
Personalized Travel Routes Generation
for Mobile Application

Maksim Khlopotov, Igor Kotciuba,
Valeriia Stromtcova, Aleksandr Kudriashov, Mikhail Galperin

ITMO University
Saint Petersburg, Russia

{115801, 148954, 224733,225238,197317}@niuitmo.ru

Abstract—This paper presents the personalized routes
recommendation system consisting of the server app that serves
data for the client mobile app. Both the development process and
the theoretical explanations of decisions made by the authors are
described. The proposed solution is implemented with full cycle
stages in mind including data collection, formatting, configuring
data models for client apps and designing an acceptable user
experience level of the mobile application.

I. INTRODUCTION
Modern tourism is a booming trend characterized by

appearance of numerous new technologies that are aimed to
increase the attractiveness of places of interest and to develop
a personalized approach to the creation of tourist routes. This
is a result of a tourism global growth, as well as tourism
economic potential and its influence on the development and
improvement of public services in various regions.

The key problems that are currently being solved with e-
Tourism technologies include: supporting up-to-date
information updates about popular tourist destinations;
providing helpful and valuable touristic guides [1]; hotels
selection for long-stay city tourists [2]; an opportunity to share
the stories about places visited and tourist experience in
general [4].

These days, the requirements related to the tourism
information technology development mostly concern
searching for a methodical, algorithmic, and software tools to
create diverse and realistic personalized tourist routes [3].
However, it is still a challenge for tourists to create a route that
combines multiple tourist destinations into one trip [5],
considering financial, temporal, and other limits
simultaneously. The major difficulties also arise when
choosing the route length and duration for both individual
tourists and groups, especially when there is a conflict of
interests between group members [3]. Moreover, the travel
industry is oriented on analyzing the data to classify tourists
on the base of the places of interest that they select and their
travelling habits [6].

The possible solutions of the aforementioned problems
include: Pareto optimization heuristics with non-dominated
sorting [3]; multi-criteria optimization by popularity, cost and
number of attractions [5]; route locations grouping using
clusterization methods for daily subtasks search and taking

users ratings and feedback into consideration [1]; genetic
algorithm for variable neighborhood search and memetic
search in differential evolution [3]; motivation-based routes
matching with existing tourism topologies [6]; k-means
clustering; trip buddy with recommendations based on user
web surfing behavior [7] and other methods.

The usage of intellectual systems provides opportunities to
combine user preferences with effective automated methods
for complex computational tasks solving and provides better
understanding of tourist behavior [8] to make decisions with
higher quality and speed [1]. Nevertheless, the search of new
methods to solve a problem of personalized tourist routes
creation has no complete solution, and research in this area
remains relevant.

The development of a recommendation system that
provides users with unique personalized walking routes on
their mobile devices has the following goals:

 cover the majority of potential interests,
 represent cultural and historical information about Saint

Petersburg in conformity with user preferences,
 achieve the advantage of being able to generate an

endless number of routes containing all possible
combinations of existing locations which have been
picked and combined using the recommendation
algorithm.

II. DATA MINING & PREPARATION

A. Data preparation task

Every travel route generation system [9] requires a huge
amount of specific format data that comes from a trustworthy
origin. Currently, existing relevant data oftentimes dissatisfies
the condition of clear standardization and full value of the
information needed. At the same time, there are sources of
data which were not used to parse the information from. With
an example case of collecting list of persons who have a
relation to Saint Petersburg, the entire multilevel process of
collecting, parsing and formatting data is analyzed.

The proposed solution includes a set of software
instruments to work with Wikipedia that provides such utilities
as data retrieval, data filtering, and data transformation to the
format which is specified by the subject area. An introduction
of scoring system is suggested to rank and rate the relevance

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

of all the information located in Wikipedia categories. It is
implied that each Wikipedia category (e.g. Poets, Musicians)
is tagged by an expert group. For each tag the scoring systems
calculates an integer value that is later used to determine the
overall score of each data entity. An expert group also sets all
minimal acceptable values for each tag in set which allows
filtering low relevant or low contentful entities from the
subject area perspective.

