of the metagraph rule agent is shown in Fig. 
3. The metagraph rule agent “metagraph rule agent 1” is 
represented as metagraph metavertex. According to the 
definition, it is bound to the working metagraph MG1 – a 
metagraph on the basis of which the rules of the agent are 
performed. This binding is shown with edge e4. 

 

Fig. 3. The example of the metagraph rule agent 

The metagraph rule agent description contains inner 
metavertices that corresponds to agent rules (rule 1 … rule N). 
Each rule metavertex contains antecedent and consequent 
inner vertices. In the given an example, mv2 metavertex bound 
with the antecedent, which is shown with edge e2 and mv3 
metavertex bound with consequent, which is shown with edge 
e3. Antecedent conditions and consequent actions are defined 
in the form of attributes bound to antecedent and consequent 
corresponding vertices. 

The start condition is given in the form of attribute 
“start=true.” If the start condition is defined as a start 
metagraph fragment, then the edge bound start metagraph 
fragment to agent metavertex (edge e1 in the given example) is 
annotated with the attribute “start=true.” If the start condition 
is defined as a start rule, then the rule metavertex is annotated 
with attribute “start=true” (rule 1 in the given example). Fig. 3 
shows both cases corresponding to the start metagraph 
fragment and the start rule. 

The distinguishing feature of the metagraph agent is its 
homoiconicity, which means that it can be a data structure for 
itself. This is due to the fact that according to the definition 
metagraph agent may be represented as a set of metagraph 
fragments, and this set can be combined in a single metagraph. 
Thus, the metagraph agent can change the structure of other 
metagraph agents. 
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In order to combine the data metagraph model and 
metagraph agent model, we propose the concept of “active 
metagraph”: 

, , ,ACTIVE D MG MG
iMG MG AG AG ag  (9) 

where MGACTIVE – an active metagraph; MGD – data 
metagraph; AGMG – set of metagraph agents agi, attached to 
the data metagraph. 

Thus, active metagraph allows combining data and 
processing tools for the metagraph approach. Similar structures 
are often used in computer science. As an example, we can 
consider a class of object-oriented programming language, 
which contains data and methods of their processing. Another 
example is a relational DBMS table with an associated set of 
triggers for processing table entries. 

The main difference between an active metagraph and a 
single metagraph agent is that an active metagraph contains a 
set of metagraph agents that can use both closed and open 
rules. For example, one agent may change the structure of 
active metagraph using closed rules while the other may send 
metagraph data another active metagraph using open rules. 
Agents work independently and can be started and stopped 
without affecting each other. 

IV. THE METAGRAPH APPROACH FOR EVENT PROCESSING 
The idea of event processing based on the metagraph 

approach is discussed in [13]. According to [14], the event is 
defined as “a significant change in state,” and event processing 
is defined as “a method of tracking and analyzing (processing) 
streams of information (data) about things that happen (events), 
and deriving a conclusion from them. Complex event 
processing (CEP) is event processing that combines data from 
multiple sources to infer events or patterns that suggest more 
complicated circumstances.” According to [15]: “The goal of 
complex event processing is to identify meaningful events 
(such as opportunities or threats) and respond to them as 
quickly as possible.” 

Currently, much attention is paid to the concept of 
Semantic Complex Event Processing (SCEP), which is closely 
related to specific Semantic Web (SW) technologies. The book 
[16] offers an interesting idea that the results of a complex 
event processing in the creation of meaningful complex 
situations (such as opportunities or threats) and respond to 
them. The difference between descriptions [15] and [16] is that 
description [16] is more detailed and suggests the creation of 
meaningful complex situations as a result of complex event 
processing. It is a complex situation that is used for further 
analysis. 

Thus, nowadays, the concept of an event is treated not as a 
separate data point, but as a complex situation with graph 
semantics. The RDF approach as a part of Semantic Web 
technologies is used to describe such semantics. 

However, unfortunately, the RDF approach has several 
limitations for complex situation description [17]. There are 
reification limitation and N-ary relationship limitation. The root 

of limitations is the absence of the emergence principle in the 
flat graph RDF model. It is shown in [17] that the metagraph 
model addresses RDF limitations in a natural way without 
emergence loss. Thus, the metagraph model can be used 
instead of the RDF model for the Semantic Complex Event 
Processing approach. 

The surprising fact is that to describe events in the 
metagraph model, it is not necessary to introduce new 
definitions. A complex semantic event is itself a metagraph. 

There is also no need to change the metagraph agent 
definition. The agent’s metagraph fragment for start rule check 
may be considered either as a fragment of static metagraph 
storage or a dynamic metagraph complex semantic event 
description. 

