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Abstract—Russian politicians are increasingly using social
networks publishing a lot of texts. One of the important issues in
the context of the analysis of political online communication is the
choice of negative and positive topics in publications as well as the
reaction of the audience. In order to analyze the main patterns of
this process we have collected the data from the social network
Vkontakte. Our sample covers the period from 1 January, 2017
to 25 April, 2019, in total 46293 posts and 2197063 comments
in 23 politician’s accounts. To build the classifier we used two
text corpora: Rubtsova’s corpus and RuSentiment corpus. The
algorithm of sentiment analysis was implemented on the basis of
bidirectional recurrent neural network. Using Rubtsova’s corpus
we provided the accuracy of 91% and using RuSentiment we
provided the accuracy of 84% (accuracy is calculated as the
proportion of correctly identified cases from the test sample).
We found that the markup of data significantly differs when
different corpora were used. The most adequate results in the
analysis of posts and comments, in our opinion, are obtained by
using an ensemble of models based on the both corpora. As a
result of classification, we identified a number of patterns. Thus,
the number of likes and views of posts is higher for the posts
classified as positive, and the number of reposts is higher for
the posts classified as negative. We also found that the number
of comments is higher for the posts with a negative sentiment,
and the average sentiment of comments on positive posts is more
positive than the average sentiment of comments on negative
posts.

I. INTRODUCTION

The Internet has fundamentally transformed the mech-
anisms for discussing political issues, and democratic par-
ticipation [1]. Nowadays the key messages are delivered to
audiences online, and politicians are discovering new platforms
every year. During 2007-2008 Barack Obama’s team made
a breakthrough using a variety of online technologies for
political purposes: the election campaign involved a lot of dig-
ital channels: websites, email newsletters, Facebook, Twitter,
MySpace and Youtube [2]. In Russia, a kind of an innovator
in online presence was Dmitry Medvedev, a President who
actively used Twitter and did not refuse the social networks
even after the incident, when his account with 2.5 million
audience was hacked [3]. Gradually, blog adoption in politics
became typical of not only Federal politicians but also regional
leaders [4]. The concept of political marketing existed since
the 70s [5] and now, in the era of Internet presence, it is
very topical. Today, it is the marketing approach that allows
consultants and press services to determine the key values
of target audiences [6] to form the appropriate image [7]

and brand of the leader or party [8]. In recent years, social
media marketing (SMM) is increasingly being used in political
communication, which includes the promotion, positioning and
formation of loyalty to the leader in a social network, develop
meaningful strategies for account management. Publishing
content in the accounts of well-known politicians remains
a part of the communication strategy, and sometimes the
entire teams of PR specialists work on it. Accounts in social
networks could be considered as media outlets actively used
for agenda-building and influence on the audience [9]. One
notable challenge for strategic communication in this context
is the use of positive and negative content. On the one
hand, a positive agenda is demanded by a large part of the
audience, some Russian media, for example, Lenta gave users
the opportunity to simply turn off the bad news with the
toggle switch [10]. In recent years, Russian pro-government
politicians have mainly focused on a positive agenda in order
to prevent downgrade of ratings of the President [11] and the
Deputy Prime Ministers [12]. The promotion of the positive
agenda is implemented not only through the media, but also
through state corporations [13]. On the other hand, negativity
can also be effective, as such content is often used in political
communication for demonstrative statements and provocations.
But what online content strategy politicians have to choose to
be as effective as possible in terms of engagement? In this
article, we use data collected form the most popular accounts
of Russian politicians on the most visited Russian social
network “Vkontakte” [14] and implement machine learning
algorithms and sentiment analysis to determine the impact of
sentiment on the mechanisms of feedback from the audience.
“Vkontakte” is the most popular social network in Russia.
It is similar in functionality to Facebook, there are various
communities, public communication between users is based
on posts and comments, likes and reposts are also used. Since
March 2017, “Vkontakte” posts also have views metric.

