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Abstract—This paper considers channel estimation problem in 
massive MIMO partially centralized cloud-RAN. By noting that 
the user activities in massive MIMO partially centralized cloud-
RAN are sparse, the channel estimation issue is solved by use of 
compressed data method to minimize the huge pilot overhead. 
Comparison and analysis of improved MMSE, via-Q and 
compressed data methods are done for massive MIMO partially 
centralized cloud-RAN. The achievable spectral efficiency (SE) 
and normalized mean square error (NMSE) were investigated. 
The RNA-based estimator gave the best performance for spectral 
efficiency than the MR for the multicell massive MIMO partially 
centralized cloud-RAN system. The performance is also evaluated 
for normalized mean square error for the three estimators with 
the RNA-MMSE giving the lowest normalized mean square error. 
The performance between the compressed CSI and the via-Q 
method show that the two methods are comparable, and this 
vindicates compressed data as a method to be utilized in channel 
state information covariance matrix estimation since it 
compresses the massive MIMO channel information hence 
mitigating the fronthaul finite capacity problem. 

I. INTRODUCTION 

Efficient utilization of the constrained amount of accessible 
spectrum to consider the exponentially growing interest for 
throughput has been the focal point in communication and 
signal processing for a couple of decades. The sporadic rise in 
technologies has galvanized the once predominantly offline 
appliances and devices to data generation points through the 
use of sensors and therefore pushing the demand for 
throughput higher [1], [2]. The current 5G and future 
communication systems are being enhanced to cater for this as 
well as conventional mobile users.  

The key enabling technologies for 5G networks has been 
singled out to be the cloud-RAN and the massive MIMO as 
they promise to lower operational cost and enhance 
performance. When massive MIMO is utilized in the remote 
radio heads (RRH), fronthaul becomes the limiting factor 
because of its inherent finite capacity [3].  One of the foreseen 
solutions to fronthaul finite capacity is to split functions so that 
some are performed at the RRH and others at the baseband unit 
(BBU). Considering this suggested architecture, the RRH are 
charged with performing basic functions like beamforming and 
the BBU is left to carry out the digital functions including 
channel estimation. This then renders the fronthaul traffic to be 
mainly dependent on UT data rates and not on the number of 
antennas [4], [5]. This leads to the massive MIMO partially 
centralized C-RAN (MPC-RAN) [6].  

When the partial centralization is combined with 
distributed cooperation for the case where RRHs are inter-
connected it greatly mitigates capacity constraint and time 
latency on MPC-RANs fronthaul. Thus the common notion is 
to configure the  topology to be adaptive in a way to strike a 
common balance between the fronthaul constraints and the 
distributed cooperative processing complexity [7].  

Pilot contamination mitigation is needed to facilitate the 
approximation of covariance matrix considering one channel 
vector to a single user terminal (UT). If we assume particular 
communication setups having particular channel models, there 
is a possibility of mitigating pilot contamination provided 
certain separability conditions are satisfied [8]. From [9] It was 
argued that the elimination of limits on the uplink (UL) and 
downlink (DL) throughput  as a result of pilot contamination 
can be realized if the covariance matrix are considered  to be 
under certain loose conditions. Realization of this method 
dictates the estimation of covariance matrix at the base station 
(BS) and again they are acquired by virtue of observations 
which are subjected to pilot contamination.  

It was demonstrated in [10] that the throughput of massive 
MIMO grows boundlessly as antenna number goes to infinity 
provided there is no linear dependence among covariance 
matrices of co-channel users. In [11] it was demonstrated that 
the coherence interval of channel vectors is less than that of the 
covariance matrix hence allowing room for accurate 
covariance matrix estimation.  According to [12] covariance 
matrix corresponding to a particular UT is obtained through 
computation of estimated channel from sample cross-
correlation of two pilot sequences.  