Steps of raw data processing:

1) Narrow thematic categories exclusion.

2) Scoring (calculating integer rating for each person)
based on 7 criteria (size of Wikipedia page, languages
count that this page is translated to, hyperlinks amount,
amount of external Wikipedia services URLs, count of
the word “Saint Petersburg” and its forms mentions in
the text, amount of categories Wikipedia page belongs
to, amount of notes - additional notes, links and
footnotes).

3) Filtering (removal) of 7-10% (on average) of persons
from the list tail (frequently these were "empty" pages
with a few sentences in its description, empty main
body of the page and all 7 criteria had the lowest
values).

4) Collecting all the information from the persons left,
which includes each person credentials, birth and death
dates if applicable, short description.

5) Normalization (conversion) of categories titles to the
names of professions that these persons were engaged
in when possible (an example of non-convertible
category is "graduates of some university").

Then a term of non-convertible category is introduced
separately - this is the category with the title which cannot be
converted into a profession name. This category related work
is necessary since it is important for the person data model to
have the information about their profession as it can be used as
a base filter when user requests are being processed. User may
wish to walk around the places that are related to famous
people of a specific profession or even to an exact person.

B. Results visualization

Fig. 1. Convertible to non-convertible categories ratio

An average number of persons in non-convertible
categories as it is shown in Fig. 1 exceed an average number
of persons in convertible categories by 6.5 times. It is
explained by the fact that non-convertible categories set
contains such titles as “died in Saint Petersburg”, “awarded a
Leningrad defence medal”, “born in the modern Saint
Petersburg area”, “Leningrad blockade related people”,
“teacher of Saint Petersburg universities”. The category
‘globalization’ is noticeable to relate frequently to
geographical position, life cycle step (birth or date) or relation
to a certain event.

Fig. 2. Distribution of creative professions representatives

Painters take the major part (Fig. 2) because the students of
Saint Petersburg Repin Institute and Art-Industrial Academy
are highly recognizable. Another possible explanation of the
fact that painters take the major part of the persons fetched is
an availability to be visually engaged with the results of their
work placed in various museums located in Saint Petersburg in
comparison to musicians and poets whose works require a bit
more conditional context to be consumed.

Since every data category on Wikipedia can have an
endless number of subcategories, it becomes valuable to know
which of them has the biggest subcategories set.

Fig. 3. Distribution of persons’ creative professions

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 531 --

The highest values are kept by categories “buried in Saint
Petersburg” (nested level differentiation by the places of
burial) and “teacher of Saint Petersburg universities” (Fig. 3).

All the rest slice of data stays inadvisable to split to more
subcategories in the opposite to unite them in one list.

While solving the task of persons’ data preparation, 84k
entities have been collected.

After passing through the aforementioned scoring system,
only 81k entities have been left. This persons’ set was ready
for being used in the recommendation system. The same data
collection approach was used for “Saint Petersburg
attractions” category data retrieval as well. Later the persons’
set content was used as tags for the related locations.

A combination of attractions and persons related to Saint
Petersburg datasets is powerful in terms of providing user with
the relevant content to their requests. To let them type persons’
names and expect routes including locations related to these
persons to appear in these routes, a work of extracting
relations between persons and locations has been performed.
Since each Wikipedia page has a set of categories it belongs
to, it became possible to organize a cloud of tags for each
entity collected by parsing these categories, formatting them
and attaching to the database object.

Categories names contain words of any part of speech and
only nouns were left as tag content to better match the typical
user query like “Saint Petersburg of Pushkin”. An array of
categories names was split into separate words, and then short
ones were removed (like particles and articles). After that a
dictionary of each word frequency was calculated, one time
appeared words were excluded, and the rest of future tags were
passed through a pymorphy2 library to filter nouns. If
possible, word forms were also converted to neutral
representations to avoid the maternal or numeric declension.