II. RELATED WORK

In the context of political communication, data from social
networks can be used in solving the problems of opinion min-
ing as a significant predictor of public opinion, including the
growth of social tension [15] and prediction of election results
[16], [17]. Sentiment analysis of a policy-related content in
social networks is being actively used to monitor trends [18],
[19], analysis of the political agenda, and assessment of the
level of support for candidates and parties [20]. Wang & Can et
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al. showed how it is possible to start an online wave of positive
or negative reactions through the provocation [21]. Working
with Twitter data, Stieglitz & Dang-Xuan showed that emo-
tionally charged publications get higher retweetability [22].
Experiments also show interdependency between intensity of
publication activity and various events, such as debates [23].
Sentiment analysis of political online communication is also
used to model the emotional background of the discussions1
[24], fact-checking [25], analysis of propaganda trends [26].
Early versions of the sentiment analysis appeared in the late
70’s – early 80’s [27]. In general, all automatic algorithms
can be divided into, firstly, lexical-based, machine learning-
based and mixed, and, secondly, ontology based and non-
ontology based [28]. There are many sentiment classifica-
tion algorithms, however, even advanced algorithms tend to
reach accuracy about 70% on social media data [29], [30],
[31]. Researchers use numerous methods to conduct sentiment
analysis, for example, various modifications of the bag-of-
words [32], [33], neural networks [34], machine learning [35],
conditional random fields and support vector machines [36],
deep learning [37]. The automatic sentiment classification for
the Russian language is still a challenging task because of low
number of open source and ready solutions, as well as the
small community and low number and quality of thematic text
corpora.

We submit the following research questions:

1) How an accuracy of sentiment classification can be
increased?

2) Are there any significant differences in feedback
levels depending on the sentiment of the content?
(Which posts get more likes, comments, reposts?)

3) How is the positive/negative sentiment in comments
related to the positive/negative sentiment in posts?

III. DATA AND METHODOLOGY

A. Text processing

For sentiment classification we used the Russian language
corpus of short texts RuTweetCorp (Rubtsova’s corpus) [41]
and the corpus of the posts RuSentiment [29]. RuTweetCorp
corpus contains texts posted by Twitter users during the period
from late November 2013 to late February 2014. There were
226834 records in total, 114911 annotated as positive and
111923 annotated as negative. RuSentiment corpus contains
30521 annotated posts on social network Vkontakte, divided
into 5 classes: 6646 posts marked as positive (code ”positive”),
3912 marked as negative (code “negative”), 3467 marked
as direct speech (code “speech”), 4440 unrecognized (code
“skip”), 12720 neutral (code “neutral”). We used only the first
two classes of posts from this case in order to match the
classes in Rubtsova’s corpus. The first step in model building
was to develop procedure for text preprocessing. We used
standardized procedure [43] that covered all the text data in
this study. This consist of the following steps.

1) We replaced the Russian letter “ë” with “e”;
2) The particles “not” and “neither” were converted to

the prefix “NOT” to the next word;
3) Links to web resources were excluded from the text;
4) User’s mentions were excluded from the text;

5) Processing of emoticons and emojis was performed.
The most popular of them were replaced with the
tokens “POSITIVESMILE” or “NEGATIVESMILE”;

6) We deleted all non-letter characters, including punc-
tuation and numbers;

7) Normalization of words was performed with MyStem
[44];

8) Any number of consecutive spaces was replaced with
a single space;

9) Repeated consecutive words were replaced with a
single words;

Taking emoticons in account allows to increase the
accuracy of text classification [39]. We conducted a special
procedure for processing emoticons and emojis. First of all,
emoticons composed of typographic characters were replaced
by these tokens. As positive emoticons we considered the
following {:) , ; ) , =) , : −) , ;−) , )) , ))) , . . .},
we considered the following negative
{: ( , ; ( , = ( , : −( , ;−( , (( , ((( , . . .}. Further,
a similar procedure was applied to the following manually
marked emojis, which are used in VKontakte:

• Positive emojis:
thumbs up, red heart, folded hands,
smiling face with smiling eyes, grin-
ning face with big eyes, clapping hands,
beaming face with smiling eyes, flexed biceps,
grinning face with smiling eyes, winking face,
winking face with tongue, rose, smil-
ing face with heart-eyes, grinning face, kiss mark,
tulip, oncoming fist, hugging face, OK hand,
victory hand, face blowing a kiss, hibiscus, fire,
cherry blossom, sparkles, handshake, party popper,
two hearts, raised fist, sparkling heart, raised hand,
bouquet, smiling face, slightly smiling face,
blue heart

