
The Implementation of Metagraph Agents Based on
Functional Reactive Programming

Valeriy Chernenkiy, Yuriy Gapanyuk, Anatoly Nardid, Nikita Todosiev
Bauman Moscow State Technical University,

Moscow, Russia
chernen@bmstu.ru, gapyu@bmstu.ru, nazgull09@gmail.com, todosievnik@gmail.com

Abstract—The main ideas of the metagraph data model and
the metagraph agent model are discussed. The metagraph
approach for semantic complex event processing is presented.
The metagraph agent implementation based on Functional
Reactive Programming is proposed.

I. INTRODUCTION
Currently, models based on complex networks are

increasingly used in various fields of science, from
mathematics and computer science to biology and sociology.

According to [1]: “a complex network is a graph (network)
with non-trivial topological features – features that do not occur
in simple networks such as lattices or random graphs but often
occur in graphs modeling of real systems.” The terms “complex
network” and “complex graph” are often used synonymously.
According to [2]: “the term ‘complex network,’ or simply
‘network,’ usually refers to real systems while the term ‘graph’
is generally considered as the mathematical representation of a
network.” In this article, we also acknowledge these terms
synonymously.

One of the most important types of such models is
“complex networks with emergence.” The term “emergence” is
used in general system theory. The emergent element means a
whole that cannot be separated into its component parts. As far
as the authors know, currently, there are two “complex
networks with emergence” models that exist: hypernetworks
and metagraphs.

The hypernetwork model [3] is mature, and it helps to
understand many aspects of complex networks with an
emergence. It is the hypernetwork model used by Professor
Konstantin Anokhin to build a brain model based on a
cognitome approach [4].

It is now essential to offer not only a model that is capable
of storing and processing Big Data but a model that is capable
of handling the complexity of data. The article [5] discusses in
detail the advantages of the metagraph model in comparison
with the hypergraph and hypernetwork models. From the
authors' point of view, the metagraph model is more flexible
and convenient than a hypergraph and hypernetwork model for
use in information systems.

The metagraph model data processing is based on a multi-
agent approach. However, the issue of the effective software
implementation of metagraph agents is still open. Currently,

there is no doubt that it is the functional approach in
programming that makes it possible to make such
implementation effectively. Therefore, the work is devoted to
the implementation of a multi-agent paradigm using functional
reactive programming. The advantage of this implementation is
that agents can work in parallel, supporting a functional
reactive paradigm.

The article is organized as follows. The section II discusses
the main ideas of the metagraph model. The section III
discusses the metagraph agent model. The section IV discusses
the Semantic Complex Event Processing approach and its’
correspondence to the metagraph model. The section V (which
is the novel result presented in the article) discusses the
metagraph agent implementation based on Functional Reactive
Programming.

II. THE BRIEF DESCRIPTION OF THE DATA METAGRAPH MODEL

Metagraph is a kind of complex network model, proposed
by A. Basu and R. Blanning in their book [6] and then adapted
for information systems description in our articles [5, 7]:

, , , ,MG V MV E ME (1)

where MG – metagraph; V – set of metagraph vertices; MV –
set of metagraph metavertices; E – set of metagraph edges;
ME – set of metagraph metaedges.

Metaedge is an optional element of the metagraph model
aimed for process description.

Metagraph vertex is described by a set of attributes:

, ,i k iv atr v V (2)

where vi – metagraph vertex; atrk – attribute.

Metagraph edge is described by a set of attributes, the
source, and destination vertices and edge direction flag:

, , , , , | ,i S E k ie v v eo atr e E eo true false (3)

where ei – metagraph edge; vS – source vertex (metavertex) of
the edge; vE – destination vertex (metavertex) of the edge;
eo – edge direction flag (eo=true – directed edge,
eo=false – undirected edge); atrk – attribute.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

The metagraph fragment:

, (),i j jMG ev ev V E MV ME (4)

where MGi – metagraph fragment; evj – an element that
belongs to the union of vertices, edges, metavertices, and
metaedges.