Location to person relation was extracted from the location
description text with the help of Named Entity Recognition
and Natasha frameworks. Rule-based named entity recognition
returned either full extracted persons’ credentials or only
initials with last names which was also enough to check if this
person is presented in an existing persons’ data set or is
needed to be additionally fetched from Wikipedia as well. This
extraction could also be contextual in case it provides the type
of relationship. As a result, this led to the appearance of
verifications concerning relationship extraction correction by
comparing the context of the location and person by their
categories. Even if categories comparison was impossible due
to complete difference between compared contexts, it was still
presumable that the person-location relationship was extracted
correctly. To solve this kind of cases, an alternative way of
checking relationship context has been made. There was a tool
developed for that purpose and it had an interactive mode of
verifying location context, person context and their
relationship format. Thus, a human in a role of the operator
could act as a verifier using that tool. This was a one-time
need to finalize all works related to database content
preparation.

The only data entities extracted from Wikipedia were
Person and Attraction (place of interest). The designed usage
of the system is intended to let the end user search both with
the person they are interested in or specifying the type of the
place to visit they wish to know more about. That is why
collecting and storing locations to persons (and backwards)
relations became such an important subtask of the data
collection step.

C. Tools used

All technical tools were developed using Python 3
programming language during these processes and were
covered with unit tests that allow to be sure that the system
works correctly at any moment - both in general and in
particular (i.e. each submodule). That also lets be adaptive to
any changes on the Wikipedia side for the future similar data
collection operations. Such libraries as requests and re were
helpful as well since regular expressions are oftentimes a good
fit for solving text-related tasks and network-related
functionality was required only once. The idea of downloading
all the source data to the working machine and then use it as
long and variably as needed was introduced, discussed and
implemented. Total amount of 15 GB of data was downloaded.

III. BACKEND SERVER

A. Business requirements
Every system that serves client applications includes a

backend server. It is represented by a web resource accessible
via HTTP protocol that handles business logic and provides all
the formatted data. The server satisfies a list of business
requirements declared by the project needs and functionality
set initially invented by project idea holders. A server must be
able to collect, store and modify routes, locations, and user
data; process data provided by user and suggest either expert
or generated routes if requested.

B. Features

1) The server should:

 Store locations, routes and user data.
 Serve routes and locations data to the client

applications.
 Generate on-demand personal routes based on user

data.
 Modify data in database based on user input, i.e. update

location value.

2) The following criteria must be complied:

 Work robustly and consistently.
 Generate optimal routes respecting relevance of each

location and duration of travel time.
 Have clear and well-documented API for consumer

applications.
 Provide database flexibility.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 532 --

C. Data storage

Backend stores the following data needed for route
generation algorithm:

1) Tags are content labels that represent relation to person
or cultural category.

2) Location Instances represent points of interest,
containing coordinates, descriptive information, set of tags,
and value.

3) Routes are set of locations with description that stores
locations consequently in the way they are offered for the
user to follow.

Data model is demonstrated in Fig. 4.

D. Tools used

The Graphene-Django Framework is used for the backend
core. It provides a set of utilities to quickly organize working
environment and data storage, configure database and
implement API endpoints that could be used by client
applications.

While a database engine was being selected the key
priorities were the speed of deployment, readable and easy-to-
use on a mobile side data formatting, scalability and a lack of
strictly designed schema. MongoDB meets all these
requirements since it stores data in JSON documents and uses
inner memory, which ensures that all operations will be
executed fast enough. Package Django-nonrel was used to add
non-relational database support, and server engine was set to
django_mongodb_engine.

The key endpoint that server has is the one that takes user
parameters and returns best-fit routes back. All parameters are
provided to the server in URL as GET parameters. There are
data type, data value and data limits checks for the input
parameters since requests can be received from not only a
trustworthy origin and this is mostly about secure working
with any data that comes from the user.

Client applications use GraphQL language to specify
queries and data fields needed to be received.

The deployment is done via Docker container. The list of
dependencies used for the codebase has a specified version for
each dependency with an auto update disabled in order to
work with only tested and secure versions of these
frameworks. Every operation performed places a set of log
lines in the logging journal that can be later analyzed in case
of any bugs revealing, though no personal information is
logged. For the server responses we use HTTP codes that
indicate appropriate state of the request but no special format
of the response text. Every new version of the back end
functionality is fully covered with unit tests, and release
checklist about deployment, environmental and product state
is respectively performed. Since code version control is used
during development, no other versions caching systems are
required for the opportunity to roll any functionality back if
needed.

