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Abstract—In this paper, we describe the development of a
novel statistical potential for the prediction of antibody-antigen
complexes (docking), which play key role in in silico immunother-
apy discovery. The developed statistical potential is then used to
improve the accuracy of an existing docking algorithm. We also
present a new dataset for the development and comparison of
different statistical potentials and docking algorithms. One of the
key features of the developed dataset is that it can be obtained
almost automatically, with few optional manual steps, using the
pipeline introduced in this paper.

I. INTRODUCTION

A. Docking

Protein-protein interactions play fundamental role in living
systems functioning. Immune system reactions, cell signaling,
and many other intermolecular processes are based on protein-
protein complexes interactions. Describing such complexes
from the biophysical and structural points of view plays a
crucial role in understanding cell’s functions. This makes the
problem of protein-protein complex prediction, also called
docking, one of the most important tasks being solved during
rational drug design — the process of drug development,
which heavily relies on studying the structure and functions
of molecules.

Up to this day the problem of docking remains one of the
most difficult tasks in structural bioinformatics, which in the
majority of cases cannot be solved efficiently neither by human
nor by the existing algorithms [1]. One of the main reasons
for this is the fact that obtaining accurate results for such task
demands an exhaustive search in large conformational space.

During the process of drug development, the docking
problem can occur up to several hundred times. Therefore,
solving this task in short time ranges is very important. On
the other hand, algorithmic optimizations of the search often
rely on narrowing down the space of search, which may result
in the eventual loss of accuracy. Hence, the problem of docking
should be solved both efficiently and accurately.

B. Grid-based docking

First efficient algorithm for docking of two molecules was
introduced in 1992 by Katchalski-Katzir [2].

Optimal rotation and translation of one molecule relative
to the other molecule are searched. Step of searching optimal
translation is calculated using grids’ correlation, what improves
step’s efficiency compared to the naive approach.

First of the two molecules that form the complex, which
in terms of the docking problem is called receptor, and the
second molecule, which is called ligand, are being placed into
3-dimensional grids. The value of each cell of the grids is
being calculated according to the following formula:

cellijk =

⎧⎨
⎩
1, if on surface

p, if inside

0, otherwise.

Here, the value of 1 is assigned to the grid cells that contain
surface-atoms of the molecule. Value of p, which lays in the
range (0, 1), is assigned to cells that only contain internal
atoms of the molecule. p can be different for receptor and
ligand. The value of 0 is assigned to all other cells of the grid.

Once we have obtained grids for the receptor and the
ligand, we calculate the correlations of the two grids for
all possible translations in 3-dimensional euclidean space of
ligand’s grid respective to receptor’s grid using the following
formula:

N∑
i=1

M∑
j=1

Aij ·Bij ,

where A and B are the receptor’s and the ligand’s grids, and
N and M are sizes of grids’ dimensions. Conformation with
maximal correlation value corresponds to the mutual position
of the receptor and the ligand that has maximal geometric
complementarity.

Therefore, the problem of finding optimal translation of
one molecule relative to the other molecule comes down to
finding the conformation with maximal grids’ correlation.

Expressing molecules’ shape complementarity in terms of
the correlation of two grids allowed for the use of FFT-
based approach to the exhaustive search of ligand’s grid
translation that maximizes the correlation of two grids. The
whole algorithm significantly reduced theoretical and practical
time it takes to dock two molecules [2]. The process of docking
two molecules using correlation grids is now referred to as
grid-based docking.

Overall, shape complementary method accounts only for
geometry of the molecules and does not take into account their
physical properties. Therefore, the method has very limited
applications and low accuracy in general.

C. Statistical potentials and DARS

In 2006, Kozakov and coworkers introduced a novel dock-
ing algorithm Piper, which later became the core of the web-
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server ClusPro [3]. Up to this day, ClusPro remains the best
fully automated docking server [1].