The metagraph metavertex:

, , ,i k j imv atr MG mv MV (5)

where mvi – metagraph metavertex belongs to set of metagraph
metavertices MV; atrk – attribute, MGj – metagraph fragment.

Thus, metavertex, in addition to the attributes, includes a
fragment of the metagraph. The presence of private attributes
and connections for metavertex is a distinguishing feature of
the metagraph. It makes the definition of metagraph holonic –
metavertex may include a number of lower-level elements and,
in turn, may be included in a number of higher-level elements.

The vertices, edges, and metavertices are used for data
description while the metaedges are used for process
description. The metagraph metaedge:

, , , , ,i S E k j ime v v atr MG me ME (6)

where mei – metagraph metaedge belongs to set of metagraph
metaedges ME; vS – source vertex (metavertex) of the
metaedge; vE – destination vertex (metavertex) of the
metaedge; atrk – attribute, MGj – metagraph fragment.

It is assumed that a metagraph fragment contains vertices
(or metavertices) as process nodes and connecting them edges.
A metagraph fragment can also contain nested metaedges,
which makes the description of the metaedge recursive.

Fig. 1. The example of data metagraph

The example of data metagraph (shown in Fig. 1) contains
three metavertices: mv1, mv2, and mv3. Metavertex mv1
contains vertices v1, v2, v3 and connecting them edges e1, e2,
e3. Metavertex mv2 contains vertices v4, v5, and connecting
them edge e6. Edges e4, e5 are examples of edges connecting
vertices v2-v4 and v3-v5 are contained in different metavertices
mv1 and mv2. Edge e7 is an example of the edge connecting
metavertices mv1 and mv2. Edge e8 is an example of the edge
connecting vertex v2 and metavertex mv2. Metavertex mv3
contains metavertex mv2, vertices v2, v3, and edge e2 from

metavertex mv1 and also edges e4, e5, e8 showing holonic
nature of the metagraph structure.

The example of a directed metaedge is shown in Fig. 2.
The directed metaedge contains metavertices mvS, … mvi, …
mvE and connecting them edges. The source metavertex
contains a nested metagraph fragment. During the transition to
the destination metavertex, the nested metagraph fragment
became more complex, new vertices, edges, and inner
metavertices are added. Thus, metaedge allows binding the
stages of nested metagraph fragment development to the steps
of the process described with metaedge.

Fig. 2. The example of the directed metaedge

III. THE DESCRIPTION OF THE METAGRAPH AGENT MODEL
The metagraph model is aimed for complex data

descriptions. However, it is not intended for data
transformation. To solve this issue, the metagraph agent
(agMG) intended for data transformation is proposed.

The choice of a multi-agent approach is quite evident
because this approach is currently widely used in intelligent
systems. This approach is proposed to be used for industry 4.0
[8], product life cycle management [9, 10], robotics systems

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 75 --

[11], including social robotics [12]. Therefore, we also use a
multi-agent approach for metagraph processing.

There are two kinds of metagraph agents: the metagraph
function agent (agF) and the metagraph rule agent (agR). Thus
agMG = agF | agR.

The metagraph function agent serves as a function with
input and output parameter in the form of metagraph:

, , ,F
IN OUTag MG MG AST (7)

where agF – metagraph function agent; MGIN – input
parameter metagraph; MGOUT – output parameter metagraph;
AST – abstract syntax tree of metagraph function agent in the
form of metagraph.

The metagraph rule agent is rule-based:

, , ,R STag MG R AG
, : ,MG

i i jR r r MG OP
(8)

where agR – metagraph rule agent; MG – working metagraph,
a metagraph on the basis of which the rules of an agent are
performed; R – set of rules ri; AGST – start condition
(metagraph fragment for start rule check or start rule); MGj – a
metagraph fragment on the basis of which the rule is
performed; OPMG – set of actions performed on metagraph.
The antecedent of a rule is a condition over the metagraph
fragment; the consequent of a rule is a set of actions performed
on metagraph.

