
Duplicate and Plagiarism Search in Program Code 
Using Suffix Trees over Compiled Code 

 

Igor Andrianov, Svetlana Rzheutskaya, Alexey Sukonschikov, Dmitry Kochkin, Anatoly Shvetsov, Arseny Sorokin 
Vologda State University 

Vologda, Russia 
igand@mail.ru, rzeyzki@yandex.ru, aas313@mail.ru, kochkindv@bk.ru, smithv@mail.ru, arseny_sorokin@mail.ru 

 
 

Abstract—The search for duplicate source code allow both to 
improve the quality of the software being developed and to detect 
plagiarism. In this paper, it is proposed to use a set of features of 
modern optimizing compilers to simplify and reduce this task to a 
search by similarity of text fragments. In this case, many types of 
cosmetic changes in code do not affect the search result. In order 
to effectively search by similarity, we use sparse suffix trees built 
on binary encoded data. Algorithms for constructing such a tree 
and performing a search are presented. The application of the 
results to detect cheating in a distance programming workshop is 
described. 

I. INTRODUCTION 
Duplication of source code occurs naturally in the process 

of developing and maintaining software. According to 
estimates in the literature, duplication in industrial software can 
exceed 50%. Interestingly, for open source products this value 
is usually many times smaller. Code duplication has a number 
of negative aspects: 

• the growth of both the size of the source texts and 
binary files, 

• decrease in the level of abstraction, 
• the need to support multiple copies of almost the same 

code, etc. 

Using tools for searching similarities in the source code 
allows, in addition to solving these problems, discipline 
programmers, improve the quality of their program code. It can 
also be an additional incentive for more effective interaction 
between developers within the project. 

Another important task in this area is plagiarism checking. 
It is especially relevant for the educational process. The 
number of training courses in which the development of 
computer programs is supposed is constantly increasing, as 
well as the number of students in them.  

It’s no secret that there are always unscrupulous students 
trying to pass on someone else’s solutions (perhaps slightly 
modified) or use fragments of someone else’s code. To do this, 
they can change the identifier names, reformat the source text, 
insert extra variables or unused functions, etc. A simple file 
comparison does not allow to identify such cases. It requires 
specialized software. 

Taking into account the specifics of the problem being 
solved, we single out the basic requirements for such software 

and explain them: 

1) Identification of various forms of software code 
modifications that do not affect the final result. Modifications 
can range from the simplest (reformatting, renaming 
identifiers) to quite complex ones (for example, changing 
language constructions to alternative ones or writing 
expressions in another form, inserting additional operators and 
data that do not affect the final result, etc.) 

2) The developed software should not require significant 
computing resources. For example, a module developed by us 
for controlling plagiarism is used in our university in the 
system of a remote laboratory workshop on programming. 
There may be situations when several groups of students work 
simultaneously with the system. Long delays when checking 
solutions are highly undesirable. 

3) The ability to quickly and easily configure for various 
programming languages and their dialects. In particular, the 
aforementioned distance learning system is used when teaching 
several courses involving various programming languages. The 
number of such courses is constantly growing, they are 
dynamically changing. Accordingly, it is desirable that the 
system has the ability to quickly and easily configure to these 
changes. 

Various approaches are known for solving this problem. So, 
to identify plagiarism in the program code, it was proposed to 
use a comparison of such characteristics as the number of 
operators, operands, special characters, the frequency of 
references to variables, etc. These approaches are called 
“attribute counting” [1].  

In the case of small modifications of the source text, a 
simple approach based on the search for common substrings 
works well. Its extension is parameterized comparison. This is 
a comparison of texts under the assumption that they can differ 
only in a systematic change of identifier names. This direction 
was investigated in the work of B. Baker [2]. To implement 
such a comparison, a specialized data structure is proposed, 
which is called the "parameterized suffix tree". 

More complex (but revealing more cases of plagiarism) 
approaches are based on syntactic (and, possibly, partially 
semantic) analysis of the source texts. An example is the 
Plague system [3]. It builds the so-called source profiles that 
reflect the sequence of control structures used in the program. 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



To compare profiles, one of the varieties of the search for the 
largest common subsequences is used.  

In [4], an algorithm is proposed for detecting duplicate 
fragments of source code based on call graphs – i.e. oriented 
graphs representing function calls in programs.  