The investigation of imperfect statistical data for the UL 
system is discussed in [13]. The SE is evaluated considering 
imperfect covariance information. Low complexity covariance 
matrix is presented in [14] where it shown that based on this 
estimated covariance matrix, both UL and DL spectral 
efficiencies (SEs) increases with the increase in the number of 
antennas. Estimation  of covariance matrix from compressed 
data using unbiased estimator is discussed in [15].  

We use compressed data to approximate the covariance 
matrix for MPC-RAN system following the method in [16]. 
But our work is different from this in that we employ this 
method to calculate the covariance matrix in MPC-RAN for 
channel estimation something that was not investigated. 
Individual data points are processed by multiplying them with 
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a single projection matrix ࡿ ∈ 	ԧெൈ  with a Gaussian 
distribution. For data vectors K, we assume specific projection 
matrices equal to K [16], [17].  Based on this, we approximate 
covariance matrix that is consistent and enhance efficiency and 
accuracy by construction of a distinct sampling matrix. We 
seek to compress the channel data from UL pilots and extract 
the covariance matrix in an efficient and accurate way to 
estimate the channel.  

We approximate the covariance matrix using compressed 
data using a weighted sampling structure. This strategy is data 
aware with most significant entries being explored allowing for 
good approximation accuracy with fewer entries. Then the 
validation of the method is done on simulated data in 
comparison with the conventional methods.                                                                                              

We begin by modeling the optimal multicell linear received 
signal and then tailor it to each of the covariance matrix 
approximation schemes. The imperfect covariance channel is 
modeled before evaluating the spectral efficiency, and 
normalized MSE compressed data channel covariance 
information is used to analyze the behavior of the MPC-RAN 
network system over the modeled channels in multi-RRH 
scenario.  

Notation: lower-case and upper-case boldface letters denote 
vectors and matrices, respectively; (·) T, (·) H, (·) −1, and tr(·) 
denote the transpose, conjugate transpose, matrix inversion, 
and trace, respectively; ԧ denotes the set of complex numbers, 
IN  is the N × N identity matrix. We let ሼܺ௧ሽ௧ୀଵ  to represent 
ሼ ଵܺ, ܺଶ,… , ܺሽ which is a set of matrices and ݔ,௧ to stand for 

the (j, i) th element of ܺ௧. And then ‖ܺ‖ଶ and ‖ܺ‖ி represents 
the Spectral and Frobenius norms respectively.  ‖ࢄ‖ ൌ

൫∑ หݔห
ெ

ୀଵ ൯
ଵ ⁄

  where ݍ  1 stands for the ݈-norm of ܆	߳	ԧெ.

We also take ॰ሺݔሻ to represent a square diagonal matrix with 
the main diagonal having the elements of ܆.  ॰ሺࢄሻ is a square 
diagonal matrix with its main diagonal having only the 
diagonal elements of  ࢄ.  

II. SYSTEM MODEL

We assume a MPC-RAN system with L RRHs, each of 
which has M transmitting antennas and K user terminals (UTs) 
having single antenna. We consider that the time division 
duplex (TDD) protocols are synchronized across RRHS to 
simultaneously transmit pilot signals and data to and from all 
BBUs. Pilots initially transmitted in ℓth RRH by UTs are same 
and given by ૐ ൌ ൣᆖ,ଵ

் ,ᆖ,ଶ
் , . . . , ᆖ,

் ൧ ,  where ᆖ, 
corresponds to a pilot used by every kth user terminal (UT) in 

each RRH and ฮᆖ,ฮ
ଶ
ൌ 1. Then a channel from the kth UT

within the jth RRH is given as ܐ,߳ԧெ. The channel vectors 
are assumed to be Rayleigh fading and modelled as in  

ܥ~,ࢎ 	ࣨ൫0, ,൯ࡾ (1)

where ࡾ,  represents the covariance matrix corresponding 
from the jth RRH to the kth UT. If we assume Rayleigh fading 

with no correlation between the UTs, then ܀	, ൌ β,۷ெ .  
From [18], it is suggested that  ܀,  varies slowly over time 
compared  ࢎ	,. For this work we assume that  ࡾ, is constant 
across the bandwidth of transmission and change slowly over 
time. Hence the training sequences received ࢅ	߳	ԧெ , is 
computed as 

ࢅ ൌ ૐ,۶ 	ࢆ (2) 

where ૐ	߳	ԧis the pilot matrix representing total transmitted 
sequences by K UTs and ࢆ	߳	ԧெ represents the AWGN noise 
matrix.    