On the one hand, the principle of operation of metagraph
rules is relatively simple and is based on metagraph calculus
[13]. On the other hand, effective metagraph rewriting
techniques are quite sophisticated and are currently being
actively developed. Meanwhile, the classical graph
transformation techniques developed for the transformation of
flat graphs [24] are not explicitly suitable for the metagraph
model. These techniques can only be used with restrictions if
the metagraph is represented as a flat graph [17]. However,
such a representation was designed exclusively for efficient
storage of metagraph data, whereas data processing using such
a representation can violate the semantics of the metagraph
model.

Metagraph rules can be divided into open and closed. The
consequent of an open rule is not permitted to change the
metagraph fragment occurring in rule antecedent. In this case,
the input and output metagraph fragments may be separated.
The open rule is similar to the template that generates the
output metagraph based on the input metagraph.

The consequent of a closed rule is permitted to change the
metagraph fragment occurring in rule antecedent. The
metagraph fragment changing in rule consequent cause to
trigger the antecedents of other rules bound to the same
metagraph fragment. However, an incorrectly designed closed
rules system can cause to an infinite loop of metagraph rule
agent.

Thus, the metagraph rule agent can generate the output
metagraph based on the input metagraph (using open rules) or
can modify the single metagraph (using closed rules).

The example of the metagraph rule agent is shown in Fig.
3. The metagraph rule agent “metagraph rule agent 1” is
represented as metagraph metavertex. According to the
definition, it is bound to the working metagraph MG1 – a
metagraph on the basis of which the rules of the agent are
performed. This binding is shown with edge e4.

Fig. 3. The example of the metagraph rule agent

The metagraph rule agent description contains inner
metavertices that corresponds to agent rules (rule 1 … rule N).
Each rule metavertex contains antecedent and consequent
inner vertices. In the given an example, mv2 metavertex bound
with the antecedent, which is shown with edge e2 and mv3
metavertex bound with consequent, which is shown with edge
e3. Antecedent conditions and consequent actions are defined
in the form of attributes bound to antecedent and consequent
corresponding vertices.

The start condition is given in the form of attribute
“start=true.” If the start condition is defined as a start
metagraph fragment, then the edge bound start metagraph
fragment to agent metavertex (edge e1 in the given example) is
annotated with the attribute “start=true.” If the start condition
is defined as a start rule, then the rule metavertex is annotated
with attribute “start=true” (rule 1 in the given example). Fig. 3
shows both cases corresponding to the start metagraph
fragment and the start rule.

The distinguishing feature of the metagraph agent is its
homoiconicity, which means that it can be a data structure for
itself. This is due to the fact that according to the definition
metagraph agent may be represented as a set of metagraph
fragments, and this set can be combined in a single metagraph.
Thus, the metagraph agent can change the structure of other
metagraph agents.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 76 --

In order to combine the data metagraph model and
metagraph agent model, we propose the concept of “active
metagraph”:

, , ,ACTIVE D MG MG
iMG MG AG AG ag (9)

where MGACTIVE – an active metagraph; MGD – data
metagraph; AGMG – set of metagraph agents agi, attached to
the data metagraph.

Thus, active metagraph allows combining data and
processing tools for the metagraph approach. Similar structures
are often used in computer science. As an example, we can
consider a class of object-oriented programming language,
which contains data and methods of their processing. Another
example is a relational DBMS table with an associated set of
triggers for processing table entries.

The main difference between an active metagraph and a
single metagraph agent is that an active metagraph contains a
set of metagraph agents that can use both closed and open
rules. For example, one agent may change the structure of
active metagraph using closed rules while the other may send
metagraph data another active metagraph using open rules.
Agents work independently and can be started and stopped
without affecting each other.

IV. THE METAGRAPH APPROACH FOR EVENT PROCESSING
The idea of event processing based on the metagraph

approach is discussed in [13]. According to [14], the event is
defined as “a significant change in state,” and event processing
is defined as “a method of tracking and analyzing (processing)
streams of information (data) about things that happen (events),
and deriving a conclusion from them. Complex event
processing (CEP) is event processing that combines data from
multiple sources to infer events or patterns that suggest more
complicated circumstances.” According to [15]: “The goal of
complex event processing is to identify meaningful events
(such as opportunities or threats) and respond to them as
quickly as possible.”