The paper [5] presents a tree-pattern-based method of 
finding code clones in program files. Duplicate tree-patterns are 
first collected by anti-unification algorithm and redundancy-
free exhaustive comparisons, and then finally clustered.  

The work [6] presents the static tracing method in order to 
improve program plagiarism detection accuracy. The static 
tracing method statically executes a program at the syntax-level 
and then extracts predefined keywords according to the order 
of the executed functions. 

There are also other approaches based on comparing syntax 
trees, graphs of program execution, and some others [7].  

Each of the considered methods has one of two drawbacks: 
it either reveals relatively simple cases of intentional code 
modifications, or it is strongly tied to a specific programming 
language and requires difficult adjusting to support another 
language. 

We offer a fairly simple solution that works well in many 
practical cases. Instead of performing parsing of the code 
(separately for each language), we can just use the following 
observations about modern optimizing compilers: 

1) The generated code does not depend on the names of 
local identifiers, text formatting, etc. 

2) Different constructions with the same action in many 
cases are compiled into the same or similar object code. 

3) Unused code often does not compile (if the compiler 
is able to recognize it). 

4) When data types change to similar types, the code will 
not change significantly. 

From here, we can conclude that as input data for the search 
t will be effective to use not the source code, but results on 

compilation (additionally processed in some way). 

Acting in this way, the task is reduced to a simpler task of 
searching by similarity in strings, which can be solved in 
various ways - for example, with help of suffix trees. 

II. USING SOME SPECIFIC COMPILER FEATURES 
Now we will consider the above statements in more detail, 

and illustrate them with examples. 

1) The generated code does not depend on the names of 
functions and local variables, text formatting, etc. This 
property is clear enough. To use it, it is usually enough to 
disable writing debugging information to the resulting 
compilation file. 

2) Different syntax constructions with the same action in 
many cases are compiled into the same or similar object code.  
To illustrate this statement, we give the following example. 
Suppose we replace a for loop with a while loop. Let's look at 

the result produced by one of the C ++ language compilers 
(Table I). For convenience, we have enabled the option of 
generating code in assembler, rather than machine code. 

As we can see, the resulting assembler codes are almost 
identical. The labels have changed slightly, but the sequence 
of operation codes has remained unchanged. Of course, this 
does not always work so well. The result may depend on both 
the compiler and the features of the source text. However, in 
practice, the results are usually good enough. 

It can be concluded that it is quite rational to take 
intermediate results of compilation as input data when 
searching for duplicates (it can be assembler text, object code, 
bytecode, etc.). Then we need to cut out all the extra data, 
leaving only a sequence of operation codes. Such sequences 
will be used later to compare programs. 

TABLE I.  EXAMPLE OF REPLACING OPERATORS WITH ALTERNATIVE ONES 

 First file Second file 

Source code 

for(int i=0; i<20;  
i++)  {  
   c+=a;     
   a*=2;  
} 

int i=0; 
while(i<20)   
{ 
  c+=a;     
  a*=2;     
  i++;  
} 

Compilation 
result 

 xor edx,edx 
@3: 
 add ecx,eax 
 mov ebx,eax 
 add ebx,ebx 
 mov eax,ebx 
@5: 
 inc edx 
 cmp edx,20 
       jl short @3 

 xor edx,edx 
@2: 
 add ecx,eax 
 mov ebx,eax 
 add ebx,ebx 
 mov eax,ebx 
  
 inc edx 
 cmp edx,20 
 jl short @2 

 
3) Unused code often does not compile (if the optimizing 

compiler is able to recognize it). To illustrate this statement, 
we add an extra variable and operation to the previous 
example. As we see in Table II, the compilation result has not 
changed. 

TABLE II.  EXAMPLE OF INSERTING UNUSED VARIABLES AND OPERATIONS 

 First file Second file 

Source code 

for(int i=0; i<20; 
i++) 
  { 
    c+=a; 
    a*=2; 
  } 

 int i=0; 
 int j=0;  
 while(i<20) 
 { 
     c+=a; 
     j++;  
     a*=2;     
     i++; 
 } 

Compilation 
result 

 xor edx,edx 
@3: 
 add ecx,eax 
 mov ebx,eax 
 add ebx,ebx 
 mov eax,ebx 
@5: 
 inc edx 
 cmp edx,20 
 jl        
short @3 

 xor edx,edx 
@2: 
 add ecx,eax 
 mov ebx,eax 
 add ebx,ebx 
 mov eax,ebx 
 
 inc edx 
 cmp edx,20 
 jl        
short @2 

 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 17 ----------------------------------------------------------------------------



4). When data types change to similar types, the code will 
not change significantly. To illustrate it, consider an example 
of a change of type int (signed integer, 4 bytes) to unsigned int 
(unsigned integer, 4 bytes). 

