PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

An Ensemble of Triplet Neural Networks for
Differential Diagnostics of Lung Cancer

Lev Utkin, Anna Meldo, Maxim Kovalev, Ernest Kasimov
Peter the Great St.Petersburg Polytechnic University (SPbPU)
St.Petersburg, Russia
lev.utkin@gmail.com, anna.meldo@yandex.ru
maxkovalev03@gmail.com, kasimov.ernest@gmail.com

Abstract—A new classification subsystem of a lung cancer
computer-aided-diagnosis systems is proposed in the paper. Its
implementation is based on two main approaches. First, the
computed tomography images of segmented suspicious lung
nodules are represented by means of five histograms charac-
terizing the shape, inner and outer structures of nodules. This
representation significantly reduces the dimensionality of data.
Second, an ensemble of triplet neural networks is used to take
into account atypical cases of lung cancer and to improve
accuracy of the classification subsystem usage. An architecture
of the developed triplet network and peculiarities of the triplet
network ensemble training process are considered in detail. The
corresponding results of numerical experiments with using public
dataset LUNA16 show outperforming properties of the proposed
classification subsystem.

I. INTRODUCTION

One of the common malignancy tumors in many countries is
lung cancer [1]. As a result, many computer-aided-diagnosis
(CAD) systems, which automatically detect and classify the
suspicious pulmonary nodules or lung lesions, have been
developed in last time to assist radiologists in the screening
process and in confirming a certain diagnosis [2]. It should be
noted that one of the most important modalities for lung cancer
diagnosis is the computed tomography (CT) which has a lot
of advantages in comparison with other modalities [3]. The
main symptom of lung cancer at early stage is the pulmonary
nodule which is detected by means of CT. Therefore, CAD
systems aim to detect all nodules and to classify them in order
to correctly diagnose a disease.

Nowadays, a lot of CAD systems solving the lung cancer
diagnosis task consist of two subsystems. The first subsystem
called as the CADe system aims to segment and detect lung
nodules. The segmentation stage (the CADe system) delineates
the lung parenchyma and then detects possible nodules on the
lung parenchyma. The second subsystem called as the CADx
system is concentrated on a special feature representation of
the detected suspicious lung nodules and on their classification
as malignant or benign in order to reduce false positive
cases. Most efficient lung cancer CAD systems in the recent
years are based on using machine learning algorithms, in
particular, deep learning ones, due to the fact that the deep
learning models achieve better results in many areas such
as segmentation and classification tasks compared with other

traditional computing techniques. Analyses and comparison of
the lung cancer CAD system architectures are available in [4],
[5], [6]. To the best of our knowledge, the most efficient lung
cancer CAD system nowadays is proposed by Ardilla et al. [7].
Approaches using deep learning methods to classification of
lung nodules dominate at present. However, a comprehensive
review of the lung nodule classification methods in the CADx
systems [8] has illustrated that an important remaining ques-
tion in the classification implementation is how to represent a
segmented nodule image by new features in order to reduce
the number of false positive cases and to use simple machine
learning models for classification.

In spite of the permanent accumulating of training data, one
of the problems of CAD systems, especially CADx systems, is
a lack of sufficient data concerning with many atypical cases
of the lung disease. For example, one may meet tuberculosis
looking like a cancer on CT images, which does not belong
to cancer disease. Moreover, some diseases do not have
the nodular structure, for example, lymphoma, hamartomas,
lepidic adenocarcinoma [9]. As a result, it is very difficult
to correctly classify the lung cancer in these cases because
the number of examples with these atypical cases are usually
small. It should be noted that exactly the CADx system plays
a crucial role in classifying atypical cases.

Two ways for simplifying the above problem can be pointed
out. The first way is to reduce the dimensionality of lung
nodule CT image description after segmentation (after the
CADe system) and to apply some special low-dimensional
feature representation. One of the adequate feature representa-
tion of lung nodules is a set of the following five histograms
[10] which characterize the surface, the inner structure and
surroundings of every lung nodule. These are two inner and
outer chord length histograms based on the chord method [11],
two inner and outer radiodensity histograms, and an inner
histogram of the radiodensity changes.