Currently, much attention is paid to the concept of
Semantic Complex Event Processing (SCEP), which is closely
related to specific Semantic Web (SW) technologies. The book
[16] offers an interesting idea that the results of a complex
event processing in the creation of meaningful complex
situations (such as opportunities or threats) and respond to
them. The difference between descriptions [15] and [16] is that
description [16] is more detailed and suggests the creation of
meaningful complex situations as a result of complex event
processing. It is a complex situation that is used for further
analysis.

Thus, nowadays, the concept of an event is treated not as a
separate data point, but as a complex situation with graph
semantics. The RDF approach as a part of Semantic Web
technologies is used to describe such semantics.

However, unfortunately, the RDF approach has several
limitations for complex situation description [17]. There are
reification limitation and N-ary relationship limitation. The root

of limitations is the absence of the emergence principle in the
flat graph RDF model. It is shown in [17] that the metagraph
model addresses RDF limitations in a natural way without
emergence loss. Thus, the metagraph model can be used
instead of the RDF model for the Semantic Complex Event
Processing approach.

The surprising fact is that to describe events in the
metagraph model, it is not necessary to introduce new
definitions. A complex semantic event is itself a metagraph.

There is also no need to change the metagraph agent
definition. The agent’s metagraph fragment for start rule check
may be considered either as a fragment of static metagraph
storage or a dynamic metagraph complex semantic event
description.

The metagraph complex semantic event may contain either
data metagraph fragment or metagraph agent description. Thus,
the triad “data metagraph” – “metagraph agent” – “metagraph
event” may be considered as a homoiconic structure based on
the metagraph model.

In the following section, we will consider the software
implementation of metagraph agents that use events based on
functional reactive programming.

V. THE METAGRAPH AGENTS IMPLEMENTATION
The construction of multi-agent systems based on

functional reactive programming is a natural continuation of
the concept of a reactive agent as an element based on behavior
and reaction to external events.

Currently, many programming languages have
implementations of reactive programming based on the actor
approach. One of the most famous is the Akka library for the
Scala language. There is also an implementation Akka.NET for
languages on the .NET platform, such as C#, F#.

Reactive programming involves building an interdependent
network of various elements that are either subscribed to
various events, or are producers of these events, or implement
both options. While reacting to the events, the network
elements change their state, which applies to all network
elements dependent on them. Thus, with each state change, a
certain wave of changes passes through the reactive network of
the system, which is the main idea of this approach.

Functional reactive programming (FRP) is based on two
main ideas: behavior and event. Behaviors are mutable states
that could be changed by some handling functions, which are
called by events. It may look like an obvious anti-pattern for
functional programming – mutable global states that are
changed by some external events, but the power of types and
separating mutable values their behaviors helps create fast,
handful, and consistent systems based on this behavior.

The FRP was suggested in 1997 [18]. The main idea of FRP
is mutable state elements called behaviors and occurrences of
some messages, which are called events at some time. The
behaviors are time-dependent values of some type. Reactivity is
modeled by combinators, which produces new behaviors based
on initial ones and events. It could be imagined as a function of

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 77 --

time with the state that changes to a new one when some event
occurs. At that moment, the behavior value is replaced by the
value that carries the event. Event is a discrete bundle of
changes in the system; the event could carry some value or be
empty, in the latter case, events will be just triggers for a
system reaction.

With the first generations of FRP frameworks, events only
had one occurrence, so that single-fire events are removed from
the event streams after their occurrence. Most FRP
implementations may occur multiple times and could be used
in recursive descriptions of the network. In this case, we
describe behavior as a state depended on its own events.

Some ways could give us comprehension problems: for
example, an article [19] presents a number of issues with the
explicitness of FRP implementation, such as ELM's complexity
with initial value descriptions or Reflex's recursive monadic
computations when the state is initiated by its own messages.
However, all those difficulties are a small price for
implementing reactive systems with the full power of self-
rebuild.