The changes (Table III) affected only the comparison 
command: jb is now used instead of jl. Similarly, when 
changing the size of the basic types, only registers will change 
(for example, eax to ax). Since before comparing we will 
discard the parameters of the commands, leaving only the 
operation codes, no additional steps are required to take this 
into account. 

TABLE III.  EXAMPLE OF CHANGING OF DATA TYPES TO SIMILAR ONES 

First file Second file 

Source code 

for(int i=0; i<20; 
i++)  { 

 c+=a;    a*=2; 
  } 

 for(unsigned int 
i=0; i<20; i++)  { 
    c+=a; a*=2; 
  } 

Compilation 
result 

xor edx,edx 
@3: 

add ecx,eax
mov ebx,eax
add ebx,ebx
mov eax,ebx

@5: 
inc edx
cmp edx,20
jl   

short @3 

xor edx,edx 
@3: 

add ecx,eax
mov ebx,eax
add ebx,ebx
mov eax,ebx

@5: 
inc edx
cmp edx,20
jb    

short @3 

The above observations allow us to move from a search for 
similarities in program code to the next task – to search for 
similarities of text fragments in the contents of the database. In 
this case, the sequence of operations codes obtained during 
compilation will act as input data. 

III. PERFORMING A SIMILARITY SEARCH USING SUFFIX TREES

So, we have a database containing many strings that are 
obtained by compiling and extracting sequences of operation 
codes. We are faced with the task of efficiently searching in 
this database records similar to a given one. 

Note that the concept of "similarity" can be defined in 
different ways. In this paper, we use the following method. 
Two given strings will be considered similar if they have at 
least k common substrings of length at least l. The constants k 
and l are selected empirically. 

Now we define the problem more formally. Given a set of 
strings F={F1,…,Fn}, and a string S to search. We need to find 
a subset of strings F’  F, each of which has at least k common 
substrings with S of length at least l. 

This problem can be effectively solved using generalized 
sparse suffix trees [8]. A subset of suffixes of input strings is 
stored in such a tree in a compact way. Each arc is marked 
with a label – a substring of one of the input strings (Fig. 1.).  

To save memory, not the substrings themselves are stored 
on the arcs, but their positions in the source data: input string 
identifier, start and end positions of its substring (Fig. 2). 

b

e$

Fig. 1. Example of a generalized sparse suffix tree over strings {“abcabe$”, 
“bcabce#”} 

Fig. 2. ompact representation of the tree from Fig. 1 in memory 

Concatenation of labels on the path from the root of the 
tree to each leaf of it uniquely corresponds to one of the 
suffixes of a particular input line. Each node corresponds to a 
substring defined as concatenation of labels on the way from 
the root to this node. The node corresponding to substring v 
will be denoted by <v>. 

The dotted lines in Figures 1 and 2 show the suffix links. 
Suffix links are special arcs that are formed during the 
operation of the tree construction algorithm. Every suffix link 
goes from some node <vw> to the node <w>, where v is a 
nonempty string of minimum length such that the node <w> 
exists in the tree. If such a string does not exist, then the suffix 
link goes to the root. Suffix links are useful for solving some 
string processing problems. They are also needed for the 
ability to add new strings to the tree. 

The solution to the above problem is based on the 
construction of a data structure called matching statistics [9]. 
Let t and p are two given strings. Then the matching statistics 
for t with respect to p will be the array ms[1..|t|], where ms[i] is 
the length of the largest common substring of t starting at 
position i, which also occurs somewhere in p. Here and below, 
the notation |x| will mean length of x (if x is a string) or 
cardinality of x (if x is a set). 

The calculation of the array ms is as follows. First, we 
calculate ms[1]. To do this, we need to move from the root of 
the suffix tree according to the characters of the string t until 
finding a mismatch. Let t[1..j] be the matching part of t. Then 
ms[1] = j. 

To quickly find ms[2], the following fact can be used. The 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 18 ----------------------------------------------------------------------------



position corresponding to the substring t[2..j] is obviously 
present in the tree. To get into it, we must follow the suffix 
link (and after that also perform the so-called canonization – 
see [1] for more details). Similarly, we can calculate ms[3], 
and so on. 

