
Android Memory Inspection Techniques and Tools

Kirill Krinkin, Valeriya Dopira, Olga Kochneva, Sergey Petrov, Maxim Kopylov
Saint-Petersburg Electrotechnical University ”LETI”

Saint-Petersburg, Russia

kirill@krinkin.com, leradopira@mail.ru, kochnevaolga74@bk.ru,{serpetr99, maksim.kopylov}@gmail.com

Abstract—The paper overviews Android and Linux memory
management techniques and compares available tools for memory
examination, monitoring and profiling. In the paper, a new
tool, apagescan for virtual memory page tracking is introduced.
A virtual page distribution and fragmentation analysis are
discussed as a novel approach to performance tuning for devices
with limited resources.

I. INTRODUCTION

Mobile application development and performance optimiza-

tion are challenging processes. The market is evolving, so

developers have to inject new technologies into their software.

They update existing tools and even create new languages.

Herewith to create a hit application, software engineers must

gain detailed verification of mined systems. Diagnostics, an-

alyzing and debugging are being used for optimal resource

provisioning for the applications.

Memory management is part of Linux kernel functionality.

All applications require resources, therefore for the developer

it is important to understand how the resources are being

distributed between processes and applications. Understanding

memory re-allocation dynamics can give much more clear

picture on system load.

The paper organized as follows. In the first section general

information about Android memory management is given.

The second section discusses available Android and Linux

memory management tools. The third part introduces page-

level memory inspection approach and vpagscan. The last two

sections contain evaluation and conclusion.

II. MEMORY MANAGEMENT IN ANDROID

In this section general Android memory management and

inspection interfaces and techniques are described.

A. Android memory organization

The basis of the Android platform is the Linux kernel.

Hence, Android Runtime (ART) relies on the Linux kernel

for underlying functionalities such as threading and low-

level memory management. The kernel has full access to the

system’s memory and allows processes to safely access this

memory as they require it. A common approach for this is

virtual addressing, usually achieved by paging and/or segmen-

tation [1]. Memory management in Android OS is organized

using pages. Different architectures may have different page

sizes, typically 4 KB. The kernel monitors the state of each

page of physical memory presented in system.

Each page could be in one of the following states:

1) Present / not Present: Present page is mapped to a page

in physical memory. If page is not present, it may be

swapped to disk [2].

2) Dirty / Clean: Dirty pages for the given process are

pages that were modified since they were paged into

physical memory from disk memory and are waiting to

get written back to the disk. They can only be restored

from backing storage. Clean pages are pages that weren’t

modified by the process [2].

3) Named / Anonymous: Named pages mapping is backed

by the file. Named clean pages may be restored from

this file. Anonymous mapping is backed either by the

swap space or by physical memory. Anonymous clean

pages may be restored from /dev/zero [2].

B. Pagemap interface

The Linux kernel provides information about page states via

pagemap interface. It allows user-space programs to examine

page tables and page-related information. Interface includes a

set of files available via proc file system (procFS). There is

a set of files presented below associated with each process in

the system:

• /proc/pid/pagemap: this file contains information about

each virtual page of the process, and which physical

frame it is mapped to. Each page is represented as

unsigned 64-bit number, containing page frame number

(PFN) and a set of flags that provide information about

page parameters (present/swapped, dirty/clean etc.) [3].

• /proc/kpageflags: this file contains a 64-bit set of flags

for each page, indexed by PFN, which provide additional

information [3].

• /proc/pid/maps: this file contains information about

currently mapped memory regions of the process. This

information can be used to determine which areas of

memory is actually mapped and skip over unmapped

regions.

In order to collect information about the whole system

memory map it is required to analyze all these files.

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



C. Control groups (cgroups)

Control groups (cgroups) [4] is a kernel feature which

allows monitoring, managing and limiting processes resources.

Processes are organized into hierarchical groups, each cgroup

is represented by a directory in the cgroup file system con-

taining the following files describing that cgroup [5]:

• tasks: list of tasks (by PID) attached to that cgroup.

Writing a PID into this file moves the process into this

cgroup.

• cgroup.procs: list of thread group IDs in the cgroup.