III. IMPROVED MMSE CHANNEL ESTIMATION

A. Conventional MMSE Channel Estimation

The MMSE channel approximation is an improvement on 
the least square (LS) channel approximation. The MMSE relies 
on channel statistics in approximating the CSI. The MMSE 
approximation procedure is as follows. In MMSE 
approximation of the channel, the MSE obtained as the 
difference between the real channel, ,ܐ	  and the estimated 
channel ࢎ,୩

ெெௌா, as 

ሚܐ ,୩ ൌ ,୩ܐ െ ,୩ࢎ
ெெௌா (3) 

The basis of MMSE estimation is to minimize the mean square 
error (MSE) in (3) as follows 

ሚܐ ,୩
ெெௌா ൌ E ቄฮܐ,୩ െ ,୩ࢎ

ெெௌாฮ
ி

ଶ
ቅ (4) 

The BBU performs minimum mean-squared error (MMSE) 
channel estimation for each RRH of  which can be written as 
[13], [19], 

,୩ࢎ
ெெௌா ൌ ,୩ࣘ,୩܀

ିଵ࢟,୩
  (5) 

where 

,୩࢟
 ൌ ,୩ܐ   ℓ,	ܐ



ୀଵ,ஷ

	
1

ඥρ௧
ࡺ
ࣘ,୩

⋆ (6) 

with ρ௧  being the normalized total pilot transmission power 

for each UT and , ൌ ॱ ቂ࢟,
 ൫࢟,

 ൯
ு
ቃ which is re-written as

,୩ ൌ



୨ୀଵ

ܐመ ,ܐመ ,
۶ 

1
ρ௧

ெࡵ



ୀଵ

ൌ܀,	

	

ୀଵ

	
1
ρ௧

ெࡵ

(7) 

B. RNA-based MMSE Channel Estimation 

The MMSE approximation still requires inversion of the 
matrix and therefore we replace it with the rapid numerical 
algorithm (RNA) method. RNA-based approximation totally 
avoids the matrix inversion and uses multiplication and 
addition instead. Let	₣	be a		ܯ	 ൈ  nonsingular matrix that	ܯ	
we are tasked to compute the inverse. Again, let	जҟ	represent 
the estimated inverse in the		ҟ௧	iteration. The residual matrix 
represents the divergence of the computed inverse from the 
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real inverse of the matrix	₣. The residual matrix	एҟ	is obtained 
as 

					एҟ ൌ ࡵ െ ₣जҟ (8)
This is the residual matrix in the computation of the first 
inverse	जҟ. From which, 

₣जҟ ൌ ࡵ െ एҟ 
		ሺ₣जҟሻିଵ ൌ ሺࡵ െ एҟሻିଵ 
				₣ିଵ ൌ जҟሺࡵ െ एҟሻିଵ 

(9) 

This expression is a power series in	एҟ. Thus, 

₣ିଵ ൌ जҟሺࡵ െ एҟሻିଵ ൌ जҟ൫एҟ
ҟ൯

ஶ

ୀ

															

ൌ जҟሺࡵ  एҟ  एҟ
ଶ ⋯ሻ 

(10)

The first two terms can be used to represent the inverse of an 
infinite series as in [20], [21].  Limiting the infinite series to 
the first two terms, we obtain, 

₣ିଵ ൌ जҟሺࡵ  एሻ ൌ जҟሺࡵ  ࡵ െ ₣जҟሻ
ൌ जҟሺ2ࡵ െ ₣जҟሻ 

(11)

