
Modern Implementations of Feature Selection
Algorithms and Their Perspectives

Nikita Pilnenskiy Ivan Smetannikov
ITMO University

St.Petersburg, Russia

ndpilnenskii, ismetannikov@itmo.ru

Abstract—In the last decade, due to the growing interest in
neural networks and machine learning in general, the Python
programming language became the main language for many data
scientists and machine learning engineers. This rapid growth
resulted into the lack of many key machine learning algorithms
in the existing Python libraries. Feature selection, as one of
the main fields of data preprocessing for high-dimensional, was
not covered properly in Python language, although it can be
widely used to improve models quality and solve some of the
overfitting problems. In this paper we have performed a review
of existing open-source Python feature selection libraries, made
their comparison and pointed their drawbacks and after that
presented our own open-source ITMO FS library. Moreover, we
have added some examples on its usage and compatibility with
most popular modern machine learning Python library scikit-
learn and some performance tests.

I. INTRODUCTION

One of the main problems of the last decades is the problem
of information growth. Such domains as bioinformatics, social
analysis, medical care and others are producing big amounts
of high-dimensional data [1], [2], [3], [4]. With this kind of
data the problem of “curse of dimensionality” arises. It was
described in [5] and basically means that with big number of
features and small number of objects your dataset becomes
really too sparse for building valid models. This happens
due to the fact that you have small number of object in
high-dimensional data and as a result the model has too
much freedom of generalisation which results into overfitting
problem so the quality of the model on the new incoming data
drops dramatically.

One of machine learning and data analysis main fields that
is intended to solve this problem is dimensionality reduction.
It is divided into two big parts, namely, feature selection and
feature extraction [6]. The last one tries to reconstruct new
features based on the old ones so the new space dimensionality
is smaller than the old one. Of course, during this transfor-
mation, the semantics of original features is usually lost, so
this approach is limited for many fields like bioinformatics
or medicine. On the other hand, feature selection gets new
feature set as the subset of the original one, thus saving the
original features semantics [7]. Nevertheless, both of these
approaches can reduce the feature set and increase the quality
of the resulting models.

With the growth of the computational power the neural
networks approach became really powerful in many machine
learning applications. As most of the libraries designed to
work with neural networks was programmed on the Python

language, it became de facto the international standard for
neural network research [8], [9]. As popularity of machine
learning grew, more and more researchers were attracted to this
field, and as neural networks was a huge attraction point for the
last years, most of the modern machine learning researchers
are using Python as their main programming language. These
factors resulted into huge gap between Python machine learn-
ing libraries and libraries on other languages. Basically, nearly
all machine learning fields that are not closely tight with
neural networks are not properly covered with programming
libraries in Python. In this paper we have covered main existing
open-source Python feature selection libraries, showed their
advantages and disadvantages and proposed our own ITMO
FS [10]. Also we have performed a comparison with Arizona
State University feature selection library [11] and scikit-learn
feature selection module [12],this comparison is the most
complete one for the Python language.

The rest of the paper is organized as follows: Section II
reviews existing ways for feature selection algorithms catego-
rization, Section III offers a survey of existing feature selec-
tion Python libraries and their analysis, Section IV contains
description of proposed ITMO FS library and its comparison
with libraries surveyed in previous section, Section V has some
code samples for better understanding of ITMO FS library
architecture and comparison of its performance with some
other libraries, and Section VI contatins conclusion.

II. BACKGROUND

In order to get better understanding of how the modern
feature selection library should be designed and what should
be included into it, we need to get better understanding of
what types of feature selection algorithms are available. In this
section we have presented all main categorizations of existing
feature selection algorithms.

Generally speaking, the feature selection problem can be
formalized as follows [13]: For a given dataset D with M
objects described with feature set F , |F | = N we need to find
some optimal subset of features F ∗, F ∗ ⊆ F in terms of some
optimization criteria C.