Another approach to implement FRP architecture is to use
the Arrow type class [20] to replace events and behaviors with
“signals,” which represents both of them as a stream of Maybe
type, with occurrences implemented as Just value. This way is
used in several Haskell libraries such as Yampa or Haskell-
inspired language Elm, totally designed for FRP development.
This article will be operating “classical” FRP architecture with
behaviors and events.

As it is described in [21], behaviors and events could be
identified as data types with corresponding functions:

at :: Behavior a -> Ba
occs :: Event a -> Ea

In FRP, Behavior and Event types carry a collection of
several combinators to represent at some categorical elements.
Behaviors could lift functions into themselves for it to be
applied:

liftn :: (a1 -> ... an -> b)
-> (Behavior a1 -> ...
-> Behavior an -> Behavior b)

Moreover, as it is described in classical FRP articles [18,
21], the semantic instance for Behavior and Events corresponds
to Functor, Applicative, Monad, and Monoid instances. That
provides an opportunity to perform complex operations on
these entities.

After a brief description of the basic principles of FPR, we
shall describe how to add agent-based architecture into FRP.
Despite the fact that the principles of FRP are implemented by
a large number of libraries in different languages, our task was
to propose the implementation of agents in FRP using the
Haskell language.

As it was discussed in previous sections, the agent is a
mutable structure that reacts to external messages. At first
glance, it seems reasoned to map Agents into Behaviors and
Messages into Events. However, this approach is not suitable
because the Agent represents a more complex concept than

Behavior. A simple representation of metagraph agents in the
form of some objects enclosed in the Behavior would not allow
ultimately to perform internal operations on them reactively
and send and receive messages directly to the internal elements
of the agent but would be a simple use of the FRP structure as
just a complex container.

Consider the definition of the metagraph function agent (7).
In that way, Agent consists of Behaviors agent and inner
Events, which makes it possible to reconfigure the internal
structure and its general condition. The main idea of metagraph
agents is its homoiconic structure, which allows it to
reconstruct its properties, actions, and goals when running the
program. In order to implement this approach, it is possible to
imagine a metagraph agent as a structure of Behaviors that
listen to each other and emit and receive Events, thus
representing properties or sets of properties. That dynamically
changing structure of metagraph agents implements the main
property of homoiconicity.

For Haskell FRP implementation of the metagraph agent,
we will strictly consider its’ definition, formulas (1), and (4).
We may describe a metagraph agent as a complex type of
Behaviors that contains vertices and edges of a metagraph. In
this implementation, on its upper layer, the metagraph is a
union (in this case, IntMap is used) of vertices, edges,
metavertices, and metaedges:

MAgent edge node = MAgent {
 mAgentId :: MAgentId,
 mAgentEdges :: IntMap (Behavior
(MAgentEdge edge vertex)),
 mAgentVertex :: IntMap
(Behavior (MAgentVertex edge vertex))
}

The implementation of the metagraph vertex fully complies
with formulas (2) and (5) as a set of attributes and an internal
metagraph. Since the features of the Haskell language allow us
to use optional types, we can combine the implementation of
the vertex and metavertex into a single whole using type
Maybe. In cases where the described object is a meta-vertex,
the vertexMAgent field will exist, if the object is a simple
vertex, then the value will be Nothing. Moreover, due to the
fact that we enclose a potentially existing metagraph in
Behavior, this element can go from the state of the vertex to the
meta-vertex and vice versa during execution:

MAgentVertex edge vertex = MAgentVertex {
 vertexId :: VertexId,
 vertexAttrs :: vertex,
 vertexMAgent :: Behavior (Maybe

(MAgent edge vertex))
 }

The implementation of the edge, in turn, corresponds to the
definition of the edge and metaedge from formulas (3) and (6).
In the same way, as in the vertex implementation, we use type
Maybe to combine the edges and the metaedges in the same
type. The direction and attributes fields describe the
corresponding mathematical representations in the metagraph.
Thus, we also get a variable structure that can change its type

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 78 --

from edge to metaedge and vice versa depending on external or
internal events:

MAgentEdge edge vertex = MetaEdge {
edgeId :: EdgeId,
edgeDirected :: Directed,
edgeFrom :: Behavior

(MAgentVertex edge vertex),
edgeTo :: Behavior

(MAgentVertex edge vertex),
edgeAttrs :: edge,
edgeMAgent :: Behavior

(Maybe (MAgent edge vertex))
}

Using that structure, we may describe functor instances for
agent’s vertices, edges and the agent itself:
instance Functor (MAgent edge vertex) where
 fmap f m = {
 mAgentEdges = fmap f <$> mAgentEdges m,
 mAgentVertex = fmap f <$> mAgentVertex m

}
instance Functor (MAgentVertex edge vertex)
where
 fmap f v = v {
 vertexAtrrs = f $ vertexAttrs v,
 vertexMAgent = fmap f <$> vertexMAgent v,

}
instance Functor (MAgentEdge edge vertex) where
 fmap f e = {
 edgeMAgent = fmap f <$> edgeMAgent e,
 edgeFrom = f <$> edgeFrom e,
 edgeTo = f <$> edgeTo e

}

 To implement the definition of rule-based agent, we must
strictly satisfy formula (8). To store the list of rules, there is an
external table, which is implemented based on the definition of
an agent as a set of metagraph and a list of rules, for which the
correspondence between the agent and the rules to which it
obeys is satisfied. As a result, the final type will look as
follows:

RMAgent = {
rmAgentId :: AgentId,
mAgent :: Behavior MAgent,
mrules :: Behavior [Rules]

}

Such a metagraph agent implementation gives an
opportunity to rebuild its structure during the execution. All
elements of agents are Behaviors, so they are mutable functions
of time and external Events that produce both internal elements
of the agent and other agents or the system itself. Thus, Events
in that approach could be used directly as agent messages; they
can carry agents and agent's subgraphs or any other type if
required. Implementation of agents seems to provide a kind of
homoiconicity, as the agent could change their actions and
structure using FRP mechanisms such as Behaviors and Events.

The agent implementation example (shown in Fig. 4)
contains six metavertices: mAgentVertex1, mAgentVertex2,
mAgentVertex3, mAgentVertex4, mAgentVertex5,
mAgentVertex6 and two metaedges: mAgentEdge1,

mAgentEdge2. Some of vertices are regular vertices
(mAgentVertex1, mAgentVertex2, mAgentVertex3,
mAgentVertex5, mAgentVertex6) and don’t have internal
metagraphs, one of them (mAgentVertex4) is metavertex and
contains vertices mAgentVertex5, mAgentVertex6. One of
edges is regular edge (mAgentEdge2) and another one is
metaedge (mAgentEdge1), it contains mAgentVertex3.
Vertices mAgentVertex4 and mAgentVertex6 producing
messages as Events received by Behaviors: mAgentEdge1,
mAgentEdge2, mAgentVertex3. All elements are contained
within Behaviors, which allows them to transform reactively.

Fig. 4. The example of metagraph agent reactive implementation

For internal logic, the agent uses a rule-based engine, in
which rules and functions are described in the internal
metagraph in some kind of DSL. This DSL allows
implementing the internal logic of agents, perform functions to
change their own or external states, receive or send messages,
superimposing on the logic of the FRP, and working at a meta-
level, controlling the internal behavior of agents.

Among other things, this approach allows separating the
data processing that can be done in parallel. Most of FRP
implementations (for example, Haskell Yampa) has parallel
functions, but do not allow to describe parallel computations
“out of the box”; instead, they should be implemented by the
developer. Article [22] describes the ways to parallel FRP
computations, and they find their way on developing Yampa
library [23], powerful and fast FRP realization. The cornerstone
of paralleling Behaviors is the idea of splitting events into
several ones to each Behavior which is subscribed to splitting
Event.