This can also be written as, 
जҟ ൌ जҟିଵሺ2ࡵ െ ₣जҟିଵሻ (12) 

where, जҟ  represent the inverse in the next iteration. This 
expression is known as the Schulz iterative method for 
inverting a matrix [22], [23]. It was pointed out in [24] that the 
consideration of the initial three terms gives the quickest 
convergence of the iterative process for finding the inverse. 
Thus, 

जҟ ൌ जҟିଵሺࡵ  एҟିଵ  एҟିଵ
ଶ ሻ 

				ൌ जҟିଵ൫ࡵ  एҟିଵሺࡵ  एҟିଵሻ൯ 

		ൌ जҟିଵ ቀࡵ  ሺࡵ െ ₣जҟିଵሻ൫ࡵ

 ሺࡵ െ ₣जҟିଵሻ൯ቁ 

		ൌ जҟିଵሺࡵ  ࡵ2 െ जҟିଵ₣ࡵ െ जҟିଵ₣ࡵ2
 ሺ₣जҟିଵሻଶሻ 

ൌ जҟିଵ൫3ࡵ െ ₣जҟିଵሺ3ࡵ െ ₣जҟିଵሻ൯ 

(13) 

This method was proposed by Amat in [25], and this sequence 
converges to	₣ିଵ.  

We assume that 	,
ோே	 is a positive definite Hermitian 

matrix. Applying Cholesky decomposition to	,
ோே [26] 

,
ோே ൌ ,ࡸ,ࡸ

ு  (1
4)

where	ࡸ, represents the lower triangular matrix. This implies 
that 

൫,
ோே൯

ିଵ
ൌ ൫ࡸ,

ு ൯
ିଵ
,ࡸ
ି (1

5)
Here the computation of the inversion of matrix	,

ோே	can be 
changed into computation of the inversion of matrix	ࡸ,. 

From (15), we let	ज ൌ ,ࡸ
ି and then the residual matrix 

can be obtained as 

					ए ൌ ࡹࡵ െ ,ज (1ࡸ
6)

from which the first iteration can be expressed as 

जଵ ൌ ज ቀ3ࡹࡵ െ ࡹࡵ,ज൫3ࡸ െ  ,ज൯ቁ (17)ࡸ

and hence the ݇௧ iteration is obtained in the same way as 
follows 

जҟ ൌ जҟିଵ ቀ3ࡹࡵ െ ࡹࡵ,जҟିଵ൫3ࡸ െ  ,जҟିଵ൯ቁ (18)ࡸ

Once again, the inversion of ,ࡸ	  can be computed by 
iterating	Ҟ െ 1	times. From which ,ࡸ	

ି ൌ जҟ  and the inverse 
of	,

ோே ൌ ,
	  is computed as per equation (15). From which 

the approximated channel is expressed as 

,ࢎ
ோே ൌ ,൫,܀

ோே൯
ିଵ
,࢟
  (19)

The RNA-based channel estimation may have the same 
computational complexity as the conventional MMSE channel 
estimation of ࣩሺMଷሻ. However, according to [27] a method 
that renders itself to parallelization like RNA-based channel 
estimation, if implemented on machine with more cores it 
becomes superior. And this is the case in MPC-RAN where 
multi-cores are utilized at the baseband unit (BBU) to enhance 
computational process.       

IV. COMPRESSED DATA CHANNEL ESTIMATION

Practically we need to estimate the covariance matrices 
based on the pilot samples received at the RRH. We set out to 
investigate the approximation of the needed covariance 
information by the BBU and the impact of these estimates. The 
computation of the MMSE approximation of ܐ,  at the jth 
RRH from (5) requires the knowledge of 	܀, ൌ ॱൣܐ,ܐ,

ு ൧ 

and , ൌ ॱ ቂ࢟,
 ൫࢟,

 ൯
ு
ቃ . Bearing in mind that these are

ܯ ൈܯ  (quite large) matrices, and  regularization of the 
estimates might be needed [28], [29].   