A. Traditional feature selection algorithms categorization

Traditionally, feature selection methods were divided into
three main groups: wrapper, filter and embedded methods [14].
Wrappers are trying to build optimal feature subset by the eval-
uation of the quality measure Qc for the predefined machine

__PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

learning algorithm:

F ∗ = argmax
F ′⊆F

Qc(F
′)

, where C is a machine learning model and Q is the quality
measure for the model. For this wrapper algorithms works
iterative, on each step it takes some feature subset and passes
it to the model and then, depending on the model quality, it
decides to pick another subset or stop the process. The picking
procedure and the stopping criteria are basically defining
wrapper algorithm. The main problem of this approach is that
too slow for high dimensionality datasets as number of possible
subsets is equal to 2N and on each step we need to build a
model to evaluate the subset quality.

Embedded methods are usually using some intrinsic prop-
erties of the classifier in order to get features subset. Feature
selection with random forest [15] is an illustraitive example of
such approach, where out of bag error for each feature on each
tree is aggregated into resulting feature scores and features
that most often resulted into elimination of bad classification
results. Some of these methods can work even with really
high-dimensional data, but their main restricion is the model
itself. Basically, features that were selected with one model,
can result into bad performance if they are used for another
model.

The third traditional group of feature selection algorithms
are filters. Instead of evaluating the feature sets with some
models, they are taking into consideration only intrinsic prop-
erties of the features themselves. If filter is not taking to
consideration any dependencies between features themselves,
thus assuming that they are independent, it is called univariate,
otherwise – multivariate. For multivariate filters problem is
stated as follows:

F ∗ = argmax
F ′⊆F

μ(F ′)

, where μ is the feature subset quality measure. On the other
hand, for the univariate filters the feature selection problem is
stated without optimization. Instead of this, every feature is
evaluated with feature quality measure μ (which for this case
should be defined only on fi ∈ F , but not for the whole set
of features subsets) and then some cutting rule κ is applied.

B. Hybrid and ensembling feature selection algorithms

Nowadays, most scientists distinguish separate groups of
feature selection algorithms: hybrids and ensembles. Basically,
these types of algorithms are implementing consecutive and
parallel approaches to combine feature selection algorithms.

Hybrid feature selection algorithms are trying to combine
traditional approaches consecutively. This is a powerful com-
promise between different traditional approaches. For example,
in order to select features from high-dimensional dataset, filter
as a first step can be applied in order to drastically reduce
feature set and after that wrapper can be applied to the output
feature set to get maximum quality from the extracted features.

Alternatively, ensemble feature selection algorithms com-
bine several feature selection algorithms in parallel in order to
improve their quality or even get better stability of selected
feature subsets. Ensemble feature selection algorithms work

either with separetely selected features subsets or with the
models, built on them [16].

C. Feature selection algorithms categorization by input data

Some of the researchers categorize feature selection algo-
rithms depending on the input data types. Basically, all data
can be divided into streaming and static data. As for streaming
data, it can be divided into two big groups: data stream, when
new object are added consecutively and feature stream when
new features are added to the dataset.

As for static data, that is more conventional for traditional
feature selection algorithms, some researchers [17] categorize
them into: similarity based, information theoretical based,
sparse learning based, statistical based methods and others.
Similarity based methods are building an affinity matrix in
order to get feature scores. As they are kind of univariate filters
in traditional classification, they are not taking into corporation
any model and do not handle feature redundancy. Information
theoretical algorithms work the same way as similarity based
ones but also utilize the concept of “feature redundancy”.
Sparse learning based feature selection algorithms are em-
bedding feature selection into a machine learning algorithms,
working with weights of features. Statistical based feature
selection are using statistical measures for features filtering,
thus working exactly like most filtering methods in traditional
interpretation. As could be seen from this categorization, it is
not including any wrappers, so they are usually categorized as
“other”.

III. SURVEY OF EXISTING PYTHON FEATURE SELECTION

LIBRARIES

This section contains description of existing open-source
libraries and repositories with feature selection algorithms on
Python.