If the suffix tree for the string p has already been 
constructed, then the complexity of calculating the matching 
statistics is O(|t|) or O(|t|·log(| |)) depending on the 
implementation of the tree. Here  is the alphabet used. 
Accordingly, | | is the size of the alphabet. In the first case, 
there is no extra logarithmic factor, but such a tree takes many 
times more memory and therefore not suitable for long strings. 

Let's get back to the original task. Recall its formulation. 
We are given a set of strings F. It is required to find subset 
F’  F, each element of which has at least k common 
substrings with S of length at least l.  

To solve this problem, we construct a suffix tree over the 
string S. This can be done in time O(|S|) or O(|S|·log(| |)) using 
Ukkonen algorithm. After that, we successively calculate the 
matching statistics for each string fi  F and the string S. 
Knowing the matching statistics, it is easy to calculate the 
degree of similarity of strings fi and S. 

IV. EFFECTIVE CONSTRUCTION OF SUFFIX TREE WHEN THE 
INPUT ALPHABET IS LARGE

To efficiently construct a suffix tree, there are several 
algorithms. One of the most popular is the Ukkonen algorithm. 
The computational complexity of this algorithm depends on 
the representation of the tree in memory. If we place in each 
node a full array of possible transitions of size | |, then the 
algorithm works in linear time. However, the tree size in 
memory will be proportional to |S|·| |. 

For our task, this option is not suitable for the following 
reasons. Firstly, our alphabet size is quite large. It is equal to 
the number of different operations in the compiled code and 
can reach several hundred characters. Secondly, the input files 
can also be quite large. 

To save memory, we can store in each node only those 
transitions that really come out of it. This greatly saves 
memory. However, this approach has the following 
disadvantages. 

1) The memory requirements are still quite large. The fact
is that we need to create an auxiliary data structure to search 
for transitions - for example, some kind of balanced tree. 

2) This, in turn, complicates the software implementation.

3) Third, computational complexity increases in log(| |)
times. 

We propose an approach that allows us to eliminate the 
first two of these shortcomings and significantly reduce the 
third. The idea is taken from article [10], which shows the 
possibility of converting the already constructed suffix tree to 
a binary representation. This is done by replacing all the 
symbols on the arcs of the tree with their binary codes. 

An example of such a suffix tree above the string S=“aba$“ 
is shown in Fig. 3. Each arc of the tree is loaded with a 
substring of the source text, converted to its binary code. To 
save memory, only positions of substring are stored on arcs. 
For example, the substring “11000” begins in the 2nd position 
and ends in the 6th. Detailed explanations for Fig. 3 are given 
in Table IV. 

We will refine this idea as follows. We will not convert the 
tree to a binary representation after construction. Instead, we 
will build a tree in this form initially. To do this, we first 
convert the input string to a binary representation. The 
converted input string will contain only the characters ‘0’ and 
‘1’. 

Next, we need to build a suffix tree over this binary string. 
However, we do not want all suffixes of this binary string to 
fall into the tree. Only suffixes corresponding to the positions 
of the source characters should be included in the tree. In the 
example, these are positions 0, 8, 16, 24, etc. Such a suffix tree 
is called an evenly sparse suffix tree. 

Fig. 3. Binary representation of a suffix tree on “aba$” string 

TABLE IV.  EXPLANATION OF FIG. 3. 

Source 
text a b a $

Encoded 
text  01100001  01100010  01100001  00100100 

Start 
positions 

of suffixes 

    

There is a modification of the Ukkonen algorithm for 
constructing such a tree in linear time [11]. If the binary 
representation of one character takes log(| |) bits, then the 
resulting computational complexity of the algorithm is O 
(|S|·log(| |)). 

It is important to note that the number of nodes of such a 
sparse tree coincides with the number of nodes of a regular 
suffix tree built over the original string. That is, the size of the 
tree in memory is at least no larger. In fact, the size is 
significantly (up to several times) smaller due to the fact that 
we no longer need an additional data structure to search for 
transitions from nodes. Indeed, now each node simply stores 
two pointers: one for ‘0’, and the second for ‘1’. 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 19 ----------------------------------------------------------------------------



In addition, we note that using a binary representation to 
encode the source text is not the best option. The disadvantage 
of the binary alphabet is that the resulting tree will also be 
binary. In this case, the number of internal nodes in such a tree 
is exactly one less than the number of leaves. But each internal 
node requires approximately two times more memory than 
leaf. 