To compute these covariance matrices, we require huge 
communication and storage resources since the use of MPC-
RAN results in high-dimensional data. Enormous bandwidth 
and power resources are critically needed [16] to transmit the 
CSI information from the RRHs to the BBU. To mitigate this 
problem, we specify our C-RAN system to be partially 
centralized with the massive MIMO RRHs interconnected and 
cooperating (MPC-RAN) [7]. As pointed out earlier this 
renders the fronthaul traffic to be mainly dependent on UT data 
rates and not on the number of antennas Then we leverage 
compressed data to approximate the covariance matrix. We 
follow the via-Q method to compute the covariance matrices 
[13] but using the compressed data as in [16].  

A. Approximation of ߶,  

We assume that the pilot signal ࢟,
  arrives at the jth RHH 

over థܰ coherence blocks. These థܰ  observations can be 

denoted by ࢟,
 ሾ1ሿ, . . . , ,࢟

 ൣ థܰ൧. Then the sample observation 
is formulated as follows [13] 

,࢟
ሺௌሻ ൌ

1

థܰ
࢟,

 ሾ݊ሿ	

ேഝ	

ୀଵ

(20) 

Equation (20) for the case of an antenna index k almost surely 
(a. s.) tends to true ࢟,

  as థܰ → ∞.

1
ܰథ

ቂ࢟,
 ሾ݊ሿቃ

,

.௦.
ሱሮ ,࢟ൣ

 ൧
,

ேഝ

ୀଵ

(21) 
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This is a derivative of the large numbers law and channels 
ergodicity. To find a good ࢟,

  approximation we need just a

few observations as the standard deviation decays by 1 ඥ థܰ⁄  

for a given sample ࢟,
 . The elements within ܡ,

ሺௌሻ  will 

individually tend to the corresponding elements in ࢟,
 . Then 

we follow the method presented in [16] to mitigate this 
problem.    

Weighted sampling matrices ൛ࡿ,ൟୀଵ


∈ 	ԧெൈ   are 

adopted in compression of data through ࡿ,
் ,ܡ

ሺௌሻ and the 

data is projected back into original space via ࡿ,ࡿ,
் ,ܡ

ሺௌሻ. 
The data obtained is then used in approximation of the 
covariance matrix. The weighted sampling matrix   ࡿ, 
removes at least M-Z elements from the kth vector, the 
remaining ones are retained as they can be most informative. 
When the sampling probabilities are designed carefully, the 
unbiased estimator ,  would perform accurately in relation 
to the spectral norm of the matrix ฮ, െ ,ฮଶ [15], [30],

[31].  

The weighted sampling evoked is good enough to explore 
the most important entries to reduce the estimation error 
ฮ, െ ,ฮଶ . We begin of by setting up the necessary

variables and then carry out the approximation process.  

We know that ܡ,
ሺௌሻ	߳	ԧெൈ	 and we set ߳ߙሾ0, 1ሿ as our 

regularizing factor. Then the uplink received information is 
compressed as follows with ݈ ൌ ሾ1,2, …  ሿܯ,

,࢜ ൌ ቛ࢟,
ሺௌሻቛ

ଵ
ൌቚ࢟,,

ሺௌሻቚ

ெ

ୀଵ

 (22) 

and 

࣓, ൌ ቛ࢟,
ሺௌሻቛ

ଶ

ଶ
ൌቀ࢟,,

ሺௌሻቁ
ଶ

ெ

ୀଵ

(23) 

To compress this matrix, we sample Z rows of ܡ,
ሺௌሻ

instead of all the M rows. We let ݖ ∈ ሾܼሿ , and then pick 
௭,ݐ ∈ ሾܯሿ  with  

,, ≡ ℙ൫ݐ௭, ൌ ݈൯

ൌ ߙ
ቚ࢟,,

ሺௌሻቚ

,࢜

 ሺ1 െ ሻߙ
ቀ࢟,,

ሺௌሻቁ
ଶ

࣓,

(24) 

and we let 

,,࢞ ൌ ,௧,ೖ,࢟
ሺௌሻ (25) 