Writing a thread group ID into this file moves all threads

in that group into this cgroup.

III. MEMORY INSPECTION TECHNIQUES

Memory inspection techniques can be divided into two

main parts - memory debugging for a particular application

and overall view of memory state. In this paper, we will

focus on the second part. There are several important memory

inspection aspects that are useful for the analysis of memory

state. A brief description of each of them is given below:

• Memory usage. Information about memory distribution.

• Memory fragmentation. Page by page statistics showing

how distributed the process pages across the physical

memory.

• Real-time executing and dynamics. Collecting, process-

ing, and providing output data on the fly, with the ability

to collect statistics for a specific period of time (to track

RAM changes during the execution of a particular large

process, for example).

• Selection of processes. Collecting statistics for specified

processes.

• Control groups support. Displaying whether a process

belongs to a particular cgroup or collects statistics about

processes from a specific cgroup.

• Scanning zRAM. Collecting memory info not only for

RAM but also for zRAM.

• Convenient output. Representation of collected data in

convenient, human-readable format.

The following tools have been studied according to memory

inspection techniques described above.

1) Android Monitor at Android Studio

2) Eclipse Memory Analyzer Tool

3) Linux ‘/proc/meminfo‘ file

4) Linux ‘free‘ command

5) Linux ‘vmstat‘ command

6) Linux ‘top‘ command

A. Android Monitor

Android Studio memory allocation tracking has data vi-

sualization tools to help user identify processes that are

allocating memory the most. Tool shows a real-time graph of

application’s memory usage and allows capture a heap dump,

force garbage collections and track memory allocations. To

perform visualization, tool needs to collect data at first.

The memory usage data presented in sunburst chart (by

default) or layout chart. The main difference in these charts

is the format of view objects allocation sequence. The chart

lets to visualize all the other functions a specific function calls

and the number of objects allocated.

Tool analyses code from testing application (process) and

identifies a reference that might lead to leaking memory. The

application can be from the current project or from Google

Play Market or, if the device with root privileges, it can be

any running app on device.

B. Memory Analyzer Tool

The Eclipse Memory Analyzer [6] is a real-time Java heap

analyzer whose main purpose is to find memory leaks and

reduce memory consumption for particular application. Tool

is used for analyzing heap dumps with hundreds of millions

of objects, quickly calculating sizes of these objects, working

of a garbage collector, automatically extracting leak suspects.

Memory Analyzer tool is based on Eclipse RCP. User should

not install a full-fledged IDE on the operating system for the

analysis.

Using Memory Analyzer allows inspection of memory

contents at a specific address. Tool is comprised of two parts:

the first one contains a list of expressions, variables, and

registers that user selects for monitoring, and second is used

for choosing display data format.

Following steps allow detecting memory issues: an overview

of the heap dump, finding big memory chunks, inspecting the

content of this memory chunk. They are automated in Memory

Analyzer by the Leak Suspects Report [9].

C. Linux ’/proc/meminfo’ file

This file reports statistics about memory usage on the

system, can be used to report the amount of free and used

memory (both physical and swap) on the system as well as

the shared memory and buffers used by the kernel [10].

Contains information about actual memory state in the

operating system. Fields that are valuable for memory state

analysis described in the following list:

1) MemTotal - a total usable RAM;

2) MemFree - the sum of LowFree+HighFree;

3) MemAvailable - an estimate of how much memory is

available for starting new applications, without swap-

ping;

4) Cached - page cache,

5) SwapCached - memory that once was swapped out and

swapped back in but still also is in the swap file;

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 553 ----------------------------------------------------------------------------



6) HighTotal - Total amount of highmem. Highmem is all

memory above 860MB of physical memory. Highmem

areas are for use by user-space programs, or for the page

cache;

7) LowTotal - Total amount of lowmem. Lowmem is mem-

ory which can be used for everything that highmem can

be used for, but it is also available for the kernel’s use

for its own data structures;

8) HighFree - amount of free highmem;

9) LowFree - amount of free lowmem;

10) SwapTotal - total amount of swap space available,

11) SwapFree - amount of swap space that is currently

unused;

12) Dirty pages - amount of dirty pages;

13) AnonPages - amount of anon pages;

D. Linux ‘free’ command

‘free’ is a Linux console command. It displays the total

amount of free and used memory, buffers using by kernel in the

operating system. By default, it displays in MB (megabytes).

