
Developing the Indicators Framework for Creating
Display Systems

Alisa Volk, Vera Ivanova, Alexey Syschikov,
Boris Sedov

State university of aerospace instrumentation
St. Petersburg, Russia

volk.alisa.v@yandex.ru

Abstract–Designing displays for embedded systems can be
complicated. It requires the involvement of developers with
programming skills in low-level languages.The API developed by
the authors simplifies the design for creating and using devices,
which requires less time to design indicators displays and can be
performed by those specialists who do not code. The functionality
of the created software includes support for rendering on the
GPU, and the ability to control devices in runtime.

I. INTRODUCTION

Industrial display modules (or indicator displays) usually
show various information about the system in real time – from
specific parameters like velocity or altitude to energy
consumption and general health of the system. Industrial
displays are often embedded systems interconnected with other
modules. The displays allow monitoring car, railway or aircraft
systems in real time and provide vital information for
managing industrial facilities. Given the specifics of the
domains, these indicators should have increased reliability and
meet the requirements for safety-critical systems.

Industrial indicators as embedded systems have following
features: increased reliability, operation in real-time,
performing in a strictly defined time intervals. Besides,
embedded devices are often designed as self-powered devices
and their energy consumption is strictly limited. Hence, to
develop embedded software we need specialized industrial
application programming interfaces (APIs).

II. API FOR INDUSTRIAL INDICATORS

OpenGL ES is a multi-platform low-level API for rendering
advanced graphics using GPU. It is designed specifically for
embedded systems [1]. Writing programs using OpenGL ES is
a complicated process for highly qualified specialists. In order
to create a set of graphics for an indicator display system, the
specialist should have a good sense of technical specifications
of the system and the basics of display design. The specialist
also should have programming skills in low-level and shader
languages (special programs written for GPU) and the
knowledge of computer graphics basics.

OpenGL instructions are abstract and not tied to any
particular device.

Nowadays, industrial display development is mostly done
manually. A set of indicators for each system is created by
computer graphics specialists. Each simple element like scale or
arrow is described by a large number of OpenGL ES primitives,
thus developing graphics with the OpenGL ES API can be very
challenging.

Authors propose an indicator framework as a solution to
simplify the process of industrial indicator development.

III. INDICATORS FRAMEWORK

An indicator display is designed in web visual editor by
creating set of devices, each consisting of a background
element, mask determining the shape of the device, and smaller
components bound to background element or a mask.

Fig. 1. Concept of the display design process

When the designing of elements on the display is
completed, the developer can control display elements through
a VIPE program.

VIPE (Visual programming environment) allows designing
a fully functional, proved and algorithmically correct
platform-independent program multicore/manycore embedded
platforms, heterogeneous ones included [2].

VIPE has special visual DSL library (change parameters
library in the fig below) for indicator displays that provides a
number of functions to manipulate display primitives, such as:
setting given coordinates, rotation at a given angle, changing
radius, color or texture, changing text etc.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Fig. 2. Framework integration in VIPE

In addition, the developer can obtain data from peripheral
devices (like gyroscope) using VIPE IO DSL library. The
program shown below gets axis deviations from gyroscope
sensor and changes the appearance of the indicator display to
show the deviations on the screen.

Fig. 3. VIPE program example with data coming from external sensor

Use case of the primary flight display was rendered on the
Salyut-EL24PM1 processing module with the MALI-300
graphic core at the frequency of 70-75 fps [3]. On a Raspberry
PI3 with Broadcom VC4 Graphics Core the same display was
rendered with 75-80 fps.

IV. CONCLUSION

The authors developed a programming interface for
creating graphic software for indicator displays. This interface
provides methods to construct complex displays from a set of
graphic primitives and render them on embedded GPU without
writing an actual code; therefore, it does not require
programming skills to design displays. In addition, this
interface allows manipulating the elements of display in a
runtime.

The developing process is simplified by moving it to the
visual editor where user can drag and drop graphic primitives
to construct an indicator. Graphic primitives include scales,
pointers, text elements, arrows etc. Each primitive has an API
to connect it with a dataset in runtime – for example, primitive
can change angle depending on external value from sensor or
computed value in program.

REFERENCES
[1] H. Lee, N. Baek, “Implementing OpenGL ES on OpenGL”, IEEE

13th International Symposium on Consumer Electronics, 2009

[2] A. Syschikov, Y. Sheynin, B. Sedov, V. Ivanova, “Domain-specific
programming environment for heterogeneous multicore embedded
systems”, International Journal of Embedded and Real-Time
Communication Systems (IJERTCS), vol. 5(4), 2014, pp 1-23.

[3] Electronic VLSI engineering and Embedded Systems: Processor
module Salyut-EL24PM.
Web: http://multicore.ru/index.php?id=1389

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 701 --