The metagraph complex semantic event may contain either 
data metagraph fragment or metagraph agent description. Thus, 
the triad “data metagraph” – “metagraph agent” – “metagraph 
event” may be considered as a homoiconic structure based on 
the metagraph model. 

In the following section, we will consider the software 
implementation of metagraph agents that use events based on 
functional reactive programming. 

V. THE METAGRAPH AGENTS IMPLEMENTATION 
The construction of multi-agent systems based on 

functional reactive programming is a natural continuation of 
the concept of a reactive agent as an element based on behavior 
and reaction to external events.  

Currently, many programming languages have 
implementations of reactive programming based on the actor 
approach. One of the most famous is the Akka library for the 
Scala language. There is also an implementation Akka.NET for 
languages on the .NET platform, such as C#, F#. 

Reactive programming involves building an interdependent 
network of various elements that are either subscribed to 
various events, or are producers of these events, or implement 
both options. While reacting to the events, the network 
elements change their state, which applies to all network 
elements dependent on them. Thus, with each state change, a 
certain wave of changes passes through the reactive network of 
the system, which is the main idea of this approach. 

Functional reactive programming (FRP) is based on two 
main ideas: behavior and event. Behaviors are mutable states 
that could be changed by some handling functions, which are 
called by events. It may look like an obvious anti-pattern for 
functional programming – mutable global states that are 
changed by some external events, but the power of types and 
separating mutable values their behaviors helps create fast, 
handful, and consistent systems based on this behavior.  

The FRP was suggested in 1997 [18]. The main idea of FRP 
is mutable state elements called behaviors and occurrences of 
some messages, which are called events at some time. The 
behaviors are time-dependent values of some type. Reactivity is 
modeled by combinators, which produces new behaviors based 
on initial ones and events. It could be imagined as a function of 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 77 ----------------------------------------------------------------------------



time with the state that changes to a new one when some event 
occurs. At that moment, the behavior value is replaced by the 
value that carries the event. Event is a discrete bundle of 
changes in the system; the event could carry some value or be 
empty, in the latter case, events will be just triggers for a 
system reaction. 

With the first generations of FRP frameworks, events only 
had one occurrence, so that single-fire events are removed from 
the event streams after their occurrence. Most FRP 
implementations may occur multiple times and could be used 
in recursive descriptions of the network. In this case, we 
describe behavior as a state depended on its own events. 

Some ways could give us comprehension problems: for 
example, an article [19] presents a number of issues with the 
explicitness of FRP implementation, such as ELM's complexity 
with initial value descriptions or Reflex's recursive monadic 
computations when the state is initiated by its own messages. 
However, all those difficulties are a small price for 
implementing reactive systems with the full power of self-
rebuild. 

Another approach to implement FRP architecture is to use 
the Arrow type class [20] to replace events and behaviors with 
“signals,” which represents both of them as a stream of Maybe 
type, with occurrences implemented as Just value. This way is 
used in several Haskell libraries such as Yampa or Haskell-
inspired language Elm, totally designed for FRP development. 
This article will be operating “classical” FRP architecture with 
behaviors and events. 

As it is described in [21], behaviors and events could be 
identified as data types with corresponding functions: 

at  :: Behavior a -> Ba 
occs  :: Event a -> Ea 

In FRP, Behavior and Event types carry a collection of 
several combinators to represent at some categorical elements. 
Behaviors could lift functions into themselves for it to be 
applied:  

liftn :: (a1 -> ... an -> b)  
-> (Behavior a1 -> ...  
-> Behavior an -> Behavior b) 

Moreover, as it is described in classical FRP articles [18, 
21], the semantic instance for Behavior and Events corresponds 
to Functor, Applicative, Monad, and Monoid instances. That 
provides an opportunity to perform complex operations on 
these entities. 

After a brief description of the basic principles of FPR, we 
shall describe how to add agent-based architecture into FRP. 
Despite the fact that the principles of FRP are implemented by 
a large number of libraries in different languages, our task was 
to propose the implementation of agents in FRP using the 
Haskell language. 

As it was discussed in previous sections, the agent is a 
mutable structure that reacts to external messages. At first 
glance, it seems reasoned to map Agents into Behaviors and 
Messages into Events. However, this approach is not suitable 
because the Agent represents a more complex concept than 

Behavior. A simple representation of metagraph agents in the 
form of some objects enclosed in the Behavior would not allow 
ultimately to perform internal operations on them reactively 
and send and receive messages directly to the internal elements 
of the agent but would be a simple use of the FRP structure as 
just a complex container. 