This result was achieved with the help of adding new
terms to the correlation function maximized during the stage
of grid-based docking. Firstly, geometry term became an
approximation of van der Waals energy, unlike the geometry
term in Katchalski-Katzir’s work that approximates basic shape
complementarity. Secondly, term accounting for electrostatic
interaction and a statistical potential term were introduced.

The statistical potential term captures the information about
how probable it is that the given conformation of the receptor
and the ligand is a native conformation, i.e. a conformation
that can be observed in nature. Estimation of probability is
based on statistics retrieved from a particular set of biological
complexes that the statistical potential is trained on.

The idea of the application of the statistical potential to
the problem of docking was not new for 2006, as several prior
works explored the possibilities of construction and application
of such potentials [4]. What made the result achieved by
Kozakov stand out from its predecessors is the novel way of
obtaining the training set for the statistical potential and the
developed technique of representation of statistical potential
in terms of grids’ correlation, which made it possible to
incorporate statistical potentials into grid-based docking stage
of ClusPro’s pipeline.

One of the most commonly used techniques used for the de-
velopment of the statistical potentials is the inverse Boltzmann
approach [5]. Its idea is to express free energy of the molecular
system’s state via the probability of this state’s existence, using
Boltzmann’s distribution. This approach is very general and the
results of its application may vary depending on the definition
of the system’s state. In the case of the development of the
statistical potential for the problem of docking, state is usually
defined as a pair of atoms.

Statistical potentials are just 2-dimensional tables. Rows
and columns of these tables correspond to types of atoms taken
into consideration in a given statistical potential. For example,
if there are two atoms of types I and J , then energy of their
interaction according to a statistical potential with table SP
is equal to the value of the item SPIJ of the table. If there
are two molecules forming a complex, then the energy of that
complex in a statistical potential with table SP is calculated
in the following manner:

ESP =

N∑
i=1

M∑
j=1

Id(i,j)<D · SPty(1,i)ty(2,j),

where N and M are the numbers of atoms in the first and the
second molecules respectively, Id(i,j)<D is equal to 1, if atoms
of molecules with indices i and j are at the distance less then
D, and is equal to 0 otherwise, ty(i, x) is the function that
maps the atom with index x in the molecule i to its type in
the statistical potential SP .

Each item of the statistical potential’s table is calculated
using the following formula derived from the Boltzmann’s
distribution:

SPIJ = −RT ln
pobsIJ

prefIJ

,

where R is the gas constant, T is the temperature, pobsIJ is
the probability of atoms I and J interacting in a training set

and prefIJ is the probability of atoms I and J interacting in a
so called reference state, which is the approximation of space
of all possible molecular complexes. Most of the differences
between statistical potentials come from the training sets that

statistical potentials are built on and from the way prefIJ is being
calculated.

ClusPro up to this day uses statistical potential called
DARS [3], [6], introduced in 2006. The main idea of DARS
is to use an artificially generated set of physically wrong
conformations, decoys, as a reference state. To generate this
artificial set, one needs to take a number of valid molecu-
lar complexes and dock their components using grid-based
docking algorithm that takes into account only the shape
complementarity correlation term. Conformations obtained as
the result of this action are independent of any atom-specific
interactions by construct: there is no bias towards any pair
of interacting atom types. So in terms of atom interactions,
complexes can be called “random“. And that fact makes it
reasonable to define reference state for statistical potential as
a large set of such decoys.

Despite DARS showing good results at discriminating
improbable conformations from probable for some types of
complexes, it has a number of drawbacks.

For complexes where antibody, a protein produced by the
immune system for the elimination of pathogenic molecules,
acts as a receptor, DARS has been demonstrated to have poor
discriminatory power [6].

The less obvious drawback of the DARS potential is the
fact that it does not take into account the distances between
interacting atoms. Binary metric for detecting the interaction
between two atoms is used: only atoms that are less distant than
some cutoff distance D are considered as interacting. Such
binary classification may yield imprecise results: two equal
pairs of atoms placed at different distances both of which are
less than D are said to equally contribute to the energy of the
complex.

