PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

Master Index Access as a Data Tuple and Block
Locator

Michal Kvet

University of Zilina
Zilina, Slovakia
Michal Kvet@fri.uniza.sk

Abstract—Relational database systems cover the main part of
the current data management of information technology. Data
are formed into the relations connected using relationships. Each
tuple is physically stored in the database operated by the
background processes of the instance. The user query is
transferred to the server, analyzed and processed. Data are sent
back to the user as the result set. The main part of the processing
and query evaluation is just access to the data themselves. If there
are a suitable index and conditions, access can be optimized. Vice
versa, if there is no relevant index, the whole table must be
scanned sequentially, which can bring high demands and
processing steps resulting in poor performance. This paper deals
with index access methods, the process of the data access, its
optimization, architecture and whole apparatus. The main
contribution is in our own approach, which aims to remove the
need to search the entire table physically by using Table Access
Full access path. The structural index denoted as the master is
used to access and locate a record with an emphasis on
fragmentation options.

1. INTRODUCTION

Relational databases are still one of the most often used
techniques to store data of the information systems. They were
firstly defined in the 60ties of 20" century, but they are still so
powerful to cover the current environment and technology
demands. Approaches and techniques are based on the
relational paradigm and mathematical apparatus — algebra to
reach the performance [1] [2]. Data are formed in the shape of
the relations — tables and connections between them -
relationships. Performance from the logical point of view is
ensured by the data structure and optimization. Data
themselves must be formed correctly with emphasis on
normalization process. It ensures, no data duplicates except
connection possibilities are defined. Moreover, no data
anomalies can be present [3].

The main property of the relational paradigm is just the
transaction. Any change on the data (insert, update or delete
statement) is component of the transaction, which can be
consequently accepted or refused. Thus, before data being
visible publically (to other users, respectively sessions), they
must be approved — committed. Transactions ensure the
complex correctness and reliability of the data. They must pass
all the requirements characterized by the data domains,
integrity, user rules up to identification possibilities of the data.
The transaction is defined by these four rules [15]:

e Atomicity — the whole transaction is either
accepted or refused completely. If it is not
approved, all changes made inside it are

Veronika Salgova, Marek Kvet, Karol Matiasko

University of Zilina
Zilina, Slovakia
{Veronika. Salgova, Marek.Kvet} @fri.uniza.sk

rollbacked — removed and original data versions
stay valid.

e Consistency — transaction after its approving
ensures, all the data requirements formed by the
integrity rules are passed.

e Isolation — non-approved changes are not visible
to other users or sessions. It is ensured by the
transaction log management and snapshot
techniques, which are described in a complex
manner in our previous publication [9] [10].

e Durability — data after the end of the transaction
must be durable and restorable, even after the
system crash.

In the physical database, approved data changes are
commonly present. Thus, if you want to get the data from the
database, the physical repository is usually contacted to get the
relevant data. Ideally, the data image can be present in the
memory, but in principle, it should be identical to the image in
the physical database, respectively reconstructable with the
support of the log files [8].

The connection between user and server is created via the
listener, which contacts the particular Process monitor
background process. It creates the server process on the server-
side and interconnects it directly with the wuser process.
Afterward, the communication is done in a straight manner,
without the necessity of any other system cooperation. Fig. 1
shows the architecture of the server and client connection.
Naturally, data cannot be operated from the client directly, due
to many reasons. The most significant aspect is related to the
security, reliability, and integrity of the whole system. Data
management, individual access methods, and transfer are
protected by the background processes located in the instance
of the database server. Instance itself consists of two main
structures — memory structures and background processes.

As the physical database is separated from user-side access,
it is essential to develop sophisticated and, in particular,
efficient access to data. The aim of this paper is to present own
proprietary method by which it is possible to robustly eliminate
the need for a sequential search of all blocks associated with a
table to locate data. Whereas data are dynamically changing
very frequently at present, fragmentation is located at the
physical level, which is, naturally, a significant limitation of
performance when using the Table Access Full method. Own
solution is described in section 3. It is based on the Master
index definition.