A. Default scikit-learn feature selection

The scikit-learn library is de facto the most commonly
used machine learning libraries for Python nowadays. Is is
so popular, that nearly all other libraries and frameworks that
were developed in recent years are scikit-learn compatible and
easy to use with. Nevertheless, the feature selection module
of this library [12] looks really empty as it implements only
several filters and wrappers. Comparison of it contents with
other libraries can be found in the Table I at SKL column.

B. Scikit-feature (Arizona State University)

Scikit-feature is a Python open-source feature selection
library developed by Data Mining and Machine Learning
Lab at Arizona State University [11]. Nowadays it is the
biggest Python feature selection library that exists, it includes
around 40 different feature selection algorithms. Moreover,
it is completely scikit-learn compatible and easy to use.
However, there are two main issues related to this library.
Firstly, its development was stopped around two years ago,
and at this stage library does still not have many feature
selection algorithms, especially of hybrid and ensemble
types. Secondly, it is build upon feature selection algorithms
categorization by the input data. This results into some issues

__PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

-- 251 --

of compatibility with theoretical basics of some algorithms
and puts a lot of limitations on the possible development of
the algorithms. As an example of such limitations we can
state:

01 def test_filter(self):
02 data, target = self.basehock[’X’],

self.basehock[’Y’]
03 features = gini_index.gini_index(data,

target)
04 k_best = lambda x, k: [keys[0]

for keys in sorted(x.items(),
key=lambda kv: kv[1],
reverse=True)[:k]]

05 k_best(dict(zip([i for i in
range(len(features))], features)),

10)

As could be seen from this example, at line 02 this library
only extracts feature list with feature measures, but does not
consider taking cutting rule as an additional input. Of course,
we can implement required cutting rule directly in the code
like it is presented on the line 03 and then apply it as in line
04, but this is not quite user-friendly approach, as without
any template limitations during the implementation process
user can incorporate many additional errors into the code.
Comparison of this library contents with other libraries can
be found in the Table I at ASU column.

C. Boruta methods

The Boruta methods repository [18] consists of the Python
implementation of the Boruta R package that is also a scikit-
learn compatible. This repository is not included in Table I as
it contains Boruta methods only and nothing else, unlike other
libraries.

D. MLFeatureSelection library

The MLFeatureSelection library contains some heuristic
feature selection algorithms based on certain machine learning
methods and their evaluation techniques, such as: sequence
selection, importance selection and coherence selection. This
library contains these methods only that is why it is not
added to the comparison Table I. Nevertheless, it has achieved
impressive results in Rong360, JData-2018 and IJCAI-2018
competitions.

E. FES book support code

This repository [19] contains sample codes for the text
“Feature Engineering and Selection: A Practical Approach for
Predictive Models” by Kuhn and and Johnson and published
by Chapman & Hall/CRC (who holds the copyright). Most
of the book contents consists of feature extraction algorithms,
but the last three chapters are mainly focused on the feature
selection ones, namely, RFE, ROC filter, simulated annealing
and some basic implementations of genetic algorithms.

F. ReBATE algorithm

As most popular library the ReBATE repository contains
several RelieF-based methods implementations that fits with
scikit-learn pipeline structure. As this library also basically
contains only one method, it was not included to the compar-
ison Table I.

IV. ITMO FS LIBRARY ARCHITECTURE AND

COMPARISON

ITMO feature selection library architecture developing was
inspired by traditional feature selection categorization. So
with regard to this type of categorization, it includes filters,
wrappers and hybrids. Embedded methods were excluded from
this implementation at the current state due to the fact that
they require deep integration with machine learning models
themselves. All filters generally described as shown in the
Section II-A thus they need to have some feature quality
measure and a cutting rule. Wrapper module contains several
wrapper algorithms. Each of them takes an estimator as
input parameter and improve feature set regarding to model
performance. Hybrid module for now contains only MeLiF
algorithm that was developed at ITMO University [13].