As for the solution of this problem, in 2001 a distant-
dependent potential was developed for the needs of the folding
problem [7]. This potential can be combined with DARS’s
method of obtaining a reference state in order to overcome
said problem of accounting for the distances between atoms
when calculating the total energy of the complex.

D. Antibody-antigen complexes and aADARS

Antibody-antigen complexes are complexes, in which the
antibody acts as a receptor and a ligand is a molecule that
binds to antibody. Such ligands are also referred to as antigens.
Antibodies play a vital role in modern-day drug development,
because they proved themselves to be efficient in the treatment
of cancer and autoimmune diseases. About one fourth of
all drugs approved by FDA during the last five years are
monoclonal antibodies [8]. Therefore, the problem of accurate
docking for antibody-antigen complexes is particularly relevant
today.

In 2012, aADARS statistical potential was introduced [9].
It was designed to improve DARS’s performance on antibody-
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antigen complexes. Such an improvement was achieved by
training statistical potential on a specific dataset containing
only antibody-antigen complexes. Another feature of the sta-
tistical potential was the fact that its table was asymmetric.
This was done in order to discriminate atoms of antibody and
antigen, which are presumed to have different properties.

This statistical potential has the same problem as DARS in
terms of not taking into consideration the distances between
interacting atoms.

But what is more important is that aADARS was developed
in 2012 and since then there have been no reports on potential’s
updates. The same can be said about non-antibody DARS
itself.

Protein Data Bank, or just PDB, is the world’s largest
storage of molecules’ 3-dimensional structures. PDB acted
as a source of data for the development of both DARS and
aADARS. As it has been shown in the latest report on the state
of PDB, the number of structures available in the storage grows
exponentially each year [10]. Therefore, there is clear evidence
that both statistical potentials can be made more accurate with
the use of new data.

Unfortunately, no tools exist for the automatic creation of
said potentials using relevant data. And that poses another
challenge for the creation of updated versions of DARS and
aADARS.

E. Benchmark for Docking and Statistical Potential

To conduct a benchmark of a newly developed docking al-
gorithm or statistical potential, a particular set of test structures
should be collected.

Every entry in the benchmark’s dataset should contain:

1) Receptor-ligand complex that captures molecules’
native interaction. Such complexes are called bound.

2) Receptor molecule as it is found in nature, indepen-
dent of any interactions with other molecules. Such
conformations of molecules are called unbound.

3) Ligand’s unbound conformation.

During the benchmark of docking, unbound conformations
of receptor and ligand are being docked and the result is being
compared with the bound complex. This way of testing an
algorithm is chosen because it simulates the real-life situation:
one has structures of receptor and ligand as they exist in nature
and wants to predict their complex as close as possible to the
native one.

The same dataset is applicable to the task of benchmarking
and comparing statistical potentials. For every complex in
the dataset, unbound receptor and unbound ligand are being
docked with the help of grid-based docking algorithm that
does not use statistical potential correlation term. Algorithm
produces a number of conformations of the molecules which
are then sorted with respect to the statistical potential energy.
After that, a number of conformations, that are close to the
bound complex and that made it into top-N poses, is calculated.
The more near-native complexes are in the top-N solutions –
the better.

Most well-known open-source docking benchmark is ZLab
dataset [11]. Latest version of the dataset was gathered from
the PDB in 2015. Both DARS and aADARS statistical poten-
tials have been benchmarked using ZLab [3], [9].

If one wants to benchmark an antigen-antibody statistical
potential, ZLab has a major drawback: it contains 230 entries
in total, only 28 of which are bound antigen-antibody com-
plexes with both of their unbound components present in the
dataset. To test the discriminatory power of statistical potential
properly, clearly, more data is required.