Memory could be physical and swap. It is displayed into

2 strings. Tool also could show statistics of low and high

memory if user uses -l option.

Describing in terms of memory inspection aspects, ‘free’

provides overall memory usage, with no information about

how this memory is distributed between processes, doesnt

provide any info about memory fragmentation, and doesnt

support the selection of processes. Tool supports swap usage

inspection and provides simple console output.

Tool reads information about memory from /proc/meminfo

file. The output of this command is not in real-time. Tool

gets an instant snapshot of the free and used memory at that

moment.

E. Linux ’vmstat’ command

‘vmstat’ is a Linux console command. Tool provides re-

porting virtual memory statistics covering memory, swap and

processor utilization in real-time. Tool displays information

about swapped, free, buff and cache memory. This information

is the same with free command, therefore has same advantages

and disadvantages. Tool allows showing active and inactive

memory.

Tool reads information about memory from /proc/meminfo,

/proc/stat, /proc/*/stat files.

F. Linux ‘top’ command

The ‘top’ program provides a dynamic real-time view of a

running system. It can display system summary information

as well as a list of processes currently being managed by the

Linux kernel [11]. To analyze the processes, command ‘top’

has to be executed from the terminal, and then parameters of

interest must be selected.

With ‘top’ user can get full information about memory state:

• memory distribution - for each task get information

about tasks currently resident share of available physical

memory, including physical memory and swap;

• supports displaying the name of the control group to

which a process belongs;

• supports the selection of processes by providing needed

pids;

• provides dynamic real-time statistics, with control over

update time.

The ’top’ command does not show the paging organiza-

tion of application’s memory, therefore ’top’ doesnt provide

information about memory fragmentation. Provides console

table-like output, which takes some time to analyze for needed

information.

IV. PAGE-LEVEL MEMORY INSPECTION

In this section, page-level memory inspection techniques are

described. Also, the novel tool apagescan is introduced.

In section III Linux pagemap interface has been described.

In spite of powerful ability for getting access to each process

page status, it is quite tricky to get the whole memory

usage map. Especially, it is hard to figure out how physical

memory pages are re-distributing between group of processes

in dynamic. In general, building page map for one particular

process could be presented in the following steps.

1) Reading /proc/pid/maps in order to determine which

parts of the memory are mapped to the virtual space.

2) Collect required mapped memory regions.

3) Seeking offsets in /proc/pid/pagemap for the pages for

examination.

4) Reading the page state presented as uint64 t for each

page in the pagemap. Bits 0-54 of reading value would

be PFN [3].

5) Open /proc/kpageflags. Using read PFN seek to that

entry in the file (PFN would be the index of a needed

uint64 t value in /proc/kpageflags), and read the needed

data.

A novel tool apagescan[12] has been developed in order

to simplify page map data acquisition and collecting statistics

from an Android device.

The apagescan provides graphical visualization of Android

memory state and allows inspecting memory mapping in

dynamics. Tool also allows to inspect swapping process, in

particular, a ’competition’ between apps for the same memory

segment - a scenario where multiple processes are located in

the same physical memory space and ’struggle’ for memory,

displacing each other’s pages.

The purpose of this project is to visualize processes’ mem-

ory in RAM and zRAM. Visualization is performed page

by page. Page data is provided for each page in RAM.

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 554 ----------------------------------------------------------------------------



This article proposes a tool, called apagescan, which allows

memory examination by displaying memory state in graphical

form. Existing applications output statistics of memory usage

without providing a graphical representation.

The tool allows scanning processes from a provided process

tree of all processes or a control group - Linux interface for

grouping processes, so a developed tool is also able to examine

processes in available cgroups.

The tool provides the following functionality:

• Collecting data about memory state of multiple processes.

• Both static and dynamic visualization of collected data.

• Selection of processes both from all active processes and

from cgroups.