One could spawn each new Behavior in a different thread
so that it will be computed separately. In this case, there will be
no struggle for resources, because when Behavior tries to
change a state, it produces Event. Thus, the system does not
have direct value mutations – all changes are performed
reactively. As described in [23], signal functions (Yampa's way
to implement Behavior FRP ideas) could be executed in
parallel by using the switchers implemented in that library. The
idea of representing Behavior as Signal was given in [20],
where parallel switchers were used to separating computations
in independent values.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 79 --

Fig. 5. The example of splitting events

The example of splitting events is shown in Fig. 5. The
agent1 producing Event to which the vertices
(mAgentVertex1, mAgentVertex2) of two independent agents
(agent2, agent3) are subscribed. The event is splitted into two
parallel threads that will be computed separately.

Thus, implementing metagraph-based Multi-Agent Systems
via FRP has a lot of advantages. The use of behavior-event
mechanics allows us to organize a new level of abstraction, as
it provides the property of homoiconicity to metagraph agents.
With that approach, agents could rebuild other agents and
themselves reactively by emitting messages with the new parts
of an agent's internal structure. Thanks to this developing way,
the system obtains a significant advantage over non-reactively-
based multi-agent systems. In addition to the general
advantages of the functional language, the FRP provides the
multi-agent system with the possibility of simple parallelism at
the level of computing inside agents, which allows us to scale
the system to extensive models.

VI. CONCLUSION

The metagraph model is a kind of complex network model.
The emergence in the metagraph model is established using
metavertices and metaedges.

For the metagraph model processing, the metagraph
function agents and the metagraph rule agents are used. The
distinguishing feature of the metagraph agent is its
homoiconicity, which means that it can be a data structure for
itself. Thus, the metagraph agent can change the structure of
other metagraph agents.

To describe events in the metagraph model, it is not
necessary to introduce new definitions. A complex semantic
event is itself a metagraph. There is also no need to change the
metagraph agent definition. The agent’s metagraph fragment
for start rule check may be considered either as a fragment of
static metagraph storage or a dynamic metagraph complex
semantic event description.

The metagraph agent may be implemented based on a
functional reactive programming paradigm using the Haskell
programming language. Such an implementation provides a
kind of homoiconicity, as the agent could change its actions
and structure using FRP mechanisms such as Behaviors and
Events. The use of the FRP approach simplifies parallel data
processing.

The proposed approach can be considered as a framework
for complex model transformation. In particular, the article [5]

discusses examples of neural network structure construction
and the polypeptide chain synthesis.

REFERENCES
[1] B.S. Manoj, Abhishek Chakraborty, and Rahul Singh, Complex

Networks: A Networking and Signal Processing Perspective. New
York: Pearson, 2018.

[2] V. Chapela, R. Criado, S. Moral, and M. Romance, Intentional Risk
Management through Complex Networks Analysis. SpringerBriefs in
Optimization, Springer, 2015.

[3] J. Johnson, Hypernetworks in the Science of Complex Systems.
London: Imperial College Press, 2013.

[4] K.V. Anokhin, Kognitom: gipersetevaya model mozga [The
cognitome: a hypernetwork brain model]. Trudi XVII vserossiyskoy
konferencii “Neuroinformatics-2015” [Proc. XVII all-russian
conference “Neuroinformatics-2015”], Moscow, 2015, pp. 14-15.

[5] V.M. Chernenkiy, Yu.E. Gapanyuk, G.I. Revunkov, Yu.T. Kaganov,
Yu.S. Fedorenko, and S.V. Minakova, “Using metagraph approach
for complex domains description”, In: Selected Papers of the XIX
International Conference on Data Analytics and Management in
Data Intensive Domains (DAMDID/RCDL 2017), Moscow, Russia,
October 9-13, 2017, pp. 342-349. Web: http://ceur-ws.org/Vol-
2022/paper52.pdf

[6] A. Basu, and R.W. Blanning, Metagraphs and Their Applications.
Springer, 2007.

[7] V.M. Chernenkiy, Yu.E. Gapanyuk, A.N. Nardid, A.V. Gushcha, and
Yu.S. Fedorenko, “The Hybrid Multidimensional-Ontological Data
Model Based on Metagraph Approach”, Lecture notes in computer
science, vol. 10742, pp. 72–87. Springer, 2018.