It should be noted that the above dimensionality reduc-
tion can be conditionally viewed as one of the radiomics
approaches which are based on radiological quantitative image
features. Radiomics approaches [12], [13] try to build the
prediction model based on the extracted two dimensional
(2D) or three dimensional (3D) radiological quantitative image
features of lung nodules based on prior knowledge of what fea-
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tures and characteristics are significant. However, in contrast
to the radiomics approaches, we do not use prior knowledge
about significance of features because this information is
very often absent. We try to propose an adequate and simple
feature representation such that the significance of features is
implicitly determined by a classifier.

The aforementioned histograms allow us to significantly
reduce the nodule CT image representation dimensionality.
However, the problem of atypical cases cannot be solved only
by applying the first way. Therefore, the second way is to
consider the few-short learning [14] which is a framework
for dealing with the small number of training examples in
some classes. There are several methods for solving the
few-short learning problem. One of them is to use the so-
called Siamese neural network [15], [16]. The Siamese neural
network is composed of two identical neural networks with
shared parameters. It aims to compare pairs of examples and
to make decision about semantic similarity or dissimilarity
of examples in every pair. However, our experiments have
shown that the Siamese neural network does not provide
outperforming results due to the small amount of training data.

Another architecture which can be regarded as an extension
of the Siamese neural network is the Triplet neural network
(TrNN) [17]. Sometimes, it is viewed as a neural network with
the triplet loss (see, for example, [18]). The TrNN is comprised
of three identical neural networks with shared parameters. If
we denote three input examples for the networks as X —, X T,
X, then the TrNN encodes the pair of distances between each
of X~ and X against the reference X. In other words,
the vector X represents the anchor example, X represents
a positive example and X~ represents a negative example.
The dissimilarity between X and X T should be less than the
dissimilarity between X and X . It is shown in the paper
that the best choice of a loss function is the so-called lossless
triplet loss [19].

The TrNN improved the results of the lung cancer classi-
fication, but this improvement was negligible. Therefore, we
propose to apply an ensemble of the TrNNs. Ensemble-based
methods can be viewed as techniques that develop a group of
classifiers and then combine them to produce improved results.
They often produce more accurate solutions in comparison
with single models used separately [20], [21], [22]. One of
the groups of ensemble-based methods is bagging [23]. The
well-known bagging model is the random forest [24], which
uses a large number of randomly built individual decision
trees in order to combine their predictions. Generally, bagging
methods generate an ensemble of independent models in which
each model is trained using a sample of examples taken from
the original dataset as a replacement [21]. Majority voting of
predictions provided by every model is performed to compute
the final prediction of a new example.

The proposed ensemble of TrNNs as a part of the lung
cancer CADx system surprisingly have demonstrated very
promising results. Therefore, the paper aims to propose an
architecture of the developed TrNN and to provide the corre-
sponding results of numerical experiments which show nice
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properties of the TrNN ensemble. In order to train and to
test the TrNN, we use the well-known dataset LUNA16
(https://lunal6.grand-challenge.org/) which contains respec-
tive CT images in DICOM (Digital Imaging and Communi-
cation in Medicine) format.

The CADe system is not studied in the paper because it
may have various implementations. In particular, it can be
implemented based on the well-known conventional image
processing methods, including shape based methods, edge
based methods, morphological methods. These methods can-
not be called intelligent. In contrast to the conventional image
processing methods, deep learning approaches are successfully
used for segmentation recently. Since we assume that the seg-
mented nodules are represented in the form of the histograms,
the CADx system does not depend on the CADe system
implementation. Various image segmentation approaches to
detect lung nodules can be found, for example, in survey
papers [5], [6], [25].