• Negative emojis:
rolling on the floor laughing, grin-
ning squinting face, pouting face, SOS button,
smirking face, thumbs down, fearful face,
thinking face, pile of poo, middle finger,
crying face, loudly crying face, per-
son facepalming, nauseated face, pensive face,
grinning face with sweat, unamused face, see-no-
evil monkey, face screaming in fear

It should be mentioned that in the process of checking the
effectiveness of various methods of text preprocessing, we also
considered the step of filtering the texts with Russian-language
stop-words list included in the “nltk.corpus” package, however,
their exclusion reduced the accuracy of the models on the
considered corpora. So, this procedure was removed from the
list of steps for text preprocessing.

B. Sentiment analysis

Traditional word-based sentiment analysis techniques are
often not suitable for classifying policy-related content [38].
In order to construct the sentiment classifier based on the
Rubtsova’s corpus, we adopted an approach using deep learn-
ing models such as convolutional and recurrent neural net-
works.
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Fig. 1. CNN + LSTM neural network architecture Fig. 2. BiGRU neural network architecture

As the first alternative, we used the neural network [40],
in which the LSTM (Long Short-Term Memory) layer follows
the one-dimensional convolution layer (Fig. (1)). As a second
alternative, we used a neural network with a bidirectional
GRU (Bidirectional Gated Recurrent Unit, BiGRU) layer (Fig.
(2)) followed by dense layers. This architecture, in particular,
was implemented in the library DeepPavlov [42]. In both
neural networks, the first layer is the word embeddings vector
representation layer which maps the first 30 words from the
preprocessed text to a real-valued vectors from R64. The size
of the dictionary, which includes the most common words from
the Rubtsova’s corpus, was 30 thousand words. In order to
avoid overtfitting, we use dropout layers with parameter 0.2
and L2-regularization with parameter 10−5 in dense layers.
We used the following data separation for the neural networks
training : 70% of the data used in the training sample, 10%
of the data included in the validation sample and 20% – in
the test sample. The selection of the number of training epochs
was based on accuracy and losses metrics on the validation set.
Fig.(3) and Fig. (4): to achieve optimal scores (both loss and
accuracy) and to avoid the effect of overfitting CNN+LSTM
network had completed 2 epochs of training, and BiGRU
network had completed 3 epochs. The performance results of
these models on the test set are represented at tables (I) and
(II). Since the value of the F1 metric for the BiGRU model
was higher, then we decided to use it instead of CNN+LSTM.

We also used BiGRU architecture of a neural network with

TABLE I. RESULTS FOR CNN + LSTM MODEL ON THE TEST SET

FROM RUBTSOVA’S CORPUS

Class precision recall f1-score support

Negative 0.90238 0.91206 0.90719 22196

Positive 0.91405 0.90458 0.90929 22950

macro avg 0.90822 0.90832 0.90824 45146

weighted avg 0.90831 0.90825 0.90826 45146

TABLE II. RESULTS FOR BIGRU MODEL ON THE TEST SET FROM

RUBTSOVA’S CORPUS

Class precision recall f1-score support

Negative 0.92094 0.89223 0.90636 22196

Positive 0.89882 0.92593 0.91217 22950

macro avg 0.90988 0.90908 0.90927 45146

weighted avg 0.90970 0.90936 0.90932 45146

the RuSentiment corpus. Since this corpus is smaller, compared
with the Rubtsova’s one, we used a dictionary containing 15
thousand words, which are the most frequent in the corpus.
The table (III) shows that this model is able to recognize only
54.1% of negative replies. Also, because the classes it was
trained on were not balanced, model’s predictions should be
expected to be biased in the direction of positive sentiment.