Consider the definition of the metagraph function agent (7). 
In that way, Agent consists of Behaviors agent and inner 
Events, which makes it possible to reconfigure the internal 
structure and its general condition. The main idea of metagraph 
agents is its homoiconic structure, which allows it to 
reconstruct its properties, actions, and goals when running the 
program. In order to implement this approach, it is possible to 
imagine a metagraph agent as a structure of Behaviors that 
listen to each other and emit and receive Events, thus 
representing properties or sets of properties. That dynamically 
changing structure of metagraph agents implements the main 
property of homoiconicity. 

For Haskell FRP implementation of the metagraph agent, 
we will strictly consider its’ definition, formulas (1), and (4). 
We may describe a metagraph agent as a complex type of 
Behaviors that contains vertices and edges of a metagraph. In 
this implementation, on its upper layer, the metagraph is a 
union (in this case, IntMap is used) of vertices, edges, 
metavertices, and metaedges: 

MAgent edge node = MAgent { 
 mAgentId :: MAgentId, 
 mAgentEdges  :: IntMap (Behavior 
(MAgentEdge edge vertex)), 
 mAgentVertex  :: IntMap 
(Behavior (MAgentVertex edge vertex)) 
} 

The implementation of the metagraph vertex fully complies 
with formulas (2) and (5) as a set of attributes and an internal 
metagraph. Since the features of the Haskell language allow us 
to use optional types, we can combine the implementation of 
the vertex and metavertex into a single whole using type 
Maybe. In cases where the described object is a meta-vertex, 
the vertexMAgent field will exist, if the object is a simple 
vertex, then the value will be Nothing. Moreover, due to the 
fact that we enclose a potentially existing metagraph in 
Behavior, this element can go from the state of the vertex to the 
meta-vertex and vice versa during execution: 

MAgentVertex edge vertex = MAgentVertex { 
 vertexId  :: VertexId, 
 vertexAttrs  :: vertex, 
 vertexMAgent  :: Behavior (Maybe 

(MAgent edge vertex)) 
 } 

The implementation of the edge, in turn, corresponds to the 
definition of the edge and metaedge from formulas (3) and (6). 
In the same way, as in the vertex implementation, we use type 
Maybe to combine the edges and the metaedges in the same 
type. The direction and attributes fields describe the 
corresponding mathematical representations in the metagraph. 
Thus, we also get a variable structure that can change its type 
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from edge to metaedge and vice versa depending on external or 
internal events: 

MAgentEdge edge vertex = MetaEdge { 
edgeId  :: EdgeId,
edgeDirected :: Directed, 
edgeFrom :: Behavior  

(MAgentVertex edge vertex), 
edgeTo  :: Behavior  

(MAgentVertex edge vertex), 
edgeAttrs :: edge,
edgeMAgent :: Behavior  

(Maybe (MAgent edge vertex)) 
} 

Using that structure, we may describe functor instances for 
agent’s vertices, edges and the agent itself: 
instance Functor (MAgent edge vertex) where 
 fmap f m = { 
  mAgentEdges = fmap f <$> mAgentEdges m, 
 mAgentVertex = fmap f <$> mAgentVertex m 

} 
instance Functor (MAgentVertex edge vertex) 
where 
 fmap f v = v { 
 vertexAtrrs = f $ vertexAttrs v, 
 vertexMAgent = fmap f <$> vertexMAgent v, 

} 
instance Functor (MAgentEdge edge vertex) where 
 fmap f e = { 
 edgeMAgent = fmap f <$> edgeMAgent e, 
 edgeFrom = f <$> edgeFrom e, 
 edgeTo = f <$> edgeTo e 

} 

 To implement the definition of rule-based agent, we must 
strictly satisfy formula (8). To store the list of rules, there is an 
external table, which is implemented based on the definition of 
an agent as a set of metagraph and a list of rules, for which the 
correspondence between the agent and the rules to which it 
obeys is satisfied. As a result, the final type will look as 
follows: 

RMAgent = { 
rmAgentId :: AgentId,
mAgent  :: Behavior MAgent, 
mrules  :: Behavior [Rules] 

} 

Such a metagraph agent implementation gives an 
opportunity to rebuild its structure during the execution. All 
elements of agents are Behaviors, so they are mutable functions 
of time and external Events that produce both internal elements 
of the agent and other agents or the system itself. Thus, Events 
in that approach could be used directly as agent messages; they 
can carry agents and agent's subgraphs or any other type if 
required. Implementation of agents seems to provide a kind of 
homoiconicity, as the agent could change their actions and 
structure using FRP mechanisms such as Behaviors and Events. 