Then the compressed data ܆,	  the indices used in sampling 
,܂  are transmitted to the BBU from the RRH and	ߙ	݀݊ܽ	ࢃ,ࢂ
used to construct the unbiased covariance matrix estimator 
from the compressed data as follows 

,௧,ೖ, ൌ ߙ
ቚ࢞,௭,

ሺௌሻቚ

,࢜
 ሺ1 െ ሻߙ

ቀ࢞,௭,
ሺௌሻቁ

ଶ

࣓,

(26) 

and  

,௧,ೖ,࢙ ൌ
1

ටܼ,௧,ೖ,
(27) 

Due to imperfection in correlation matrix knowledge, we 
realize robust approximation through experimental 
optimization of the parameter ߙ.  With advances in computing, 
the manipulation of vectors with length  ߍሺܯሻ in the memory 
is possible. Thus, the compression of data through weighted 
sampling will need a single pass in moving data to memory 
from the RRH to the BBU. This makes the algorithm to render 
itself to streaming data and therefore is well suited for use in 
MPC-RAN systems.  

The estimator is unbiased and is expressed through 

൛ࡿ,ൟୀଵ


 and ቄࡿ,
் ,ܡ

ሺௌሻቅ
ୀଵ


. We have that ܡ,

ሺௌሻ ∈

	ԧெൈ and we let our sampling window be 2  ܼ ൏  ,Thus .ܯ

we take Z entries for every ܡ,
ሺௌሻ	߳	ԧெ . The sampling 

probabilities are taken to be ൛p,,ൟୀଵ
ெ

 and the sampling matrix

is expressed as ࡿ,߳	ԧெൈ. To recover the unbiased estimator 

corresponding to ୨,୩ ൌ
ଵ


∑ ,࢟

 ൫࢟,
 ൯

ு
ൌ ଵ


	ሻுࢅሺࢅ

ୀଵ  

which is our covariance matrix target, we follow 

,
௦௦ௗ ൌ ࣘ

,
ଵ െ ࣘ

,
ଶ (28) 

with ॱൣ,
௦௦ௗ൧ ൌ ୨,୩

ࣘ
,
ଵ ൌ

ܼ
ܼܭ െ ܭ

ࡿ,ࡿ,
ு ,࢟

ሺௌሻ ቀ࢟,
ሺௌሻቁ

ு
,ࡿ,ࡿ

ு



ୀଵ

(29) 

ࣘ
,
ଶ ൌ

ܼ
ܼܭ െ ܭ

॰ቀࡿ,ࡿ,
ு ,࢟

ሺௌሻ൫࢟,
ሺௌሻ൯

ு
,ࡿ,ࡿ

ு ቁ॰൫࢈,൯



ୀଵ

 (30) 

with ࢈,, ൌ
ଵ

ଵାሺିଵሻ୮ೕ,,ೖ
	. A maximum of Z entries have to be 

calculated for each ܊୨,,୩  since for a given 

,ࡿ,ࡿ
ு ,࢟

 ൫࢟,
 ൯

ு
,ࡿ,ࡿ

ு  the maximum none zero elements
on the diagonal are Z.   

B. Approximation of ܴ, 

To estimate the ܀, ∈ 	ԧெൈெ we follow a similar method 
used for ࣘ,୩. The task is to acquire the ܐ, observations with 
minimal interference from other UTs. From [13], [32] it has 
been pointed out that the UT can employ a set of unique 
orthogonal pilots to realize a training phase to learn ܀,.  We 
assume that the jth RHH has Nோ observations of the noisy ܐ, 
which lays the basis of constructing the approximate 
covariance matrix ܀,.  