As prerequisites for library usage is only numpy package
is needed, the library is developed with Python 3 language.
Current version of the library contents are shown below:

• Filters – folder which contains filters

◦ Filter – class for constructing custom filter
◦ MRMR – class for specific filter
◦ VDM – class for specific filter

• Hybrid

◦ MeLiF – class for basic Melif

• Wrappers

◦ AddDel – class for ADD-DEL wrapper
◦ Backward elimination – class for backward

elimination wrapper
◦ Sequential forward selection – class for se-

quential forward selection

Spearman correlation, Pearson correlation, information
gain, Gini index, F-ratio, fit criterion, symmetric uncertainty
are custom measures which are stored with cutting rules in
Filter file. In the future when we will be adding more basic
measures to the library and some more exotic cutting rules
they could be easily added to the library through this file.
MeLiF is one of a hybrid methods and it aggregates result of
filters measures and wraps an estimator greedy optimising their
ensemble weights. Pipeline displayed below on the Fig. 1:

As could be seen in Table I the Arizona State University
feature selection library has the biggest number of imple-
mented algorithms in comparison with others, but last time
this library was updated about 2 years ago. Moreover, it
doesn’t have some basic feature selection algorithms. Scikit-
learn feature selection module seems to have some rarely used
methods and the general volume of presented algorithms is
rather small. Feature extraction and selection book contains
some examples of exotic methods; nevertheless, there are many
different feature extraction methods there. Thus, though it is

__PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

-- 252 --

Fig. 1. Hybrid algorithm MeLiF pipeline

quite useful for dimensionality reduction in general, it is not
usable in practice for feature selection. Development of ITMO
Feature Selection library was started in the spring of 2019 and
at this stage, the library is already implementing most of all
basic architectural elements; it is sklearn compatible and user-
friendly. It contains some basic algorithms used in practice as
well as some less common methods.

V. ITMO FS LIBRARY USAGE EXAMPLES AND

PERFORMANCE TESTS

For all code samples following imports are required:

01 import time
02 from skfeature.function.

statistical_based import gini_index
03 from sklearn.datasets import load_iris
04 from sklearn.feature_selection import

SelectKBest
05 from sklearn.linear_model import

LogisticRegression
06 from sklearn.metrics import f1_score
07 from sklearn.svm import SVC
08 from filters.Filter import *
09 from hybrid.Melif import Melif
10 from wrappers.AddDelWrapper import *
11 from wrappers.BackwardSelection

import *

In the test filter function example of the Filter class with
Spearman correlation and “Best by value” cutting rule that
equals to 0.99 is shown. This notation means that all features
which have score higher than 0.99 will be selected. For this
example iris [20] dataset was chosen.

01 def test_filter(self):
02 filtering = Filter("SpearmanCorr",

GLOB_CR["Best by value"](0.99))
03 data, target = load_iris(True)
04 res = filtering.run(data, target)
05 print(data.shape, ’--->’, res.shape)

In the test pearson mat function example of Filter class
with Pearson correlation and “Best by value” cutting rule that
equals to 0.0 is shown. This example use orlraws10P dataset.

TABLE I. COMPARISON OF DIFFERENT PYTHON FS LIBRARIES

CONTENTS

Algorithm ITMO ASU SKL FES
Correlation

InformationGain

GiniIndex

F-ratio

fit criterion

MRMR

VDM

SymmUncertainity

AddDel

MeLiF

CIFE

CMIM

DISR

FCBF

ICAP

JMI

MIFS

MIM

FisherScore

ReliefF

TraceRatio

LL L21

LS L21

RFS

ChiSquare

T score

AlphaInvesting

GraphFS

GroupFS

TreeFS

DecisionTreeBackward

DecisionTreeForward

SVMbackward

SVMforward

LapScore

SPEC

MCFS

NDFS

UDFS

ANOVAbased

RFE

FPR

FDR

FWE

ROCfilter

SimulatedAnnealing

01 def test_pearson_mat(self):
02 data, target = self.orl[’X’],

self.orl[’Y’]
03 filtering = Filter("PearsonCorr",

GLOB_CR["Best by value"](0.0))
04 res = filtering.run(data, target)
05 print(data.shape, ’--->’, res.shape)

In the test pearson k best function example of Filter class
with Pearson correlation and “K best” cutting rule with 6 best
features selection is shown at line 04, and it is compared with
scikit-learn SelectKBest usage at line 07. Test dataset here
is Basehock. As can be seen from this example ITMO FS
template is more user friendly.