Fig. 4. Data structure used by route generation algorithm

The codebase is manually typed whenever it is written with
Python 3 which supports dynamic types and strictly linted
before the code is pushed to the production version of the
server. It allows several developers to write a readable and
understandable code for everyone.

IV. ROUTES RECOMMENDATION ALGORITHM

A routes recommendation algorithm is the core of modern
travel-related applications. However, creation of such system
is a challenging problem [10]. Many of the existing systems
are oriented on self-drive tourism [12], while the proximity of
locations in Saint Petersburg is better suited for walking tours.
To address this issue, mining of user social media data [14],
historical mobility records [15] and person- location relations
is performed. Then resulting data is transformed into a set of
tags for route personalization.

 The proposed recommendation Algorithm 1 uses
previously collected data from the database and user request as
an input. Request contains the user coordinates, tags and
duration in minutes. Combined with the information from the
database (such as relations between locations and historical
figures, list of possible activities in location etc.), it is possible
to create virtually endless number of routes.

First, algorithm collects near expert-created routes based
on their center of mass and tags specified. Then it uses the
same user geolocation and tags to retrieve a list of nearest
locations. The list of locations is further transformed into a list
of optimal possible routes between each location; optimization
is done by calling Google Maps API. Each expert route is
transformed into subset of routes by excluding different
locations to match duration expected.

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 533 --

The next step is filtering both the expert and generated
routes. This operation involves the following procedures:	

1) Rating calculation for each route in the subsets of
routes based on tags relevance and locations value.

2) Searching for the most rated route in each subset.

3) Exclusion of all routes in each subset excepting the
most rated ones.

At the end of the pipeline, the algorithm returns optimal
route for a given set of criteria.

Algorithm 1 suggest_route
Input: latitude, longitude, tags, duration, database
Output: optimal route
0: expert_routes = request list of routes made by
experts from database that are near to latitude and
longitude
1: nearest_tagged_locations = request list of locations
from database containing specified tags that are near to
latitude and longitude
2: distance_matrix = call Google Maps API to get
distance matrix for nearest_tagged_locations
3: generated_routes = use distance_matrix and duration
to generate routes for nearest_tagged_locations
4: expert_routes_subsets = generate subsets of routes by
excluding locations to match duration
5: all_routes = expert_routes_subsets + generated_routes
6: for each route in all_routes
7: for each location in route
8: coefficient = compute intersection of user tags and
location tags
9: add rating for route based on location value and
coefficient
10: endfor
11: endfor
12: sort all_routes by decrease of rating
13: return first element of all_routes

V. MOBILE APPLICATION

A. Business requirements

A mobile application is required to provide
recommendation and navigation mechanisms to the end users.
Development process of the mobile application can be started
once there is data collected and formatted, and a server with
live endpoints that can be accessed by the application to
execute the business logic.

 In the app, an authorized user should have a possibility
to:	

1) View the list of nearby routes.

2) Get recommended and personalized routes.

3) View the route details and all the points with their
descriptions.

4) View their personal location and route chosen on the
map.

5) Follow the route by going to each point.

6) Finish the route and go back to the list of routes.

From the technical perspective, the app should use a single
codebase for Android and iOS and be efficient enough to
provide a normal user experience. 	

Moreover, the application should have a user friendly and
intuitively understandable user interface (UI).

B. Features

The following features were extracted from the initial
business requirements:	

1) The app should:

 Authorize (login/register) the user.
 Display the list of nearby routes.
 Display the list of recommended routes based on a

keyword and duration entered by the user.
 Display the chosen route description.
 Show the user location and connected route points on

the map.
 Navigate the user on the route chosen.

2) The app should comply with the following criteria:

 Work on both iOS and Android with a single codebase.
 Have a performance close to native (under the

condition that the Internet connection on a device is
stable).

 Follow the standard industrial UI design guides.