By increasing the size of the alphabet into which we code, 
the proportion of internal nodes decreases in favor of the 
leaves. This is shown in Fig. 4. However, the time taken to 
build the tree grows, as can be seen from Fig. 5. Comparing 
both dependencies, we can conclude that the most suitable size 
of the alphabet lies in the range from 3 to 5. Given the 
considerations of the software implementation, it is advisable 
to take the value 4 as the size of the alphabet, since this is a 
power of 2. In this case, the processing of each input character 
is effectively implemented by several processor instructions. 

In practice, the proposed approach gives a gain in speed 
from two times to ten times depending on the input data. 

0

2000

4000

6000

8000

10000

12000

2 3 4 5 6 7 8 9 10 11 12 13

k

EL
n

 
Fig. 4. Typical dependence of  the number of internal nodes in the suffix tree 
ELn on the alphabet size k 

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7

T,
 s

ec
.

k
 

Fig. 5. Typical dependence of the suffix tree construction time on the alphabet 
size k 

V.  EXPERIMENTAL COMPARISON WITH OTHER TOOLS 
We compared module developed by us with the following 

two plagiarism detection tools – Jplag and MOSS. Both of 
these programs are widely known, free to use, and they can be 
relatively easily integrated into existing e-learning systems. 
For example, the article [12] describes the experience of 

developing a plug-in for integrating JPlag and MOSS into 
Moodle open-source learning environment. 

JPlag works as follows. It converts each program into a 
string of tokens (whitespace, comments, and the names of 
identifiers are ignored). Additionally, JPlag is able to put some 
semantic information into tokens. For the comparison of two 
programs, JPlag then covers one such token string by 
substrings taken from the other (string tiling) where possible 
[13]. 

MOSS uses a similar approach with some differences. For 
example, it is able to ignore the so-called boilerplate code that 
is expected in almost all submissions. More details about 
MOSS can be found in [14]. 

To perform the comparison, we used the following 
considerations. Imagine a student who wants to pass someone 
else's solution into an automatic testing system. Of course, the 
student does not want plagiarism to be detected. To deceive 
the anti-plagiarism system, he tries to make some changes to 
the code not affecting the result of the program. Since the 
student does not deeply understand the solution, therefore, 
changes in the code will only be "cosmetic". 

To carry out such an experiment, we took the solutions of 
several quite complex problems (from programming contests) 
and gave them to several students. We asked them to “cheat” 
the plagiarism detection systems. Note that the students did 
not even know the problem statements, they only had the 
source code. 

After analyzing the results, we identified a number of 
typical ways to intentionally modify the code. Some of them 
(for example, renaming of variables) were successfully 
detected by all plagiarism detectors.  

However, for several techniques the results were more 
interesting. These techniques are listed below. 

1) Simple replacement of the for loop with while loop, or 
vice versa. For instance: 

“while (x < 5) {...}” changes to “for(; x < 5 ;)”,  

“for (int  i = 0; i < 5; i++){...}” changes to  

“int i = 0; while (i < 5){... i++;}”, etc. 

2) Insert a small amount of redundant code. Examples: 

x += 0;  x++; x--; 

3) Insert a small amount of code that never executes (or 
always executes). Examples:  

if (false) {...} 

if (true) { a piece of “normal” code from solution } 

Table V shows how the results of detecting plagiarism 
changed on average with the sequential (cumulative) 
application of the three steps above. In the second and third 
steps, only about 5% of the extra code was added. 

Note: when using programs JPlag and MOSS, we left the 
default options. With other settings, the results may be 
somewhat different. 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 20 ----------------------------------------------------------------------------



TABLE V.  PLAGIARISM DETECTORS COMPARISON RESULTS  

Steps used Similarity level, % 
JPlag MOSS Our module 

0 (codes are 
identical) 

100 99 
(slightly strange) 

100 

1 50 54 98 
1, 2 28 26 96 
1, 2, 3 21 22 96 
 

The results obtained allow us to conclude that the proposed 
approach works well for a number of typical variants of 
intentional modifications of source code. 