There is also evidence that such data indeed can be
obtained: SAbDab database, which accounts for the structures
from the PDB that contain antibodies and which is updated
regularly, lists at least 2730 bound antibody-antigen complexes
[12]. So there is real hope that unbound parts can be found
for a more significant number of complexes than those already
contained in ZLab.

F. HEDGE

In 2018, BIOCAD introduced its own docking algorithm,
HEDGE, the novelty of which lies in its performance capabil-
ities: all stages of the algorithm are computed solely on GPU
with ability to use several devices at once [13]. This allows
for more exhaustive search of conformational space in less
computational time.

HEDGE has not incorporated a statistical potential yet, so
its accuracy could be significantly improved by implementing
such potential.

G. Aim of this paper

As it has been shown in the subsections I-C and I-D, both
DARS and aADARS statistical potentials can be improved.
In this work, we aim to develop a novel statistical potential,
designed to work solely with antibody-antigen complexes,
in order to improve HEDGE’s performance for this type of
structures. Statistical potential is going to be built with the
use of all the data available in the PDB about said type of
complexes at this moment.

Also, we aim to create a tool that could, given a training
dataset, produce a developed statistical potential built on this
set. In the future this tool will help keeping developed statis-
tical potential up to date with all the new data that becomes
available in the PDB.

Discriminative power of the newly developed statistical
potential is going to be tested and compared to the DARS
and aADARS in the manner described in I-E.

In order to achieve this, a new dataset will be gathered
since, as it has been described in the subsection I-E, ZLab
dataset lacks antibody-antigen complexes. There is strong
evidence that more data for the task of benchmarking antibody
statistical potential can be obtained from the PDB.

The benchmarking dataset will be complemented with a
tool for its automatic updates.

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 648 ----------------------------------------------------------------------------



H. Paper’s structure

The paper is organized as follows. The next section
presents a detailed research plan of what is needed to be done
in order to achieve the goals set in the subsection I-G. The
third section presents results that have been obtained up to
now. The final section draws up conclusions that can be made
from this study so far, as well as presents short summary of
the work that will have been done before the conference.

II. RESEARCH PLAN

A. Plan

The plan for achieving goals set in section I-G looks as
follows:

1) Confirm the hypothesis that the usage of statistical
potentials will improve HEDGE’s performance.

2) Collect the dataset of antibody-antigen complexes
to train the new statistical potential. Collect the
benchmarking dataset to compare the performances
of different statistical potentials.

3) Develop DARS-like statistical potential built on a
new training set and compare its performance to
original DARS and aADARS.

4) Add the accounting for distances to the new potential,
similar to how it was done in in 2001 distant-
dependent potential.

5) Compare both versions of developed potential with
DARS and aADARS.

6) Create a tool that, given a training set, builds two
versions of the developed statistical potential using
provided training set.

Following subsections present a detailed description of
every item of the plan.

B. Confirming statistical potentials’ applicability

As the main motivation for creating a novel statistical
potential is the improvement of HEDGE’s accuracy, it was
important to confirm the hypothesis that adding statistical po-
tential correlation term into the HEDGE’s grid-based docking
correlation function would significantly improve algorithm’s
performance.

In order to do that, a statistical potential had to be im-
plemented in HEDGE. We chose the original DARS for this
task, as it can be used for different types of complexes. Next
step was the creation of a grid-based docking stage benchmark
for HEDGE. Final step was the comparison of algorithm’s
performance with and without DARS using chosen benchmark
dataset.

C. Collecting training and validation sets

As the DARS and aADARS were built in 2006 and 2012
respectively, there exists a handful of new antibody-antigen
complexes that can be included in the training set to improve
the performance of developed statistical potential.

On the other hand, the existing dataset for benchmarking
statistical potentials, ZLab, contains too few entries of the

antibody-antigen type. So for that reason, again, new data
should be gathered from the PDB.