C. Design

The mockups of all application screens (Fig. 5-7) were
developed according to the user journey through the app and
using Google guidelines to Material Design. Android users
subconsciously attribute a level of trust and security to a
Material Design app because they associate the app with
Google. Moreover, this concept is widely used in mobile and
web apps today, and its elements become habitual to the vast
majority of users. Furthermore, there is a wide range of
standard components such as icons, fonts, cards that can be
used when developing the user interface for an app. Thus, the
concept of Material Design was chosen to develop the UI side
of the mobile app.

Fig. 5. General mockups

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 534 --

Fig. 6. Routes lists

Fig. 7. Route views

The architecture of the mobile app complies with the
component approach, used as a standard in React Native
applications. In addition, three principles of Redux are used to
build the application. 	

On a high level of abstraction, the application code is split
into several parts:	

1) App, a single code base for both iOS and Android
including:

 Components, UI elements that are used to display the
information to the user and react to the user actions.

 Locales which provide localization for the whole
application.

 Redux (with subcomponents actions, reducers, store)
which is used to handle the business logic.

 Routing which provides the navigation between
screens.

 Screens, that are meta-components combining different
components to display on a single screen.

 Services to interact with the backend via API.
 Theme provides consistent theming (colors, fonts,

paddings, etc.) for the whole app.

2) Android, Android-specific settings.

3) iOS, iOS-specific settings.

4) Tests covering the App code.

The component diagram for the mobile application can be
seen in Fig. 8. Mobile application consists of a set of screens
user interacts with, architecture modules like redux and
routings that are suitable for navigation, theme module to
support easy customization of core colors of the app user
interface, a bunch of services which are split into core services

(database or networking related) and upper layer services
(actions like adding route to favorites or leaving a review), and
locales module that lets the app interface to be translated into
several languages.

Fig. 8. Mobile application component diagram

The activity diagram for the mobile application is
demonstrated in Fig. 9. User is prompted to share their timing
limitations on how long the route should last. The cloud of
their interest is also specified by a set of tags that describe
routes, locations and persons they are related to. After that, a
route is generated on the server and returned back to the
application. User is now able to start their walk through this
route; their location will be tracked via smartphone GPS
module, and information about locations included in the route
will be changed on the screen accordingly.

Fig. 9. Mobile application activity diagram

There are also features like adding route to the list of
favorites by liking them, checking out routes recommended

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 535 --

and constructed by the group of experts and saving the route
locally for the later use (walking them through) at any time in
future.

The classes diagram for the mobile application is shown in
Fig. 10.

Fig. 10. Mobile application classes diagram

When designing system models, their properties and
methods, it is a huge must to keep everything compliant with
software engineering principles like single responsibility
(which defines that every class must solve only one business
logic problem), open-closed (forbidding classes to be modified
but allowing them to be extended in its functionality), Liskov
substitution (working with classes that inherit from other
classes the same way as if they were their root classes),
interface segregation (visual separation of features accessible
to user by their business needs) and dependency inversion
(designing everything in the way classes depend on easily
replaceable abstractions rather than concrete implementations)
principles.

The data flow diagram for the mobile application is
demonstrated in Fig. 11.

Fig. 11. Mobile application data flow diagram

Mobile application uses token-based authentication system.
Once user has been authenticated, a token string is generated
for their session. Next, the user passes this token in the
Authorization HTTP header for each request they make. Since
every business logic method on server requires authentication,
the first action the server does when receiving a request with
token included is finding user by this token in the database and
then proceeding to the actual execution of the request.

Fig. 12. Mobile application deployment diagram

The application is deployed to smartphones running
Android or iOS operation systems. Each of them provides its
own limits and rules on running the same tasks related even to
the user location-tracking task.

D. Technology stack

While choosing the technology stack, the following
considerations were taken into account:	

1) A single codebase should be used for both iOS and
Android operating systems (in other words, a cross-
platform app should be developed).

2) Efficiency, speed and reliability are crucial when it
comes to navigating the user through the city following
a specific route.

3) The technologies should be relevant and supported by a
large community. This is crucial for future maintenance
and scalability of the app.

A comparison of frameworks that could be used for a
mobile application development is shown in Table I.