VI. APPLICATION OF THE OBTAINED RESULTS 
The results described above were used to implement the 

plagiarism check module for the distance programming 
workshop in Vologda State University. This system is 
available at http://atpp.vstu.edu.ru/acm. Consider some 
features of this system. A more detailed description can be 
found in [15]. 

When checking solutions, the following concept applies. 
The solution of the problem (user program) is considered as a 
black box. The program receives input data, performs 
calculations in accordance with the statement of the problem 
and saves the results. 

An automated verification system contains a set of tests for 
each problem. It launches a user solution with various input 
data and compares the result with the correct test data. In case 
of an ambiguous answer, a special checking program (so 
called “checker”) is used. It is interesting that sometimes the 

complexity of developing a checker exceeds the complexity of 
solving a problem. Based on the results of the checking, the 
solution scores a certain number of points. 

At the moment, the problems bank includes about two 
thousand problems of varying complexity. Easy problems are 
used to teach beginners. More challenging problems are used 
to prepare students for programming competitions at various 
levels, including the stages of the World Programming 
Championship (ICPC). Some local competitions on 
programming we carry out with the help of this system. 

An interesting feature of this system, in comparison with 
analogues, is the presence of problems not only in "pure" 
programming. For example, it has a set of assignments for the 
course “Databases”. In them, students are required to develop 
SQL queries, as well as stored procedures and functions in 
PL/SQL language. To check the correctness of the solutions, 
we developed a special checker. It connects to the Oracle 
server, executes the code and checks the correctness of the 
answer. 

Another example is a set of problems for the course 
"Mathematical Logic and Theory of Algorithms". Here, the 
solution can be, for example, a digital circuit with logic gates, 
which can be created in the special program and saved as an 
XML file. A special checker is also used to verify the 
correctness of such solutions [16]. 

There is no doubt that the presence of the functionality to 
identify similar solutions in such a system is highly desirable. 
Next, we list the features of the plagiarism detection module 
we developed (its screenshot is shown in Fig. 6). 

 
Fig. 6. Example of report about finding similar solutions 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 21 ----------------------------------------------------------------------------



1) Plagiarism analysis is performed for any programming 
language used in the system. Adding support for new 
programming languages is easy enough. To do this, we need to 
write a small plug-in for this language, which will perform 
post-processing of the compiled code to extract a sequence of 
operation codes.  

In many cases, it is convenient to perform a separate 
compilation process for plagiarism analysis, since we can set 
specific options for the compiler: for example, generate 
assembler text instead of binary code. 

Note that in the case of interpreted languages, the plugin is 
often written much more complicated, since we have to 
process the source code directly. However, many interpreters 
are able to generate some intermediate code (bytecode, etc.) 
that can be accessed. 

2) The acceptable percentage of similarity can be set for 
each problem individually. Indeed, for some problems (for 
example, simple SQL queries), many of the participants' 
solutions turn out to be very similar to each other. In order for 
the system not to find many incorrect matches, it is worthwhile 
to allow a bigger level of similarity. On the contrary, for 
difficult problems from programming championships, the level 
of acceptable similarity should be much lower. 

3) The system provides the teacher with a list of 
suspiciously similar solutions. For each item in the list a 
detailed report is available. An example of such a report is 
presented in Fig. 6. The report presents both solutions in one 
window for easy comparison with each other. 

After analyzing both solutions, the teacher makes the final 
decision whether we really have cheating, or this similarity 
happened by chance. In the first case, the decision is marked 
as incorrect with the additional status “Not original”.  

It is also worth noting that the results obtained with some 
modifications may be useful for finding duplicate code in 
ongoing software projects. So, an experimental application for 
one of the real projects allowed us to identify and eliminate 
more than 5% of duplicate code. 

VI. CONCLUSION  
In this paper, we have proposed a simple and easily 

implemented approach to finding duplicates and plagiarism in 
program code. Using post-processed compilation results as 
input to the search allows you to automatically ignore many 
cosmetic changes in the code that do not affect the result of its 
work. As a result, the task is simplified and reduced to 
determining the presence of common fragments in text data. 

To solve the obtained problem, suffix trees were used. A 
feature of our task is the relatively large size of the alphabet, 
which negatively affects the performance of this data structure 
and also its size in memory. We solved this problem as 
follows.  

Based on the ideas proposed in [10], we developed an 
algorithm for constructing the binary suffix tree by 
constructing a uniformly sparse suffix tree over pre-encoded 

text. The resulting gain is highly dependent on the input data, 
it varies on average from two to ten times. 