A. Solution design and used technologies

The apagescan is developed using Python programming

language. PyQt5 module was used to create a graphical user

interface. The developed software product supports Model-

View-Presenter (MVP) architecture.

The application is based on collecting and processing page

data. apagescan uses additional data retrievers located on

device in order to obtain data. Data retrievers are designed

to collect data and save it to a file for further transfer to the

application and processing.

B. Device interaction

Data retrievers are written in the C-language due to the

need for reading large amounts of memory pages in a short

time. They are compiled with gcc-arm-linux-gnueabi compiler

and then transferred to a working directory on device using

the Android Debug Bridge (ADB [13]) tool. Data retrievers

are used in the application, but they can also be executed

manually from command line using the ADB shell. Inside the

application, data retrievers are being operated using a python

’subprocess’ module and the ADB shell.

For acquiring data from the mobile device a set of special

programs (data retrievers) has been developed in C-language

in order to reach maximum performance.

Data retrievers1:

1) get pid list.c: This program is designed to get PIDs that

are currently running on mobile device. Each running

process has its own folder in the procFS. Folder’s name

is the same as processes ID. get pid list scans the

procFS and returns a .csv file with each process ID and

name.

2) read cgroup.c: This program is designed to collect data

to visualize a hierarchy of processes in CGroup. It

receives a path to a CGroup tasks file, reads it and

for each PID in CGroup scans it’s a status file to get

1All sources are available in repo github.com/OSLL/apagescan

processes’ parent PID and name. Tree of dependencies

could be built using pairs of PID and it’s parent PID.

It returns a .csv file with PID itself, it’s parent PID and

PID’s name for each PID in tasks file.

3) page tool.c: This program is designed to collect data

for further analysis. It receives PID and a path for

a file to save data and then uses a kernel pagemap

interface to collect process page data. The tool scans

files ”pagemap”, ”maps” and ”kpageflags” located in the

procFS in a folder of a process to get information about

each page. Page information includes page address (the

PFN or swap offset depending on page’s type - present or

swapped) and flags data - bitwise representation of page-

attributes: swapped, dirty, anon, etc. The data retriever

creates a binary file with all collected information,

located at the given path.

C. apagescan interface

The apagescan provides a GUI interface. Elements of the

interface are described below.

Fig. 1. Screen of the application

Control panel contains the following buttons:

• “Devices” button opens a dialog to choose a working

device from the list of all devices connected to PC. All

further actions will affect only the chosen device. Device

dialog is automatically opened when apagescan launches.

• “Show PIDs” button opens a dialog that allows a user to

select several PIDs from the list of all PIDs currently

running on device. Selected PIDs will be available in

Active PIDs widget on the left panel.

• “Collect data” button opens a dialog window asking a

user to enter two parameters: time between iterations

of data collecting and total time of work. Using these

parameters, apagescan collects memory usage data from

device for each PID from ActivePIDs widget and then

plots graphics. Amount of graphics is calculated using

two parameters described above. Graphics are being

displayed at the center of the screen.

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 555 ----------------------------------------------------------------------------



• “Play” button shows all iterations graphics one-by-one

with 0.5 seconds delay. ’Prev’ button and ’Next’ buttons

show the previous and next iteration graphic respectively.

“Active PIDs” panel, placed on the left side, contains

information about each PID that was chosen by opening

“Show PIDs” or “Show CGroups” window. “Active PIDs”
panel supports right-clicking PID, checking PID in the table

and refreshing PID’s color. By right-clicking PID a user can

call context menu with two options:

• “Show full information about PID” action opens a table

with information about each page of a process. The page

contains page offset and flags: present, shared, anon.

• “Change PID color” action opens a dialog, which allows

changing PID color on all graphics.

Each PID can be selected using checkbox. Selected PIDs

can be highlighted using “highlight” button. PIDs colors can

be re-generated by clicking “Refresh colors” button.

Memory pages are being plotted on the “offset graph” in

blocks with specified size. Blocks are plotted according to

pages offset in memory. Therefore, if the upper left corner on

the plot is offset of 0 and the lower right is a maximum offset

(the “last” page in RAM), then each dot on canvas could be

connected with a page in memory. Having pages of process

scanned (using “Collect data” button), page in blocks are

displayed using a color from the table in “ActivePIDs” widget.