TABLE I. FRAMEWORK COMPARISON
Framework /
Criterion	

Apache Cordova Xamarin React Native

Usage of
platform-native
programming
languages

- C, C++ Objective-C,
Java

Supported
platforms

Android, iOS,
Windows,

Blackberry, web

Android, iOS,
Windows,
Blackberry

Android, iOS

User interface
development
technologies

HTML5, CSS3,
JavaScript,

AngularJS, Ionic

HTML5, CSS3,
JavaScript

HTML5, CSS3,
JavaScript,

React Native
Components

Similarity to
platform-native
apps

Medium High – compiled
to native app

High – built as
native app

Data model WebView WebView Own data model

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 536 --

React Native was chosen as the tool to build the app. It
allows using its own data model to avoid WebView [17]
problems with performance and resource usage. React Native
possesses a large community of developers and maintainers, a
detailed documentation, a great number of tutorials, and good
performance, which makes it an optimal tool to create the app. 	

Moreover, to implement fully the functionality of the app,
the following libraries were used: 	

1) Apollo GraphQL provides integration with backend
API using the GraphQL query and mutation language.

2) Redux is a widely used tool to manage an app global
state with such concepts as actions, reducers and store.

3) React-native-localize is used to translate the text on
user interfaces depending on the locale that is set on the
operating system level.

4) Native base provides standard UI components and
allows changing easily the application theme colors.

5) React-navigation is used to provide the navigation
between the application screens (views).

React-native-maps, react-native-geolocation-service, react-
native-maps-directions provide an API to display the map on
screen, set points (locations) on the map, display the current
device location and calculate and display routes between given
points.

Consequently, the choice of technology stack was made
based on the various criteria, such as popularity and
documentation, community size and support, and technical
requirements (e.g. the application should be cross-platform).

E. Development

The application was developed according to the
aforementioned business requirements and features needed, as
well as the architecture described above. 	

After installing the application, the user is prompted to sign
up or log in the app by either creating a username and
password or using the existing ones. After signing up or
logging in the app, the user is redirected to the app main
screen. At this point, the application finds the device location
and passes it to the backend in order to receive the nearest
routes. Then, the routes are displayed on the screen in a list.
Having chosen a route from the list, the user is redirected to
the route detail screen. Here, the route title, description and
points list can be seen. Furthermore, the current location and
the route as a whole are displayed on the map (Fig. 13-14).

Fig. 13. The main application screen

Fig. 14. Route details screen

After tapping on an action button, the user is redirected to
the route navigation screen where each location details can
also be viewed. The device location on the map is updated in
real time, and the next location shown to the user is updated
when the user walks by the locations (Fig. 15).

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 537 --

Fig. 15. Route navigation screen and location details screen

The user has a possibility to get a list of recommended and
personalized routes by entering a text query and/or setting the
desired duration of the route [11].

VI. CONCLUSION

The new intellectual system for walking routes generation
and recommendation has been proposed and implemented.
Since the development process has covered everything starting
from data collection to the user experience on mobile
application designing, it was manageable and continuous.

The system developed can provide an extensive set of
possible routes for Saint Petersburg as it contains information
about all attractions and famous places to visit and is able to
generate routes based on user preferences. This system takes
durational, positional and culturological aspects into
consideration to offer a route to the end-user and covers the
majority of sets of preferences to avoid conflicts of interests
while traveling in groups.

The system aims to provide the optimal route possible by
either creating completely new routes from the very beginning
or modifying existing ones to fit the user requirements.

ACKNOWLEDGMENTS
We would like to thank Wikimedia Foundation, Inc. for

being a trustworthy and contentful data provider for this
project purposes.

REFERENCES
[1] I. Cenamor, T. de la Rosa, S. Núñez, D. Borrajo, “Planning for

tourism routes using social networks”, Expert Systems with
Applications, vol. 69, March 2017, pp. 1-9.	

[2] W. Zheng, H. Ji, C. Lin, W. Wang, B. Yu, “Using a heuristic
approach to design personalized urban tourism itineraries with hotel
selection”, Tourism Management, vol. 76, Feb. 2020, pp. 103956.	