The results were successfully used in the plagiarism 
control module for a distance programming workshop at 
Vologda State University. 

It should be noted that the proposed method for 
constructing sparse suffix trees over pre-encoded text is quite 
universal and suitable not only for the considered problem, but 
can also be successfully used for many other applications. 

REFERENCES 
[1] S. Grier, “Tool that Detects Plagiarism in PASCAL Programs”,  

SIGSCE Bulletin, Vol. 13, 1981. 
[2] B. Baker, ”A theory of parameterized pattern matching: algorithms 

and applications”,  in Proc. of the 25th ACM Symp. on the Theory of 
Computing, 1993, pp. 71-80. 

[3] Paul  Clough, “Plagiarism in natural and programming languages: an 
overview of current tools and technologies”, Department of 
Computer Science, University of Sheffield, 2000. Web: 
http://www.dcs.shef.ac.uk/~cloughie/papers/Plagiarism.pdf 

[4] T. Cholakov, D. Birov, “Duplicate code detection algorithm”, 
CompSysTech '15: Proc. of the 16th Int. Conf. on Computer Systems 
and Technologies, June 2015, pp. 104–111. 

[5] Hyo-Sub Lee, Kyung-Goo Doh, “Tree-pattern-based duplicate code 
detection”,  DSMM '09: Proc. of the ACM first international 
workshop on Data-intensive software management and mining, 
November, 2009, pp. 7–12. 

[6] Jeong-Hoon Ji, Gyun Woo, Hwan-Gue Cho, “A source code 
linearization technique for detecting plagiarized programs”, ITiCSE 
'07: Proc. of the 12th annual SIGCSE conference on Innovation and 
technology in computer science education”, June 2007, pp. 73–77. 

[7] I. Andrianov, A. Grigorieva, “Effective search for plagiarism in 
program code for a remote programming workshop system”, in Proc. 
of the international scientific and practical conference 
"Informatization of engineering education (INFORINO-2016)”, 
Moscow: MEI Publishing House, 2016, pp. 485–488. 

[8] S.F. Svinyin, I.A. Andrianov, “Application of evenly sparse suffix 
tree for string processing tasks”, SPIIRAS Proceedings, No. 3 (34), 
2014. pp. 247-260. 

[9] Dan Gusfield, “Algorithms on Strings, Trees, and Sequences: 
Computer Science and Computational Biology”, Cambridge 
University Press, 1997, 534 p. 

[10] A. Anderson, S. Nilsson, “Efficient implementations of suffix trees”, 
Software – Practice and Experience, 1995, Vol. 25, pp. 129-141. 

[11] Juha Kärkkäinen, “Sparse suffix trees”, Proc. of the 2nd Annual 
International Conf. on Comput. and Combinatorics. Lecture Notes in 
Computer Science, 1996, Vol. 1090, pp. 219-230. 

[12] Thanh Tri Le Nguyen, Angela  Carbone, Judy  Sheard, Margot  
Schuhmacher, "Integrating source code plagiarism into a virtual 
learning environment: benefits for students and staff", ACE '13: 
Proceedings of the Fifteenth Australasian Computing Education 
Conference, Volume 136, January 2013, pp. 155–164 

[13] Lutz Prechelt, Guido Malpohl, Michael Philippsen, “Finding 
Plagiarisms among a Set of Programs with JPlag”, Journal of 
Universal Computer Science, vol. 8, no. 11 (2002), pp. 1016-1038. 

[14] Saul Schleimer, Daniel S. Wilkerson, Alex Aiken, “Winnowing: 
Local Algorithms for Document Fingerprinting”, SIGMOD '03: 
Proceedings of the 2003 ACM SIGMOD international conference on 
Management of data, June 2003, pp. 76–85. 

[15] I.A. Andrianov, N.O. Menuhova, “Refinement of a remote workshop 
of Vologda SU  for checking problems on informatics according to 
the rules of school olympiads”, Proc. of Int. scientific and practical 
conference “Modern society, education and science”, Tambov, 2014, 
pp. 10-13. 

[16] I.A. Andrianov, “Automation of checking of logic circuits”, Proc. of 
tenth international scientific and technical conference “Intellectual 
Information Technologies and Intellectual Business (INFOS-2019)”, 
Vologda: Vologda State University, 2019, pp. 114-117. 

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 22 ----------------------------------------------------------------------------