A general architecture of the considered CAD system is
shown in Fig. 1. The CADe system produces CT images of
suspicious lung nodules. The CADx system transforms the
images into histograms which are classified by the ensemble
of TrNNs. The final decision about a disease is based on the
separate TrNN results, and it is computed by using the standard
majority voting scheme.
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Fig. 1. A general architecture of the CAD system

The rest of the paper is organized as follows. In Section
2, a brief description of the chord method and the histogram
representation of the lung nodule CT images is given. TrNNs
are explained in Section 3. Peculiarities of an ensemble of
TrNNs and an architecture of neural networks which form the
TrNN for the histogram classification are considered in Section
4. Numerical examples illustrating the proposed ensemble of
TrNNs are provided in Section 5. Section 6 contains some
concluding remarks.

II. THE CHORD METHOD AND HISTOGRAMS IN CADx

In order to reduce the dimensionality of the segmented lung
nodule images and to simplify their classification, a specific
feature representation of the images is proposed. The feature
representation uses the idea of the chord method [11] which is
based on constructing many line segments that are called by
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chords, and they link pairs of points on the shape boundary.
The set of normalized chord lengths can be viewed as a
chord length histogram which is invariant to size, translation
and rotation of the shape [11]. Therefore, the first histogram
representing the lung nodule CT image is the chord length
histogram, and it characterizes the nodule shape or surface.
It is important to note that the chord length histograms of
malignant nodules and benign nodules or vessels differ from
each other. This fact allows us to classify histograms which
are of a low dimensionality avoiding the high dimensionality
of images.

However, in order to improve the classification accuracy,
four additional histograms are proposed. In particular, the
second histogram characterizes the inner structure of every
lung nodule, and it is constructed by randomly selecting
points on every chord and by determining the radiodensity
(Hounsfield units) at these points. As a result, we can get
the histogram of the radiodensity values inside the considered
nodule (the inner histogram).

The third histogram again characterizes the nodule shape.
To get this histogram, it is proposed to put the lung nodule
into a virtual cube which can be viewed as the environment
around the nodule. Then the histogram is constructed by
drawing chords connecting points at the virtual cube around
the nodule and at the nodule surface. Chords are constructed
as perpendiculars to every face of the cube. This histogram
can be viewed as the outer histogram.

In order to take into account the environment around a
nodule, values of the radiodensity are measured at points on
chords constructed between the above cube and the nodule
surface. This histogram is also outer, and it characterizes the
nodule surrounding.

In order to take into account changes of the radiodensity
inside the nodule, the fourth histogram is constructed by com-
puting differences between the radiodensity values determined
at neighboring points (at two neighboring spheres of different
radius inside the nodule). Spheres of different increasing radii
are constructed from the approximate center of the nodule, so
that the last sphere covers the most distant points of the nodule
surface.

Finally, the concatenated five histograms form a histogram
as a new feature representation of every lung nodule CT
image. The summed number of bins can be regarded as the
number of new features.

The next problem is to classify these histograms. However,
the main difficulty in training a classifier in the CADx system
is that the training set contains only a few examples of many
atypical lung cancer cases. In order to cope with this difficulty,
we propose to apply an ensemble of the TrNN to classify the
suspicious lung nodules.

III. TRIPLET NEURAL NETWORKS

Let {(X;,v:),2 = 1,..., N} be a dataset of feature vectors
X; € R™ (histograms of suspicious nodules) of size m
with labels y; such that every label corresponds to a certain
diagnosis. For simplicity, we consider a special case when
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Fig. 2. A general structure of the TrNN, where E1, Eq, E3 are three identical
neural networks with shared weights

y; corresponds to two outcomes: malignant and benign, i.e.,
y; € {0,1}. The value m is the total number of bins in five
histograms.

It has been mentioned that the TrNN consists of three identi-
cal neural networks with shared parameters. It is trained from
triplets <Xi,Xi+ X > such that every triplet is constructed
from the pairwise similarity data as follows: for each anchor
example X;, a positive example Xj is selected (X; and
X" are semantically similar or from the same class), and a
negative example X, is selected (X; and X, are semantically
dissimilar or from different classes). In fact, X; and X Z+ are
different viewpoints of the same disease, and X, comes from
a different disease.