[3] W. Zheng, Z. Liao, “Using a heuristic approach to design
personalized tour routes for heterogeneous tourist groups”, Tourism
Management, vol. 72, June 2019, pp. 313-325.	

[4] C. Bassano, S. Barile, P. Piciocchi, J.C. Spohrer, F. Iandolo, R. Fisk,
“Storytelling about places: Tourism marketing in the digital age”,
Cities, vol. 87, Apr. 2019, pp. 10-20.	

[5] M.A. Uwaisy, Z.K.A. Baizal, M.Y. Reditya, “Recommendation of
Scheduling Tourism Routes using Tabu Search Method (Case Study
Bandung)”, Procedia Computer Science, vol. 157, 2019, pp. 150-159.	

[6] S. Ma, A.P. Kirilenko, S. Stepchenkova, “Special interest tourism is
not so special after all: Big data evidence from the 2017 Great
American Solar Eclipse”, Tourism Management, vol. 77, Apr. 2020,
pp. 104021.	

[7] M. Sumardi, R. Wongso, F.A. Luwinda, ““TripBuddy” Travel
Planner with Recommendation based on User‘s Browsing
Behaviour”, Procedia Computer Science, vol. 116, 2017, pp. 326-
333.	

[8] O. Boulaalam, B. Aghoutane, D. El Ouadghiri, A. Moumen, M.
Malinine, “Proposal of a Big data System Based on the
Recommendation and Profiling Techniques for an Intelligent
Management of Moroccan Tourism”, Procedia Computer Science,
vol. 134, 2018, pp. 346-351.

[9] C. Bin, T. Gu, Y. Sun, L. Chang, L. Sun, A Travel Route
Recommendation System Based on Smart Phones and IoT
Environment, Web:
https://www.hindawi.com/journals/wcmc/2019/7038259/.

[10] Y. Xu, T. Hu, Y. Li, A travel route recommendation algorithm
with personal preference, Web:
https://ieeexplore.ieee.org/document/7603205/.

[11] G. Cui, J. Luo, X. Wang, Personalized travel route recommendation
using collaborative filtering based on GPS trajectories, Web:
https://www.tandfonline.com/doi/abs/10.1080/17538947.2017.13265
35.

[12] L. Liu, J. Xu, S. Shaoyi Liao, H. Chen, A real-time personalized
route recommendation system for self-drive tourists
based on vehicle to vehicle communication, Web:
https://www.researchgate.net/publication/259519060_A_real-
time_personalized_route_recommendation_system_for_self-
drive_tourists_based_on_vehicle_to_vehicle_communication/.

[13] P. Ashokkumar, N. Arunkumar, S. Don, Intelligent optimal route
recommendation among heterogeneous objects with keywords, Web:
https://www.sciencedirect.com/science/article/pii/S00457906183040
4X.

[14] R. B. Chandanshiv, A. Nawathe, Travel Route Recommendation
by Mining Travelogues and Community Contributed
Photos using Cosine Similarity, Web:
http://ijsrd.com/Article.php?manuscript=IJSRDV5I41383.

[15] Y. Ting Wen, J. Yeo, W. Chih Peng, S. Hwang, Efficient Keyword-
Aware Representative Travel Route Recommendation, Web:
https://yonsei.pure.elsevier.com/en/publications/efficient-keyword-
aware-representative-travel-route-recommendatio

[16] D. Gavalas, M. Kenteris, C. Konstantopoulos, G. Pantziou, "Web
application for recommending personalised mobile tourist routes",
IET Software, vol. 6, no. 4, pp. 313-322, 2012.

[17] Hu Junguo, Qi Hengnian, Dong Feng, "An improved ant colony
algorithm and the path planning of tourist attractions[J]", Application
Research of Computers, no. 05, pp. 1467-1420, 2012.

[18] J. Wang, N. Wu, W. Xin Zhao, F. Peng, X. Lin, Empowering A*
Search Algorithms with Neural Networks for Personalized Route

__PROCEEDING OF THE 26TH CONFERENCE OF FRUCT ASSOCIATION

-- 538 --

