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Abstract—Industrial rotary machinery needs real-time diag-
nostics based on measured data from multiple sensors. Vibra-
tion diagnostics can be implemented using the neural network
approach, which achieves high accuracy in fault detection.
Transferring a neural network model to edge devices leads to
performance issues and platform limitations. In this work, we
discuss edge computing opportunities for vibration diagnostics of
rotary machinery using the neural network approach.

I. PROBLEM

In order to keep industrial machinery in appropriate con-
dition, the methods of technical condition diagnostics and
predictive maintenance are applied. The diagnostics is based
on the current machinery state. The predictive maintenance
aims at forecasting mechanism behavior at a certain point
in time with the current state. Both of these methods found
application in IIoT diagnostic systems (Industrial Internet of
Things), such as [1]. The utilization of condition diagnostics
and predictive maintenance services establishes an effective
equipment machinery operation mode and personnel timetable.

The methods need to analyze data from multiple sensors.
The data are flow-based, and continuous sensing and process-
ing of different data types are performed:

• mechanical parts vibration, position, speed;

• electric motor current;

• temperature;

• acoustic signals.

Therefore, continuous data fusing is needed, which is now
typical in many intelligent system, where Ambient Intelligence
is implemented [2].

Data flow from each sensor might be processed with
different techniques:

• Spectral Fourier analysis [3];

• Statistic methods based on time series models [4];

• Neural Network models [5].

The first two methods do not analyze relations between
various frames in the obtained data [6]. They do not analyze
relations between multiple sensors data flow. Methods based on
Neural Networks (NN) allow identifying events in the sensor

data flow [7], such as bearing treadmill issue. Besides these
methods can recognize bursts and non-standard combinations
of heterogeneous data, even within normal operating ranges.

Rotary machines have important components, such as
bearings and rotors. These components must be monitored
online with real-time condition diagnostics systems. The major
parameter of those components is vibration. Real-time vibra-
tion monitoring aims at quickly responding to problems and
provides recommendations to the personnel.

Neural Network-based approach consists of making model,
training it on an obtained data set, and deploying in real-
time diagnostic systems. There are some types of Neural
Network models, such as deep feedforward neural network
and deep convolutional neural network. Vibration analysis
with that Neural Network models proved themselves in fault
detection with a high precision rate [8]. Besides, to increase
the prediction rate, we can apply a data fusion-approach that
combines heterogeneous data. For data fusion-approach, we
need to train our network with an appropriate data set. Here
are some tips for data preparation:

1) Sample rate. As described in [8], the data from
various sensors must be sampled at the same rate.
Otherwise, we should interpolate them to make their
number of counts the same.

2) Normalization. For optimal compute performance and
precision rate on the training set its recommended to
scale values from zero to one.

3) Data augmentation. If there is not enough data for
making a training set, then we can use the augmen-
tation method by combining random data frames.

4) Data submission. Work [9] provides two ways of data
submission. The first consider making a dataset from
raw sensor data with a fixed sample rate and fixed
window size. The second one offers to make a dataset
spectrogram with FFT as a two-dimensional image.
The pixel intensity on this image shows power spec-
tral density, x-axis shows frequency in the spectrum,
the y-axis shows spectral sequences in time.

5) Data fuse. To extract more features from heteroge-
neous data we should concatenate a one-dimension
data vector from various sensors to a two-dimensional
tensor, where the first dimension corresponds to sam-
ples from one sensor and the second one corresponds
to the single measurement from different sensors.
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II. NEURAL NETWORK ACCELERATORS IN EDGE

COMPUTING

Deployment of neural networks in real-time diagnostic
systems requires high-performance hardware. The conven-
tional approach is to use server-class computers with high-
performance GPU. However, increasing interest in NN has
motivated many manufacturers to develop application-specific
hardware for NN computing, i.e., neural network accelerators
(NNA) [10], [11], [12].