01 def test_pearson_k_best(self):
02 data, target = self.basehock[’X’],

self.basehock[’Y’]
03 start_time = time.time()
04 res = Filter("PearsonCorr",

__PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

-- 253 --

GLOB_CR["K best"](6))
.run(data, target)

05 print("ITMO_FS time ---
%s seconds ---" % (time.time() -
start_time))

06 start_time = time.time()
07 res = SelectKBest(

GLOB_MEASURE["PearsonCorr"],k=6)
.fit_transform(data, target)

08 print("SKLEARN time --- %s seconds
---" % (time.time() - start_time))

09 print(data.shape, ’--->’, res.shape)

In the test gini k best function example of Filter class
with Pearson correlation and “K best” cutting rule with 6 best
features selection is shown at line 04, and it is compared with
scikit-learn SelectKBest usage at line 07. Test dataset here is
Basehock. As in the previous example ITMO FS template is
also more user friendly in this case.

01 def test_gini_k_best(self):
02 data, target = self.basehock[’X’],

self.basehock[’Y’]
03 start_time = time.time()
04 res = Filter("GiniIndex",

GLOB_CR["K best"](6))
.run(data, target)

05 print("ITMO_FS time --- %s seconds
---" % (time.time() - start_time))

06 start_time = time.time()
07 res = SelectKBest(

GLOB_MEASURE["GiniIndex"],k=6)
.fit_transform(data, target)

08 print("SKLEARN time --- %s seconds
---" % (time.time() - start_time))

09 print(data.shape, ’--->’, res.shape)

In the test add del function example of AddDel (line 04)
wrapper method with basic logistic regression (line 03) as
estimator is shown. For quality measure function F1 score
was chosen. Test dataset here is Basehock.

01 def test_add_del(self):
02 data, target = self.basehock[’X’],

self.basehock[’Y’]
03 lr = LogisticRegression()
04 wrapper = Add_del(lr, f1_score)
05 wrapper.run(data, target)
06 print(wrapper.best_score)

In test backward selection function example of backward
selection wrapper (line 04) method with logistic regression
(line 03) as estimator is shown. Test dataset here is Basehock.

01 def test_backward_selection(self):
02 data, target = self.basehock[’X’],

self.basehock[’Y’]
03 lr = LogisticRegression()
04 wrapper = BackwardSelection(lr, 100,

GLOB_MEASURE["GiniIndex"])
05 wrapper.fit(data[:, :200], target)
06 print(wrapper.best_score)
07 wrapper.fit(data[:, :300], target)
08 print(wrapper.best_score)

The test melif function displays example of melif class
with Support vector classifier (line 08) as estimator. Chosen
filters are Gini index (line 03), fratio (line 04) and information
gain (line 05). F1 score chosen as quality measure for MeLiF
(line 06).

01 def test_melif(self):
02 data, target = self.basehock[’X’],

self.basehock[’Y’]
03 _filters = [Filter(’GiniIndex’,

cutting_rule=GLOB_CR
["Best by value"](0.4)),

04 Filter(GLOB_MEASURE["FRatio"]
(data.shape[1]),
cutting_rule=GLOB_CR["Best by
value"](0.6)),

05 Filter(’InformationGain’,
cutting_rule=GLOB_CR["Best by
value"](-0.4))]

06 melif = Melif(_filters, f1_score)
07 melif.fit(data, target)
08 estimator = SVC()
09 melif.run(GLOB_CR[’K best’](50),

estimator)

The test arizona example shows code usage comparison
between ASU Feature Selection library and ITMO University
library. This example was used to estimate execution time of
Gini index and F-score index for both libraries. Result of this
comparison can be found in the Table III.