A general structure of the TrNN is shown in Fig. 2, where
three neural networks are denoted as E, E5, F3. The TrNN
maps the triplet (X;, X;%, X;) into a learned feature space
with a new triplet (a new feature representation) (h;, h, h; ).
Since the anchor example X; is semantically closer to all
positive examples Xi+ than to all negative examples X,
then the relative similarity and dissimilarity between examples
in the triplet (X;, X;", X; ) are measured by the Euclidean
distances between the corresponding vectors in the triplet
<hi,hj',hi_ > In other words, training the TrNN brings X;
and X" close in the feature space, and pushes X; and X,
far apart.

Let us denote the Euclidean distance between vectors h;
and h; as d; = th - h;’ ;, and the Euclidean distance
between vectors h; and h as df = ||h; — h; Hz Then one
of the most popular triplet loss functions for training the TrNN
called Margin Ranking Loss is of the form:

M
L= max (0,6 —d +d). (1)

i=1

Here § is a margin (a tuning parameter) that is enforced
between positive and negative pairs, M is the number of
all possible triplets in the training set. By using the above
triplet loss function, we enforce the TrNN to adjust its weights
to achieve the condition d; > ¢ + d;". In fact, the block
“comparison” in Fig. 2 performs comparison of distances d;
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and dj' in order to determine whether they fulfil the above
condition for distances or not.

Another loss function called Ratio Loss was proposed by
Hoffer and Ailon [17]. The Ration Loss uses the SoftMax
function as follows:

M )
L=> |a¢a -1, ©))
=1
where
+
gt = xp(d;) . g =1—gq. A3)

exp(d;) + exp(d;)

Several different triplet loss functions have been proposed
in literature, for example, a triplet-center loss [26], a batch-
hard based triplet loss [27]. Arsenault in his blog proposes to
use the so-called lossless triplet loss function [19], which is
of the form:

M d+
L=Z<—ln —é+1+6)

=1
M—d; +1+ ))
_—— g .
B

Here [ is a scaling factor, € is a parameter avoiding the case
In(0). It turns out that this loss function provides the best
accuracy results for the lung cancer classification when the
histogram representation is used for suspicious lung nodule
images.

—In @)

IV. AN ENSEMBLE OF TRIPLET NEURAL NETWORKS

In order to classify histograms representing the suspicious
lung nodule CT images, we propose an architecture of every
neural network being one of three components of the TrNN. It
is shown in Table I. One can see from Table I that the number
of units in the input layer corresponds to the number of bins
in every histogram consisting of five small histograms (m =
108). The output layer contains only two units. Activation
functions for all layers are PReLU (a parametric ReLU [28] of
the form f(z) = max(0, z)+amin(0, y)) except for the output
layer where the sigmoid activation function is used. A decision
about a class of the analyzed lung nodule is carried out by
looking for k& nearest neighbors in the feature space, i.e., by
measuring the Euclidean distances between the corresponding
vectors in the triplet (h, A", h~). The preliminary comparison
analysis of different loss functions has shown that the TrNN
with the lossless triplet loss provides the best accuracy results.
Therefore, we use this loss function for training the proposed
TrNN.

It turns out that a single TrNN provides unsatisfactory
results. Therefore, an ensemble of TrNNs is proposed. In order
to train the ensemble, a procedure for a random selection of
triplets having the structure (X, , X;", X;) for every TrNN
should be implemented. The following procedure for preparing
a set of triplets 7; for training the ¢-th TrNN is proposed.

1) n random examples {cy,...,c,} are selected with re-
placement from the class “malignant”.
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TABLEL THE ARCHITECTURE OF NEURAL NETWORKS FROM

THE TRNN

Layer Dimension  Activation

Input 108 PReLU
Hidden 1 36 PReLU
Hidden 2 12 PReLU
Hidden 3 6 PReLU
Hidden 4 3 PReLU

Output 2 Sigmoid

2) n random examples {b1,...,b,} are selected without

replacement from the class “benign”.

3) For every value ¢;, i = 1,...,n, a set of pairs (¢;,c;),

j =1,...,n, is constructed.