IV. RESULTS

We investigate the characteristics of the posts published
by Russian politicians on the social network VKontakte for
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Fig. 3. Training of CNN + LSTM model. Comparing results on training and validation sets from Rubtsova’s corpus

Fig. 4. Training of BiGRU model. Comparing results on training and validation sets from Rubtsova’s corpus

Fig. 5. Training of BiGRU model. Comparing results for training and validation sets from RuSentiment corpus

TABLE III. RESULTS FOR BIGRU MODEL FOR THE TEST SET FROM

RUSENTIMENT CORPUS

Class precision recall f1-score support

Negative 0.89474 0.54140 0.67460 785

Positive 0.77968 0.96224 0.86139 1324

macro avg 0.83721 0.75182 0.76800 2109

weighted avg 0.82251 0.80560 0.79187 2109

the period from January 1, 2017 to April 25, 2019. There are
46293 posts of 23 politicians and 2197063 of users’ replies
to them. We decided to conduct sentiment analysis for each
of the models separately (Rubtsova’s corpus and RuSentiment
corpus), as well as using both models. By using both models,
we mean using the ensemble technique, in which the proba-
bilities of assigning text to a particular class are determined
in accordance with the probabilities for each individual model

taken with given weights (in our case (0.5, 0.5)). In order to
calculate the average sentiment of the politicians posts, we
use the following technique: we assign a number +1 to each
positive post, -1 to each negative post and 0 to unrecognised
(skipped) posts. Unrecognised texts are those consisting of
tokens that are not contained in the dictionary of the most
frequent words in the corpus. Then we calculate the averages
for all posts and comments for the given politicians. The
engagement rate is calculated for each post as the sum of the
number of likes and comments per thousand views of this post:

Eng.Rate =
Likes+ Commetns

V iews
· 1000 .

Statistics on the average sentiment as well as on the number
of views and the engagement rate are presented in the table
(IV). The average sentiment of posts takes values from the
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range [−1, 1]. If among the texts there is an identical number
of positive and negative posts, then the average sentiment will
be 0. If most of the posts are positive, then this indicator will
be greater than 0. And on the contrary, in a situation when
majority of the posts are negative, the average sentiment will be
less than 0. As can be seen from the table (IV), most politicians
have a positive average sentiment of posts. At the same time,
for most of the politicians this indicator calculated on the basis
of Rubtsova’s corpus is much higher than that obtained on the
RuSentiment corpus. The use of an ensemble of models leads
to mid-range results.

The table (V, VI, VII) summarizes the data on classification
of the politicians’ posts in accordance with the model built
on Rubtsova’s corpus, the model built on the RuSentiment
corpus and the model which represents the ensemble of the
two mentioned above.

V. CONCLUSION

Despite the difference in overall assessments of positive,
negative and unrecognized texts obtained as a result of the
application of various models, the following patterns were
identified:

• the number of likes from users is higher for posts
classified as positive

• the number of comments is higher for posts with
a negative sentiment, and this difference is mainly
provided by comments that also have a negative senti-
ment. The average tone of comments on positive posts
is more positive than the average tone of comments
on negative posts.

• the number of reposts is higher for posts classified as
negative.

• the number of views is higher for positive posts.

• according to the sentiment classifier built on the
Rubtsova’s corpus, the level of engagement rate is
higher for negative posts. Inversely, using the clas-
sifier built on the RuSentiment corpus, we found the
opposite relation. In general, we can say that there is
no clear relationship between the tone of posts and
engagement rate.

We found that the most adequate results of sentiment clas-
sification can be achieved by using an ensemble of the models.
Also we showed that a special emoji encoding scheme, taking
into account the frequent use of sarcasm, also increased the
quality of classification. Another procedure towards improving
the quality was inclusion of stop-words. Significant differences
in the results obtained from different corpora suggest that more
specific corpora are needed for a more reliable classification,
high precision and recall. A balance of classes, the specificity
of the content are main requirements for such corpora. In
terms of strategy, we showed that in general it is possible
to influence on the magnitude and sentiment of the feedback
from the audience on social media using negative or positive
content.

Further, we plan to analyze the dynamic patterns associated
with publication activity and sentiment to determine the gen-
eral trends and identify the characteristics of particular authors.

We also plan to describe in detail the topics represented
by positive and negative sentiment in posts and comments.
Another issue is to understand why there were such significant
variations between the results of the models trained on different
corpora, and which texts were assigned to opposite classes by
the different models.
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[20] E. Martı́nez-Cámara, M. T. Martı́n-Valdivia , L. A. Urena-López, A.
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