01 def test_arizona(self):
02 data, target = self.coil[’X’],

self.coil[’Y’]
03 start_time = time.time()
04 features = gini_index.gini_index(data,

target)
05 print("ARIZONA time --- %s seconds

---" % (time.time() - start_time))
06 start_time = time.time()
07 features = GLOB_MEASURE["GiniIndex"]

(data,target)
08 print("ITMO time --- %s seconds ---"

% (time.time() - start_time))
09 start_time = time.time()
10 features = f_score.f_score(data,target)
11 print("ARIZONA time --- %s seconds

---"% (time.time() - start_time))
12 start_time = time.time()
13 features = GLOB_MEASURE["FRatio"]

(data.shape[-1])(data, target)
14 print("ITMO time --- %s seconds ---"

% (time.time() - start_time))

__PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

-- 254 --

The Table II shows time comparison between ITMO Fea-
ture Selection library and scikit-learn feature selection module
at selecting k best features by Gini index and Pearson correla-
tion. Basehock dataset has 1993 samples and 4862 features,
COIL20 dataset has 1440 samples and 1024 features and
orlraws10P has 100 samples and 10304 features.

TABLE II. COMPARISON OF SKLEARN FEATURE SELECTION MODULE

AND ITMO FS LIBRARY COMPUTATIONAL TIME IN SECONDS

Dataset Library Pearson Gini index

Basehock
ITMO FS 0.129 0.373
SKLEARN 0.122 0.379

COIL20
ITMO FS 0.020 0.044
SKLEARN 0.025 0.057

orlraws10P
ITMO FS 0.019 0.049
SKLEARN 0.017 0.049

As could be seen from the Table II the ITMO FS library has
approximately the same computational time for Pearson cor-
relation coefficient and Gini index filters as in the scikit-learn
feature selection module. As these filters are not implemented
in scikit-learn, we have put our customized measures in it for
this reason.

TABLE III. COMPARISON OF ASU FEATURE SELECTION LIBRARY AND

ITMO FS LIBRARY COMPUTATIONAL TIME IN SECONDS

Dataset Library F-score index Gini index

Basehock
ITMO 1.084 0.376
ASU 0.116 1.507

COIL
ITMO 1.081 0.048
ASU 0.048 253.257

ORL
ITMO 5.793 0.058
ASU 0.028 97.622

As could be seen from the Table III the ITMO FS library
has a little bigger computational time for F-score Index and a
lot smaller for Gini Index than Arizona State University feature
selection library. As ASU library does not provide support for
cutting rules in traditional way we ran intrinsic measures of
ITMO FS algorithms separately from cutting rules for proper
comparison.

VI. CONCLUSION

Lack of many general-purpose machine learning libraries
in Python still exists, especially in fields that are not closely re-
lated to neural networks. For this reason in this paper, we have
proposed a new Python feature selection library ITMO FS.
To do this we have provided a review of existing approaches
to feature selection and have performed a survey of existing
Python feature selection libraries. It is shown that all of them
are scikit-learn compatible and implementing only several
feature selection algorithms, except Arizona State University
feature selection library, which is the biggest one available for
Python. We provided complete comparison with all surveyed
libraries and implemented architecture for ITMO FS library
that provides better view to the traditional feature selection
algorithms categorization, support of hybrids and ensembles
and in general more user-friendly than other ones. Moreover,
our tests have shown that ITMO FS library works faster than
ASU feature selection library on some algorithms. Also we
have provided code samples for better understanding of library
usage. In the future we plan to implement all algorithms
mentioned in the Table I, add more modern algorithms of
feature selection and more classical ones and then move to

implementation of different ensembling and hybrid algorithms.
In perspective, we also will add meta-learning approaches for
easier selection of feature selection algorithms and their tuning.

ACKNOWLEDGMENT

This work is financially supported by the Government of
the Russian Federation, Grant 08-08.