4) q examples are randomly selected from the set of se-

lected examples {b1,...,b,} and form a set {7, ..., b, }.

5) The set of triplets 7; consists of examples (c;, c;, b)),

Il = 1,...,q. The total number of obtained triplets for
training a single TrNN is S = 2¢gn(n — 1).

The above procedure is repeated 7' times to get 1" sets of
triplets 7y, ..., 7 for all TrNNs in the ensemble. The values
n and ¢ can be viewed as tuning parameters.

Suppose that the ¢-th TrNN in the ensemble in the testing
phase returns an output y; € {0,1} computed in accordance
with k nearest neighbors such that its values correspond to
“benign” and “malignant”, respectively. Then the ensemble
output can be computed by averaging the TrNN outputs, i.e.,
it is computed as

T
y =Ty (%)
t=1

V. NUMERICAL EXPERIMENTS

In order to illustrate the proposed ensemble of TrNNs
for classifying histograms representing the suspicious lung
nodules, the following four accuracy measures are analyzed:
Accuracy (the ratio of correctly predicted observation to
the total observations), Precision (the ratio of correctly pre-
dicted positive observations to the total predicted positive
observations), Recall (the ratio of correctly predicted positive
observations to all observations in actual class), Fl-score (the
weighted average of Precision and Recall). Dataset LUNA16
is used for training the total CAD system. The dataset consists
of a total of 888 chest CT scans. Results of segmentation
are 25098 histograms such that 24670 and 428 histograms
correspond to benign and malignant cases, respectively. All
histograms are characterized by the numbers a;, i = 1, ..., 5,
of bins (each bin represents a predefined interval of lengths
(a1,a3), radiodensity values (ag,a4), radiodensity value dif-
ferences (as). Numbers of bins in the histograms are tuning
parameters. However, we take for following parameters of
histograms: a1 = a4 = 24, as = 40, a3 = a5 = 10.
As a result, the total number of features for classification is
m = 108. In order to perform numerical experiments with
balanced datasets for testing, the number of testing examples
is 500: 250 benign cases and 250 malignant cases.
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TABLE II. ACCURACY MEASURES AS FUNCTIONS OF THE NUMBER k OF
NEAREST NEIGHBORS

k  Accuracy Precision Recall Fl-score
1 0.916 0.926 0.904 0.915
3 0.916 0.922 0.908 0.915
5 0.918 0.926 0.908 0.917
7 0.918 0.926 0.908 0.917
9 0.918 0.926 0.908 0.917

Parameters of the TrNN training are n = 600 (the number
of selected examples from the class “benign”), ¢ = 10
(the number of selected examples from the restricted class
“benign”), T = 80 (the largest number of TrNNs in the
ensemble). The learning rate is 1073, the number of epochs
is 1000, the batch size is 5000.

To evaluate the average accuracy measures, we perform ex-
periments with 100 repetitions. We also study how numbers of
TrNNs in the ensemble impact on the accuracy measures and
show results corresponding to the “optimal” number of TrNNs
from the accuracy point of view. It has been mentioned that
the lossless triplet loss gives the largest accuracy. Therefore,
this loss function is used in all numerical experiments with
parameters 5 = 2 and € = 0.001.
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In order to illustrate the difference between accuracy mea-
sures of separate TrNNs and the ensemble of TrNNs, we
show in Figs. 3-6 dependencies of accuracy measures (Ac-
curacy, Precision, Recall, Fl-score) on every TrNN and on
the ensemble. The accuracy measures of the ensemble are
depicted by solid lines whereas the same measures of separate
TrNNs are depicted by dashed lines. The dashed lines have
a jumping behavior because every single TrNN is trained by
using randomly selected training data and it has its inherent
classification ability. It can be seen from Figs. 3-6 that separate
TrNNs are mainly inferior to the ensemble. This is the main
reason for implementing the idea to use the ensemble of
TrNNs to improve classification accuracy measures.