[8] V.B. Tarassov, “Enterprise total agentification as a way to industry
4.0: Forming artificial societies via goal-resource networks”, In:
Intelligent Information Technologies for Industry 2018, AISC, vol.
874, pp. 26-40. Springer, 2018.

[9] V. Taratukhin, and Y. Yadgarova, “Towards a socio-inspired
multiagent approach for the new generation of product life cycle
management”, Procedia Computer Science, vol. 123, pp. 479-487,
August 2017.

[10] V.O. Karasev, and V.A. Sukhanov, “Product Lifecycle Management
Using Multi-agent Systems Models”, Procedia Computer Science,
vol. 103, pp. 142-147, October 2016.

[11] A.V. Nazarova, and M. Zhai, “Distributed Solution of Problems in
Multi Agent Robotic Systems”, Studies in Systems, Decision and
Control, vol. 174, pp. 107-124, 2019.

[12] V.E. Karpov, and V.B. Tarassov, “Synergetic artificial intelligence
and social robotics”, In Intelligent Information Technologies for
Industry 2017, AISC, vol. 679, pp. 3-15. Springer, 2017.

[13] Yu. Gapanyuk, “The Semantic Complex Event Processing Based on
Metagraph Approach”, In Biologically Inspired Cognitive
Architectures 2019, AISC, vol. 948, pp. 99-104, Springer, 2019.

[14] D. Luckham, Event Processing for Business: Organizing the Real-
Time Enterprise. John Wiley & Sons, 2012.

[15] Wil M. P. van der Aalst, Process Mining: Data Science in Action.
Springer, 2016.

[16] K. Teymourian, Knowledge-Based Complex Event Processing:
Concepts and Implementation. Südwestdeutscher Verlag für
Hochschulschriften, 2016.

[17] V.M. Chernenkiy, Yu.E. Gapanyuk, Yu.T. Kaganov, I.V. Dunin,
M.A. Lyaskovsky, V.A. Larionov, “Storing Metagraph Model in
Relational, Document-Oriented, and Graph Databases”, In:
Proceedings of the XX International Conference on Data Analytics
and Management in Data Intensive Domains (DAMDID/RCDL
2018), Moscow, Russia, October 9-12, 2018, pp. 82–89. Web:
http://ceur-ws.org/Vol-2277/paper17.pdf

[18] C. Elliott, and P. Hudak, “Functional Reactive Animation”, In the
proceedings of the 1997 ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97). Web:
http://conal.net/papers/icfp97/icfp97.pdf

[19] S. Krouse, “Explicitly Comprehensible Functional Reactive
Programming”, REBLS’18, November 2018. Web:
https://futureofcoding.org/papers/comprehensible-
frp/comprehensible-frp.pdf

[20] H. Nilsson, A. Courtney, and J. Peterson, “Functional Reactive
Programming, Continued”. In: Proceedings of the 2002 ACM

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 80 --

SIGPLAN Haskell Workshop (Haskell’02). Pittsburgh: ACM Press,
Oct. 2002, pp. 51–64.

[21] C. Elliott. “Push-pull functional reactive programming”, In Haskell
Symposium. Web: http://conal.net/papers/push-pull-frp/push-pull-
frp.pdf

[22] J. Peterson, V. Trifonov, and A. Serjantov, “Parallel Functional
Reactive Programming”, In: Practical Aspects of Declarative
Languages. Second International Workshop, PADL 2000. Boston,
2000, pp. 16-32. Web:

https://ia800206.us.archive.org/6/items/springer_10.1007-3-540-
46584-7/10.1007-3-540-46584-7.pdf

[23] A. Courtney, H. Nilsson, and J. Peterson, “The Yampa arcade.”
Haskell '03: Proceedings of the 2003 ACM SIGPLAN workshop on
Haskell. August 2003, pp. 7–18. Web:
https://www.antonycourtney.com/ pubs/hw03.pdf

[24] H. Ehrig, C. Ermel, U. Golas, and F. Hermann, Graph and Model
Transformation. General Framework and Applications. Springer,
2015.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 81 --