Offset graph contains two areas related to RAM and zRAM.

Areas are divided by black line. For closer examination, “offset
graph” has a zoom option.

Pages’ states percentage widget contains two graphs:

• Swapped-present-dirty graph shows the percentage of

swapped, present and dirty pages (each page is either

swapped, present or dirty).

• Shared-anon graph shows the percentage of anon and

shared pages (each page is either shared or anon).

PID’s menu contains the following options:

• “Show CGroup tree” option shows a widget containing

information about available CGroups on connected de-

vice. There is an option to choose a control group and

display it as a tree. PIDs in a cgroup’s tree can be selected

for closer examination.

• “Iterations” option opens the table containing time infor-

mation about previous iterations of data collecting. Table

has three columns: system time of the beginning of the

iteration, the same for the end of the iteration, and the

last column contains duration of the iteration.

V. EVALUATION

A. Application usage scenario

The application was tested on Nexus 5 with 2GB of RAM,

modified native core 3.4.0. with swap support and Android

6.0.1. On Nexus 5, three applications were launched and used

total for two minutes, while apagescan was collecting data

with 0 sec. delay between measurements. Finally, 60 physical-

memory snapshots were made. Camera (blue color - 5837

PID), browser (fuchsia color - 5307 PID) and gallery (green

color - 5390 PID) applications were used in this experiment.

Fig. 2 presents the start state of memory when browser app

was used, and other applications were in the background.

Fig. 2. Physical memory snapshot. Browser is in the fore-ground, 
gallery and camera are in the background. Browser -fuchsia. Gallery - 
green. Camera - blue.

On Fig. 2 the big part of RAM is being occupied by browser

and much less by camera and gallery. Also, there are no pages

in the swap area. While browser was used, there were some

changes in memory mapping but they became noticeable only

when browser app went to the background and camera app was

chosen (See Fig. 3). Some pages were displaced by camera’s

pages but most of them stayed at their places and the camera’s

pages just took free space.

Fig. 3. Physical memory snapshot. Camera is in the fore-ground, 
gallery and browser are in the background. Browser - fuchsia. Gallery - 
green. Camera - blue.

Fig. 4-5 show ’competition’ between camera app and gallery

app (red area) and the process of evicting pages, when the app

goes to the background (blue area).

For these two states percentage graphs were represented

below (see Fig. 6-7). On these graphs, the amount of not

anonymous and dirty pages reduced for gallery and increased

for camera.

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 556 ----------------------------------------------------------------------------



Fig. 4. Physical memory snapshot. Gallery is in the fore-ground, 
camera and browser are in the background. Browser - fuchsia. Gallery - 
green. Camera - blue.

Fig. 5. Physical memory snapshot. Camera is in the fore-ground, 
gallery and browser are in the background. Browser - fuchsia. Gallery - 
green. Camera - blue.

Often it’s necessary to trace memory usage of the system

in order to determine the program that consumes most of

the memory resources or the program that is responsible

for slowing down other processes. The apagescan’s graphical

representation of device’s physical memory in such convenient

way allows to detect memory consumers instantly - user can

visually see processes that take the most memory space, and

see how fragmented process’s memory is. Barplot graphics

provide page statistics that allow seeing which pages mostly

make up the process memory. Statistics can be customized by

changing the set of flags used to determine the pages’ type.

Graphical representation of memory state also allows de-

tecting processes that are trying to use the same segment

of memory. Inspecting memory segment several times can

show, that two or more processes are allocating memory from

this segment and ‘compete‘ for pages: after the first process

allocates a page, another process re-allocates it to itself and the

first process has to allocate memory again. Such cases slow

system’s work and may come to trashing. Apagescan provides

the ability to scan memory state every time interval. Inspecting

collected graphs can help to detect ‘competing‘ processes.

Fig. 6. Percentage plot for state 1. Browser - 5307 PID. Gallery - 5390 PID. 
Camera - 5837 PID.