The big difference between the validation and the training
sets is that for the validation set we need not only antibody-
antigen complexes themselves, but also the unbound versions
of the receptor and the ligand. Therefore, the pipeline for
gathering data for the validation set has to be more complex:
the process of finding unbound conformations of molecules in
PDB is a difficult task due to the diversity of data stored in
the database.

D. Developing DARS-like potential

Next step is the creation of a statistical potential that,
similarly to DARS, uses a decoy set of complexes as a
reference state. The only difference of this version of the
developed statistical potential from the original DARS would
be the training set: our potential will be built on a set of
antigen-antibody complexes, unlike DARS that was built on
a heterogeneous training set.

For the comparison of the developed statistical potential
with DARS and aADARS, the technique described in I-E will
be employed. All statistical potentials will be benchmarked on
the data collected during the previous step.

This comparison will show the viability of the idea that
DARS’s method of obtaining a reference state can be applied
as is to the problem of developing an antibody-antigen statis-
tical potential.

E. Accounting for distances in the statistical potential

The following step of developing a statistical potential
is to combine the DARS’s way of creating reference state
and distant-dependent potential’s method of accounting for
distances between interacting atoms. In theory, this should
significantly increase statistical potential’s accuracy, but such
combination of two ideas has never been properly researched.

F. Detailed comparison with DARS and aADARS

Both versions of the developed potential will be compared
to DARS and aADARS. The resume will be given for the
advantages and disadvantages of all four statistical potentials as
their performance on the benchmark dataset will be thoroughly
examined. For the task of statistical potentials’ comparison the
same method will be used as in II-D.

G. Tool for creating statistical potentials

The final step will be developing a fully automated tool
for creating DARS-like statistical potentials with option of
accounting for the distances between atoms. The idea is that
this tool will be able to create potentials not only for antibody-
antigen type of complexes, but for any given training dataset.

III. RESULTS

A. Confirming statistical potentials’ applicability

We’ve confirmed the hypothesis that the use of statistical
potentials in the correlation function of HEDGE’s grid-based
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docking stage will improve its accuracy. In order to confirm
this, DARS was employed.

The performances of HEDGE’s grid-based docking with
and without the use of statistical potential have been compared
in the following manner.

For every complex in the benchmark, 1,600,000 conforma-
tions are obtained using HEDGE’s grid-based docking algo-
rithm. These conformations are then sorted by their correlation
value. After that, every pose in Top-N conformations obtained
for each complex, where N varies from 1,000 to 10,000 with
step 1,000 and from 10,000 to 50,000 with step 10,000, is
being compared to the native-complex using RMSD, a stan-
dard metric for the task of comparing molecules’ structures.
RMSD is basically a root-mean-squared distance between the
corresponding atoms of two structures. RMSD for our case
is calculated between the interaction interface, i.e. the atoms
of the receptor and the ligand that are closer than 10 Å to
the other molecule, of the native-complex and the interaction
interface of the predicted conformation. For every Top-N , we
detect whether there exist a conformation distant from the
native complex by no more than K Å, where K is chosen
to be 1, 2, 5, and 10 Å. In the end, for each pair of (N,K),
we calculated the number of complexes in the benchmark, for
which there was found at least one conformation in the Top-
N results, the interaction interface of which has RMSD of
no more than K Å to the interaction interface of the native
complex.

As a benchmark dataset, we chose ZLab’s rigid category
that contains 151 complexes of different types. Since we
wanted to confirm the hypothesis of statistical potential’s ap-
plicability to the improvement of the accuracy of the algorithm
in general, there was no need in focusing only on complexes
of the antibody-antigen type. After filtering complexes for
problems with their 3-dimensional structures, 128 complexes
comprised the final benchmark.

Fig. 1 illustrates the improvement of accuracy that is
achieved by using DARS statistical potential during the grid-
based docking stage of HEDGE’s pipeline. The value of
every cell in the table is equal to the difference in number
of complexes, for which conformations satisfying (Top-N,
RMSD) constraints have been found for versions of algorithm
with and without DARS.