To understand the benefits of such hardware we need to
consider the structure of NN and corresponding computational
operations. The DNN consists of multiple layers. Each layer
takes an input data tensor, processes it according to the layer’s
type, and produces an output data tensor. Layers could be
connected sequentially or with recurrent connections. The
basic layers types are fully-connected and convolution layers.
The fully-connected layer performs matrix multiplication of
weights matrix with input data vector and applies activation
function, such as tanh, sigmoid, or ReLU. The convolution
layer applies multiple convolution kernels (filters) to the input
data tensor, then applies activation function similar to a fully-
connected layer. The convolution and matrix multiplication
are high computational consuming operations. Neural network
accelerators aim to improve the efficiency of these operations.

Usually, on the hardware level, neural network accelerators
implement only one type of operation mentioned above. The
reason is that matrix multiplication could be expressed as
multiple convolution operations, and convolution could be
expressed as multiple matrix multiplications [13]. Of course,
these approaches are less efficient in terms of power efficiency
and performance. However, they allow reducing the chip area
and cost.

To deploy Neural Networks in embedded systems and edge
devices the hardware with neural network accelerators should
be used. But, as such hardware designed to be low power and
mobile, it has the next limitations.

A. Performance

While data-center NNA could reach performance from
dozens to hundreds of TOPS (Tera Operations Per Second)
[11], the performance of NNA for edge devices is restricted
down to tenth and units of TOPS, as shown in Table I. This
circumstance limits the neural network model size in terms
of the volume of computational operations and the amount of
processed data per second. To cope with this, more thoroughly
model architecture selection is required. While compact DC-
NNs for image classification are widely investigated [14], [15],
developing small NN without a significant precision loss for
technical condition diagnostics and predictive maintenance is
the subject of future research.

B. Memory

As shown in [11], [18] memory bandwidth often occurs to
be a bottleneck of NNA performance. For high-performance
data-center NNA, the multi-channel DDR RAM or HBM
seems to be the best choice since a very large memory size
is required. However, in the case of edge devices, the power

TABLE I. NEURAL NETWORK ACCELERATORS SPECIFICATIONS

NNA model TOPS Type Power con-
sumption,
mW

On-chip
memory,
MB

Kendryte
K210 [10]

0.46 System-on-Chip (2
core CPU, NNA, I/O
interfaces)

300 8

Lightspeeur
5801 [16]

2.8 NNA (host processor
is required)

224 -

Google Edge
TPU [17]

4 NNA (host processor
is required)

2000 8

Bitmain
Sophon
BM1880
[12]

1 System-on-Chip (2+1
core CPU, NNA, I/O
interfaces)

2500 2

consumption and device dimensions are restricted, and high-
bandwidth off-chip memory is not available, so build-in on-
chip memory comes in the first place. But, on-chip memory
of typical embedded NNA is strongly limited. Taking into
consideration the fact that on-chip memory stores not only NN
model parameter data but also executable code, the available
on-chip memory size for the NN model varies from 1 to
7 MB for present-day NNA as seen in Table I. Although
it is possible to store a part of the NN model parameter
data in off-chip memory, the bandwidth of such memory
in edge devices bottlenecks their performance in this case.
Summarizing, deployed NN models have to be compact not
only in terms of computation amount but also in terms of
memory footprint.

C. Number format

The neural network quantization is a widely used technique
to reduce the already trained NN model memory footprint [19].
The quantization is a conversion of the NN model parameters
from 32- or 64-bit width floating-point number format to a
fixed-point format of eight-bit width or less. Although this
leads to minor NN accuracy decreasing, the use of this method
is reasonable in mobile devices due to significant memory
footprint reduction. Moreover, the fixed-point multiplies and
addition are 6-38 times more efficient in energy and area [20].
So, to minimize chip area and power consumption inference-
proposed NNAs operate with fixed-point numbers, typically
eight-bit integers [10], [16], [17], [12].

III. CONCLUSION

This work-in-progress paper considered the opportunities
of edge computing for NN-based vibration diagnostics. We
overview the current state in the field of NN, vibration diag-
nostics, and hardware computing systems. We identified and
analyzed the basic research problems for selecting NN-model
architecture, proper data preparation, and hardware-specified
optimization.
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