This will simply mean that more data transmission from 
RRH to BBU over the fronthaul and increased computations 
for that matter. We adopt the via-Q method presented in [13] to 
evaluate the covariance matrix ܀, . This permits the 
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estimation of ,ି
ሺௌሻ ൌ ୨,୩ െ ,ܐ,ܐ

ு  which combines all

interfering UTs. We set the ,
ሺௌሻ ൌ ࣘ

,
ଵ . Thus, the

covariance matrix ܀,
ሺௌሻ can be computed as 

,܀
ሺௌሻ 	ൌ ,

ሺௌሻ െ ,ି
ሺௌሻ (31) 

Then we compute the approximate covariance matrix 
,܀
௦௦ௗ as follows

,܀
௦௦ௗ 	ൌ ,܀ߚ

ሺௌሻ െ ሺ1 െ ,܀ሻߚ
ሺௌሻ (32) 

where ߚ ∈ ሾ0, 1ሿ  is the regularizing parameter employed in 
approximation of ܀,. 

C. Channel Estimate Approximation 

The approximation of MMSE estimate corresponding to 
,ࢎ  is computed based on ܀,

௦௦ௗ  and ,
௦௦ௗ , that

are assumed to be the correct covariance matrices, as 

መܐ ,
େ୭୫୮୰ୣୱୱୣୢ ൌ W,

௦௦ௗ࢟,
 (33) 

where ࢃ, ൌ ,܀
௦௦ௗ൫,

௦௦ௗ൯
ିଵ

.

D. Spectral Efficiency Estimate Approximation 

A lower bound of the capacity that is independent of 
MMSE estimates is required to facilitate the quantification of 
SE in the presence of imperfect covariance information. From 
[33], the kth UT in the jth RRH has a channel capacity that is 
lower bounded by 

,ࡱࡿ ൌ ൬1 െ
ܭ
߬
൰ ଶ൫1݈݃

  ሿݖܪ/ݏ/ݐሾܾ݅		,൯ࡾࡺࡵܵ
(34) 

where  

,ࡾࡺࡵࡿ ൌ 

หॱൣܐ,
ு ,൧ห

ଶ

ଶߪ  ॱ ቂหܐ,
ு ,ห

ଶ
ቃ െ หॱൣܐ,

ு ,൧ห
ଶ
 ∑ ॱ ቂหܐℓ,

ு ℓ,ห
ଶ
ቃ		

ℓ, െ ળ

(35) 

and the term ળ ൌ ∑ ॱ ቈฬܐ,
ு ௗ൛ܐመ ℓ,ൟ

ௗ൛ܐመ ೕ,ೖൟ
ℓ,ฬ



	
ℓ,  represents 

the BSs cooperation component and with the expectation taken 
relative to the channel realization. We assumed partially 
centralized C-RAN with interconnected RRHs. Here it is clear 
to see that the capacity bound is independent of the channel 
estimation method and combining scheme used.  

V. NUMERICAL RESULTS AND ANALYSIS 

In this section we look at the performance parameters 
NMSE, SNR and M for all the channel estimation techniques. 
Tradeoffs amongst these parameters are analyzed for the 
massive MIMO uplink with all the four channel estimation 
schemes discussed above. The NMSE can be computed as,  

ܧܵܯ ൌ
ሚܐ൫݁ܿܽݎݐ൛ܧ ,୩ܐሚ ,

ு ൯ൟ

,୩൯܀൫݁ܿܽݎݐ
(36) 

The performance of the four different channel estimation 
techniques is analyzed in view of the NMSE, SNR and the 

respective corresponding M. At first, the performance of the 
four corresponding channel estimation techniques is compared 
in with different values of SNR and transmit antennas.  

We provides the comparison and analysis of NMSE, SE, 
and M for the RNA-MMSE channel estimation technique, via-
Q method in [13] and the channel estimation using compressed 
channel data in MPC-RAN. We compare these channel 
estimation techniques in multicell MPC-RAN. This 
comparison is carried out for ܯ varying from 16		ݐ	160, with 
a step of 16 and ܭ	 ൌ 10  MPC-RAN system and the SNR 
varies from 0dB to 20dB. Again these parameters are different 
from those used in [13] and putting in mind the architecture of 
the network we expect its values to differ from those specified. 