The agent implementation example (shown in Fig. 4) 
contains six metavertices: mAgentVertex1, mAgentVertex2, 
mAgentVertex3, mAgentVertex4, mAgentVertex5, 
mAgentVertex6 and two metaedges: mAgentEdge1, 

mAgentEdge2. Some of vertices are regular vertices 
(mAgentVertex1, mAgentVertex2, mAgentVertex3, 
mAgentVertex5, mAgentVertex6) and don’t have internal 
metagraphs, one of them (mAgentVertex4) is metavertex and 
contains vertices mAgentVertex5, mAgentVertex6. One of 
edges is regular edge (mAgentEdge2) and another one is 
metaedge (mAgentEdge1), it contains mAgentVertex3. 
Vertices mAgentVertex4 and mAgentVertex6 producing 
messages as Events received by Behaviors: mAgentEdge1, 
mAgentEdge2, mAgentVertex3. All elements are contained 
within Behaviors, which allows them to transform reactively. 

Fig. 4. The example of metagraph agent reactive implementation 

For internal logic, the agent uses a rule-based engine, in 
which rules and functions are described in the internal 
metagraph in some kind of DSL. This DSL allows 
implementing the internal logic of agents, perform functions to 
change their own or external states, receive or send messages, 
superimposing on the logic of the FRP, and working at a meta-
level, controlling the internal behavior of agents. 

Among other things, this approach allows separating the 
data processing that can be done in parallel. Most of FRP 
implementations (for example, Haskell Yampa) has parallel 
functions, but do not allow to describe parallel computations 
“out of the box”; instead, they should be implemented by the 
developer. Article [22] describes the ways to parallel FRP 
computations, and they find their way on developing Yampa 
library [23], powerful and fast FRP realization. The cornerstone 
of paralleling Behaviors is the idea of splitting events into 
several ones to each Behavior which is subscribed to splitting 
Event. 

One could spawn each new Behavior in a different thread 
so that it will be computed separately. In this case, there will be 
no struggle for resources, because when Behavior tries to 
change a state, it produces Event. Thus, the system does not 
have direct value mutations – all changes are performed 
reactively. As described in [23], signal functions (Yampa's way 
to implement Behavior FRP ideas) could be executed in 
parallel by using the switchers implemented in that library. The 
idea of representing Behavior as Signal was given in [20], 
where parallel switchers were used to separating computations 
in independent values. 
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Fig. 5. The example of splitting events 

The example of splitting events is shown in Fig. 5. The 
agent1 producing Event to which the vertices 
(mAgentVertex1, mAgentVertex2) of two independent agents 
(agent2, agent3) are subscribed. The event is splitted into two 
parallel threads that will be computed separately. 

Thus, implementing metagraph-based Multi-Agent Systems 
via FRP has a lot of advantages. The use of behavior-event 
mechanics allows us to organize a new level of abstraction, as 
it provides the property of homoiconicity to metagraph agents. 
With that approach, agents could rebuild other agents and 
themselves reactively by emitting messages with the new parts 
of an agent's internal structure. Thanks to this developing way, 
the system obtains a significant advantage over non-reactively-
based multi-agent systems. In addition to the general 
advantages of the functional language, the FRP provides the 
multi-agent system with the possibility of simple parallelism at 
the level of computing inside agents, which allows us to scale 
the system to extensive models. 

VI. CONCLUSION

The metagraph model is a kind of complex network model. 
The emergence in the metagraph model is established using 
metavertices and metaedges. 

For the metagraph model processing, the metagraph 
function agents and the metagraph rule agents are used. The 
distinguishing feature of the metagraph agent is its 
homoiconicity, which means that it can be a data structure for 
itself. Thus, the metagraph agent can change the structure of 
other metagraph agents. 

To describe events in the metagraph model, it is not 
necessary to introduce new definitions. A complex semantic 
event is itself a metagraph. There is also no need to change the 
metagraph agent definition. The agent’s metagraph fragment 
for start rule check may be considered either as a fragment of 
static metagraph storage or a dynamic metagraph complex 
semantic event description. 

The metagraph agent may be implemented based on a 
functional reactive programming paradigm using the Haskell 
programming language. Such an implementation provides a 
kind of homoiconicity, as the agent could change its actions 
and structure using FRP mechanisms such as Behaviors and 
Events. The use of the FRP approach simplifies parallel data 
processing. 

The proposed approach can be considered as a framework 
for complex model transformation. In particular, the article [5] 

discusses examples of neural network structure construction 
and the polypeptide chain synthesis. 
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