In order to study how the number 7" of TrNNs in the ensem-
ble impacts on the classification performance, we consider de-
pendencies of accuracy measures (Accuracy, Precision, Recall,
Fl-score) on T'. These dependencies are shown in Figs. 7-10,
respectively. It can be seen from Figs. 7-10 that all accuracy
measures are increased with increase of T'. At the same time,
it is interesting to observe some interval of 7" where every
accuracy measure is not strongly changed. For example, this
interval for the Accuracy is from 7" = 15 till 7' = 65.

The next question is how the parameter k of nearest neigh-
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bors for decision making impact on the accuracy measures.
The corresponding results are shown in Table II. It can be
seen from Table II that the increase of accuracy measures is
observed only for £ < 5. Values of k larger than 5 do not
change the accuracy measures. This implies that there exists
some optimal smallest £ which provide the largest values of
accuracy measures.
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Fig. 7. Accuracy as a function of the number 7" of TrNNs in the ensemble

Finally, we compare the proposed ensemble of TrNNs
with the random forest which is also based on the bagging
method and is one of the best classifiers. Moreover, we use
an ensemble of random forests consisting of two standard
random forests and two completely-random tree forests [29].
The corresponding results are given in Table III. One can
clearly see from Table III that the ensemble of TrNNs signif-
icantly outperforms the ensemble of random forests. Only the
precision measure achieves the highest value for the ensemble
of random forests.

VI. CONCLUSION

A new approach for implementing the lung cancer CADx
system based on applying the ensemble of TrNNs has been
considered in the paper. The main aim of the approach was to
take into account atypical cases of the suspicious lung nodules.
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351

Mean Recall: k = 1

0.88+

0.86

0.84

0.82

0.80

-
=
o
[N
(=]
w
o
£
o
w
o
(=]
o
~
o
o)
o

Fig. 9. Recall as a function of the number 7" of TrNNs in the ensemble

Mean Fl-score: k=1

0.914
0.90+
0.891
0.88+
0.874
0.861
0.851

0.841

-
—
=]
]
=]
w
=]
&1
]
u
=]
=)
=]
~
[=]
=]
=]

Fig. 10. Fl-score as a function of the number 7" of TrNNs in the ensemble

The numerical results show that the proposed ensemble of
TrNNs jointly with the histogram feature representation pro-
vide outperforming accuracy results in comparison with use
of the single TrNN.

Three basic ideas were used for implementing the CADx
system, which distinguish the system from similar CAD sys-
tems. First, every lung nodule is represented by means of five
histograms characterizing its shape, inner and outer structures.
Second, the TrNN is used for taking into account atypical
cases of lung cancer. Third, the ensemble of TrNNs is used
to improve the accuracy measures of the CADx system.

Main numerical results are obtained for the histogram
representation of lung nodules. Moreover, the architecture of
networks in every TrNN is adapted to this representation.
However, the approach is general and can be applied to various
feature representations. In particular, it is interesting to study

TABLE III
COMPARISON OF THE RANDOM FOREST AND THE ENSEMBLE OF TRNNS
Accuracy  Precision  Recall ~ Fl-score
Ensemble of random forests 0.638 1.000 0.276 0.437
Ensemble of TrNNs 0.918 0.926 0.908 0.917
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the ensemble of TrNNs consisting of 3D convolutional neural
networks for processing parts of CT images in their initial 3D
form. This is a direction for further research.

But the most interesting direction for further research and
for improving the classification accuracy is a composition of
ensemble-based TrNN classifiers which are trained by using
different feature representations, for example, histograms and
3D patches of different sizes. This composition can be con-
trolled by a meta-learner in order to enhance the accuracy.
The obtained architecture can be viewed as an ensemble of
ensembles.

We have considered the ensemble of TrNNs as a sim-
ple bagging model. However, it is interesting to investigate
other ensemble-based models including the boosting and the
stacking. Moreover, the proposed bagging model can be also
improved by means of introducing some weights assigned
to every TrNN such that the simple averaging of the TrNN
outputs is replaced with the weighted averaging. This is
another direction for further research.
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