Fig. 7. Percentage plot for state 2. Browser - 5307 PID. Gallery - 5390 PID. 
Camera - 5837 PID.

B. Data collection time analysis

The number of memory snapshots depends on how long

data is collected and pulled from device. As mentioned in

the section 3.3. clicking on the ”Collect data” button pro-

poses to enter two parameters: time between iteration of data

collectings (iterations time) and total time of data collecting

(total time).

apagescan can’t predict time of data collection for chosen

PIDs for several reasons:

• accessibility of data for the current process

• existence of the current process. For example, if the

process finished after data collecting started

• a number of pages for the current process

On the plot below the dependence of time for data collecting

and pulling it to computer on the number of pages is shown.

The sample for this graph was collected by choosing all

processes and running data collection algorithm 100 times. On

the graph, there is decent time spread for the same number of

pages, as well as emissions. The main cause of emissions is

the ADB tool working and there is no way to influence it.

Therefore, to observe the dynamics of time change depending

on the number of pages, an interpolation curve was drawn.

Fig. 8. The dependence of read time on the number pages

Analyzing this graph, it can be noted that time of data

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 557 ----------------------------------------------------------------------------



reading for inaccessible or finished processes takes 0.11 sec.

For processes with 36000 pages, it takes 0.4 sec. This graph

allows to predict time taken to collect data for certain number

of pages, but the general problem of the undefined number of

pages for the current process still exists.

C. Comparison

This article introduces apagescan - a new tool for memory

state inspection and visualization. The comparison between

apagescan and described above existing tools is presented

below.

TABLE I. COMPARISON OF TOOLS

Criteria\Tool apagescan Android Studio MAT free /proc/meminfo vmstat top
Memory usage + + + + + + +
Memory fragmentation + - - - - - -
Real-time executing and dynamics + + + - + + +
Selection of processes + + - - - - +
Control group support + - - - - - -
Scanning zRAM + - - + + + +
Convenient output + + + - - - -

IDE tools (Android studio and Memory Analyzer Tool)

are determined to application debugging, therefore lacking

information about memory fragmentation and unable to show

swap usage or memory distribution between processes, while

they are providing detailed info about physical memory usage

for a single process. Console Linux (and Android) tools mostly

give an overall overview of memory usage (total, free and

etc.), unable to show dynamic memory changes, don’t support

cgroups or selection of processes for inspection. The ‘top’ pro-

gram is the most useful for the whole memory state analysis, it

provides real-time dynamic information about memory usage

(including swap) for multiple processes, supports the selection

of processes, but unable to show memory fragmentation and

provides console table output, which is hard to process on the

fly.

Comparing to that, apagescan collects information about

memory distribution (including swap) between multiple pro-

cesses, memory fragmentation, allows to create memory snap-

shots and capture dynamic memory changes, supports pro-

cesses selection (from cgroups as well), and provides output

in form of convenient graphical representation, which allows

user to perform a quick analysis of memory state.

Advantages of apagescan:

1) Memory usage information for multiple processes

2) Visualization of memory distribution between processes

3) Memory fragmentation statistics (page by page informa-

tion)

4) Inspection of zRAM (swap)

5) Graphical user-friendly interface

6) Convenient, human-readable output

7) Selection of any available process for inspection

8) Selection from cgroups for inspection

Disadvantages:

1) apagescan must be installed additionally on the user’s

computer. Other tools are provided by Android Studio,

Eclipse or Linux OS, which may be convenient for

developers. They can investigate the performance inside

IDE, where they write and fix code instantly.

VI. CONCLUSION

In some cases, page-level memory analysis is required. Well

known memory analysis tools described in III do not suggest

any solution based on pagemap interface. apagescan is a new

tool to scan RAM and zRAM of any rooted Android device.

apagescan supports two interfaces: CGroup and Pagemap.

Pagemap simplifies investigating Android management of

physical memory. apagescan works with the procFS to read

any amount of pages in RAM, providing information about

each page, including present/swapped/dirty and anon/not anon

flags. apagescan is connected to the CGroup interface, so it

can be used to analyze processes from any chosen by user

control group.