We also assume that ܡ,
ሺௌሻ is already known at the BBU. 

We then average the SE and NMSE over this SNR range to get 
the average SE and NMSE.  

Fig. 1. Achievable SE per RRH vs. number of RRH antennas with a reuse 
factor of 1 

Fig. 1 compares the achievable SE per cell between MR 
and the RNA-MMSE precoding techniques in multicell 
massive MIMO with a reuse factor of 1 for RNA-MMSE 
channel estimation, the via-Q channel estimation and the 
compressed data channel estimation. Based on this figure, 
several observations can be made. The RNA-MMSE based SE 
has the best achievable SE per RRH as expected from previous 
analyses, but it can be observed that the SE computed using the 
compressed data channel estimation is lower than the RNA-
MMSE channel estimation and the via-Q channel estimation 
for both MR and RNA-MMSE. This corresponds well with the 
expectation since the compressed data channel estimation 
approximates the RNA-MMSE channel estimation. But it can 
also be noted that as the number of the RRH antennas grow 
large, the SE performance improves for both MR and RNA-
MMSE based precoding. 

From Fig. 2, with a reuse factor of 4, the SE computed 
from RNA-MMSE channel estimation, the via-Q channel 
estimation and the compressed data channel estimation with 
MR and RNA precoders improves. The increase in SE per 
RRH can be attributed to the fact that the pre-log factor 
reduces with the increased number of pilots. Also, this leads to 
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increased instantaneous SINR as the channel estimates become 
better with reduced pilot contamination. 

Fig. 2. Achievable SE per RRH vs. number of RRH antennas with a reuse 
factor of 4 

Fig. 3. The normalized MSE vs. number of RRH antennas with a reuse factor 
of 2 

From Fig. 3, the normalized MSE (NMSE) against the 
number of BS antennas is depicted. As the number of RRH 
antennas increase the NMSE decreases since the channel 
estimation improves due channel hardening phenomenon. 
Again, the RNA-MMSE channel estimation and the via-Q 
channel estimation have less NMSE compared to the 
compressed data channel estimation because the compressed 
data channel estimation approximates the RNA-MMSE 
channel estimation. But as M increases the compressed data 
channel estimation NMSE nears that of the RNA-MMSE 
channel estimation since the approximation improves with the 
increase in the number of antennas. 

In Fig. 4 the reuse factor is set to 4 and the NMSE is 
reduced as compared to the case when the reuse factor is set to 
1. This can be attributed to the fact that as the reuse factor
increases the pilot contamination reduces and this enhances the 
channel estimation process leading to a reduction in NMSE for 

all the RNA-MMSE channel estimation, the via-Q channel 
estimation and the compressed data channel estimation. 

Fig. 4. The normalized MSE vs. number of RRH antennas with a reuse factor 
of 4 

VI. CONCLUSION

The paper gives the performance analysis and comparison 
of the RNA-MMSE, Via-Q method, and Compressed data-
based channel estimators for MPC-RAN system. The 
performance of the three channel estimation schemes in terms 
of SE and the NMSE is studied. The SE and NMSE were 
derived theoretically for each of the covariance matrix 
estimation schemes under similar assumptions and for the 
MPC-RAN system.  From the simulation and the theoretical 
results, RNA-based precoding has higher SE than the MR. The 
NMSE for the compressed data estimator is lower than that of 
the RNA-MMSE and via-Q method. And it can also be seen 
that both the compressed CSI and the via-Q method 
performance is comparable, and this points to better study 
around the compressed CSI method to enhance its 
applicability. As the number of the antennas increase the 
compressed data estimator NMSE performance nears that of 
the RNA-MMSE and the via-Q method, this is attributed to 
better approximation as the number of antennas increase. The 
future work to this study will be to look at combination of the 
compressed data estimator and sub-space tracking algorithm to 
realize a semi-blind channel estimator. This will offer better 
estimation with reduced data size and number of pilots and 
need to render itself to high parallelization.  
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