We are mostly interested in the row corresponding to 2
Å, since structures so close to the native complex can be
considered near-native. In this row there are cases where 30-
42 more near-native complexes have been found with the help
of DARS compared to the version of algorithm without the
statistical potential. Other cells in the table are also positive,
so the improvement of accuracy from the use of statistical
potential is clear.

B. Collecting training and validation sets

So far, only the validation set has been collected. Collecting
validation data is a much more difficult task compared to
collecting a training set due to the process of finding unbound
conformations of structures in PDB.

It is unclear how to automatically recognize that a structure
is unbound. This process has to be automatic, because the

manual search for such structures in PDB is very time-
consuming.

Fig. 1. HEDGE’s grid-based docking stage’s accuracy improvement from 
the use of statistical potentia

We developed a semi-automated pipeline for gathering such
validation set. It’s not fully automated, because sometimes
there are cases that cannot be solved definitively by a computer.
And for the resolution of such cases, human assistance is
required. Despite this fact, the pipeline can be run fully
automatically and it will still gather a proper validation set.
Human assistance is needed in order to make this set larger
by approving some complexes that the algorithm declined to
include in the set automatically.

As a starting point for our pipeline, we took SAbDab
database that contains 2730 antigen-antibody complexes [12].
Every complex in the database has a link to its structure in
PDB.

The pipeline for finding unbound parts for complexes from
SAbDab database is presented in Fig. 2.

For every complex from SAbDab, our pipeline can give
one of three results:

1) Unbound conformations for both the ligand and the
receptor. This result corresponds to the terminal state
“Return all pairs of non-”doubtful” antibody-antigen
structures“ in Fig. 2.

2) Conformations of the ligand and the receptor that
are presumed to be unbound, but require human’s
assessment. This result corresponds to the terminal
state “Need human assistance“ in Fig. 2.

3) Definitive answer that unbound conformations cannot
be found for both the ligand and the receptor. This
result corresponds to the terminal state “No unbound
receptor and ligand for complex“ in Fig. 2.

The pipeline consists of three main stages. Stage A is
responsible for finding potential candidates for unbound struc-
tures for sequences of antibody and antigen that form the
complex. Candidates are searched in PDB using sequence-
based searching algorithm BLAST [14].

Sometimes the structures found during stage A may contain
something other than desired antigen/antibody. Stage B is
designed specifically to look into such cases and to confirm
whether the found structures are really the unbound parts of
the initial SAbDab’s complex.

Stage C acts as a final filter for the candidates for unbound
conformations. It is designed to check the found structures
for the presence of small molecules, which may prevent the
corresponding conformations from being unbound.
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Fig. 2. The pipeline for finding unbound parts for complexes from SAbDab database

The current results of the pipeline’s work on SAbDab
database are as follows. The gathered validation set of
antibody-antigen complexes has 100 complexes, for which the
pipeline has given a definitive answer that it found required
unbound parts, and 74 complexes more, for which the pipeline
marked all the unbound parts as in need of human’s assess-
ment.

IV. CONCLUSION AND FUTURE WORK

We have shown that the use of statistical potential signif-
icantly improves the performance of HEDGE, a novel GPU-
driven docking algorithm developed by BIOCAD. This makes
the development of a new statistical potential that favors
complexes of type antibody-antigen reasonable.

We have also presented a plan for developing said statistical
potential along with the plan for its comparison to existing
solutions, such as DARS and aADARS.

A validation set for comparison of statistical potentials has
been gathered using a developed pipeline for finding unbound
parts of antibody-antigen complexes.

As for the future work, by the time of the conference, we
plan to develop a DARS-like statistical potential for antibody-
antigen complexes and conduct the comparison of developed
statistical potential with DARS and aADARS.
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