The developed application allows user to examine the partic-

ular state of memory at some point in time and to see dynamics

of changes in the memory state for a certain period. apagescan
provides information that is easy to understand, graphs plotted

by the tool can be customized for better understanding. All

pictures are also available in a png format. The tool is designed

to show RAM changes in dynamics. The tool has options to

scan RAM every time interval to see how it changes during

work with device.

The advantage of the tool is a convenient visualization of in-

formation in form of pages, combined in blocks with specified

size, selection of processes from cgroups, scanning zRAM.

On the other hand, the disadvantages are slowness, difficulties

with interpreting a large number of pages or processes, lack

of memory leak detection.

Different processes can occupy the same sections of mem-

ory, so the points on the graph overlap each other. A selection

of these overlay areas can be added to the application. It is

also possible to add other flags about pages to C programs

and supplement the tool with an analysis of data received.

REFERENCES

[1] Wikibooks, Linux kernel Memory, Web:
https://en.wikibooks.org/wiki/The Linux Kernel/Memory

[2] Open Source and Linux Lab, Linux memory management summary, Web:
http://wiki.osll.ru/doku.php/etc:users:jcmvbkbc:linux-mm

[3] Linux kernel documentation, pagemap, Web:
https://www.kernel.org/doc/Documentation/vm/pagemap.txt

[4] Linux kernel documentation, cgroups, Web:
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt.

[5] Linux Programmer’s Manual, cgroups, Web: http://man7.org/linux/man-
pages/man7/cgroups.7.html

[6] Brahler, Stefan, Analysis of the android architecture. ” Karlsruhe institute
for technology 7.8. ”, 2010.

[7] Android Device Monitor, Web:
https://developer.android.com/studio/profile/monitor

[8] Vogel, Lars, Eclipse Memory Analyzer (MAT)Tutorial. , 2013.

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 558 ----------------------------------------------------------------------------



[9] Maxwell, Evan K., Godmar Back, and Naren Ramakrishnan, Diagnosing
memory leaks using graph mining on heap dumps. ” Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery
and data mining. ”, 2010.

[10] Linux Programmer’s Manual, proc pseudo-filesystem, Web:
http://man7.org/linux/man-pages/man5/proc.5.html

[11] Linux Programmer’s Manual, top, Web: http://man7.org/linux/man-
pages/man1/top.1.html

[12] Android page scan tool, Web: https://github.com/OSLL/apagescan
[13] Android developers official website, Android Debug Bridge (adb) Web:

https://developer.android.com/studio/command-line/adb
[14] Android developers official website, Platform description, Web:

https://developer.android.com/guide/platform
[15] M. Gorman Understanding the Linux virtual memory manager. Upper

Saddle River: Prentice Hall, 2004.
[16] K. Yaghmour, Embedded Android: Porting, Extending, and Customizing.

” O’Reilly Media, Inc.”, 2013.
[17] S.S. Hahn, S. Lee, I. Yee, D. Ryu, J. Kim, “Fasttrack: Fore-

ground app-aware i/o management for improving user experience of
android smartphones”, In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), Aug. 2018, pp. 15-28.

[18] K. Vimal, A. Trivedi, “A memory management scheme for enhancing
performance of applications on Android”, In 2015 IEEE Recent Advances
in Intelligent Computational Systems (RAICS), Dec. 2015, pp. 162-166.

[19] K. Baik, J. Huh, “Balanced memory management for smartphones
based on adaptive background app management”, In The 18th IEEE
International Symposium on Consumer Electronics (ISCE 2014), Oct.
2014, pp. 1-2.

[20] Park, Jihyun, and Byoungju Choi, Automated memory leakage detection
in android based systems. ” International Journal of Control and Automa-
tion 5.2. ”, 2012, pp. 35-42.

[21] Seyfried, Stefan, Resource management in linux with control groups. ”
Proceedings of the Linux-Kongress. ”, 2010.

[22] Seo, Jaebaek, FLEXDROID: Enforcing In-App Privilege Separation in
Android. ” NDSS. ”, 2016.

______________________________________________________PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 559 ----------------------------------------------------------------------------