REFERENCES

[1] Y. Saeys, I. Inza, P. Larraaga, “A review of feature selection techniques
in bioinformatics.”, bioinformatics,vol.23, num.19, 2007, pp. 2507-2517.

[2] L. Wang, Y. Wang, Q. Chang, “Feature selection methods for big data
bioinformatics: A survey from the search perspective.”, Methods,vol.111,
Dec.2016, pp. 21-31.

[3] J. Li, X. Hu, J. Tang, H. Liu, “Unsupervised streaming feature selection
in social media.”, In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, Oct 2015, pp.
1041-1050.

[4] Z.M. Hira, D.F. Gillies, (2015). “A review of feature selection and
feature extraction methods applied on microarray data.”, Advances in
bioinformatics, Jun.2015.

[5] T. Hastie, R. Tibshirani, J. Friedman, J. Franklin, “The elements of statis-
tical learning: data mining, inference and prediction.”, The Mathematical
Intelligencer, 2005, pp. 83-85.

[6] V. Boln-Canedo, N. Snchez-Maroo, A. Alonso-Betanzos, “A review of
feature selection methods on synthetic data.” , Knowledge and informa-
tion systems,vol.111, num.3, Mar.2012, pp. 483-519.

[7] I. Guyon, A. Elisseeff,. “An introduction to variable and feature selec-
tion.”, JMLR, Mar 2003, pp. 1157-1182.

[8] S. Raschka, V. Mirjalili, “Python machine learning.”, Packt Publishing
Ltd, 2017.

[9] N. Ketkar, “Deep Learning with Python”, Apress, 2017.

[10] ITMO University feature selection library:
https://github.com/LastShekel/ITMO FS

[11] Arizona State University feature selection library:
https://github.com/jundongl/scikit-feature

[12] Scikit-learn feature selection module: https://scikit-
learn.org/stable/modules/feature selection.html#feature-selection

[13] I. Smetannikov, A. Filchenkov, “MeLiF: filter ensemble learning algo-
rithm for gene selection.”, Advanced Science Letters, vol.22, num.10,
2016, pp. 2982-2986.

[14] V. Bolon-Canedo, N. Sanchez-Marono, A. Alonso-Betanzos, J.M. Ben-
itez, F. Herrera, “A review of microarray datasets and applied feature
selection methods.”, Information Sciences, vol.282, 2014, pp. 111-135.

[15] Y. Saeys, T. Abeel, Y. Van de Peer, “Robust feature selection using
ensemble feature selection techniques.”, In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, Sep. 2008,
pp. 313-325.

[16] V. Bolon-Canedo, N. Sanchez-Marono, A. Alonso-Betanzos, “An en-
semble of filters and classifiers for microarray data classification.”,
Pattern Recognition, vol.45, num.1, 2012, pp. 531-539.

[17] J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang, H.
Liu “Feature selection: A data perspective”, ACM Computing Surveys
(CSUR), vol.50, num.6, 2018, p.94.

[18] Python implementations of the Boruta all relevant feature selection
method: https://github.com/scikit-learn-contrib/boruta py

[19] Code and Data Sets for Feature Engineering and Selection by Max
Kuhn and Kjell Johnson (2019): https://github.com/topepo/FES

[20] Iris Data Set: https://archive.ics.uci.edu/ml/datasets/iris

[21] The 20 Newsgroups data set: http://qwone.com/simjason/20Newsgroups/

[22] Columbia University Image Library: http://www.cad.zju.edu.cn/
home/dengcai/Data/MLData.html

[23] The Database of Faces: https://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html

[24] General features selection based on certain machine learning algorithm
and evaluation methods: https://github.com/duxuhao/Feature-Selection

__PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

-- 255 --

[25] Scikit-feature is an open-source feature selection repos-
itory in Python developed at Arizona State University:
http://featureselection.asu.edu/index.php

[26] Scikit-learn-compatible Python implementation of ReBATE:
https://github.com/EpistasisLab/scikit-rebate

__PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

-- 256 --