ISSN 2305-7254

PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

Client side components

User process

Server side components

Server process

(=]

» Instance

Session components @

Database

Fig. 1. Communication principles in single instance architecture [12]

II. TECHNICAL BACKGROUND, STATE OF THE ART AND
THE DATABASE CONTEXT

In the following section, technology and terminology of
DBS Oracle will be used, whereas the proposed solution has
been tested using that system environment. Therefore, memory
structures, processes and principles are described for DBS
Oracle, as well. The main advantage is the efficiency of data
management and retrieval, as well as direct interconnection
between database approach and procedural language PL/SQL
and Java (covered by the Java pool memory structure). On the
other hand, our defined solution is universal and can be adapted
to any system.

A. Data management memory structures

The architecture of the database server is formed by two
structures — instance and database. The database cannot exist
without instance, respectively it does not have any sense. Vice
versa, the instance can exist without database (e.g. in nomount
stage of the database system, but without the database, no data
are available to be managed. The main artifact of the instance
is System Global Area (SGA) allocated at instance startup and
released on shutdown. It consists of several structures, like
Buffer cache, Log buffer, Shared pool, Large pool, Java pool
or Streams pool [4] [5]. For the query processing and
optimization, database Buffer cache structure is the most
important as the data repository. Queried data before the
evaluation must be placed in such a structure. It is shaped as a
matrix of the blocks with the same size as the block inside the
database itself. In principle, each data change is applied in the
Buffer cache and noted in the Log. Thus, data in the database
does not need to be up-to-date, however, based on the present
log files, it must always be possible to construct the current
image [7] [12]. Block of the Buffer cache can be either dirty,
clean or empty. Dirty block just reflects the fact that the change
has been currently applied only in the operating memory and
has not been physically entered into the database. Clean or
empty blocks are available to receive new data from the
database or by constructing a new one completely. Among this,
performance important structures include Shared pool formed
by Library cache, Data dictionary cache, PL/SQL area and
Result cache as the repository for the executed code in the
parsed form, definition of the structures and objects, stored
PL/SQL scripts and metadata [6] [12].

B. Instance processes

Among the memory structures, several processes of the
instance must be present to monitor, cooperate and manage the

177

memory structures and the system as a whole, as well. They are
launched when the instance is started, or explicitly. Some of
them are part of the database management core and must be
present (if any of them is corrupted, the whole instance crashes
immediately), like System Monitor (SMON), Process Monitor
(PMON), Database Writer (DBWn), Checkpoint Process
(CKPT). Vice versa, many of them are optional associated with
the specific job to be done — e.g. Memory Manager (MMAN)
for the memory structure size optimization reflecting the
workload, Archiver (ARCn) for non-current log file
management or Recoverer (RECO).

Process Monitor manages and supervises all server
processes, launches and terminates them. It interconnects the
user and server based on the listener requirement by creating
the server process in the instance.

Database Writer writes dirty blocks from the Buffer cache
into the database and frees up space for processing other
blocks. The principle of the security is based on the fact of
dividing instance and database itself — users cannot access the
database directly, it can be exclusively operated just by
instance processes. It ensures passing all transaction rules [9].

For the purposes of index management and query
processing, the Log Writer background process is far important,
as well. It writes the contents of the Log buffer to the online
redo log files on disk to ensure no data loss. Content of the log
file covers information about the executed activity, connection
to the system via System Change Number (SCN), UNDO and
REDO images to ensure no data loss. By these structures, it is
possible to construct the new and existing image, as well, based
on the status of the particular database block.

C. Transactions

Transactions as the main database units are important not
only for the data changes but the Select queries, as well. From
the physical point of view, data are always accessed from the
Buffer cache memory structure. In an optimistic case, the
required data may be directly available, whereas they are
present in the memory. Thus, the result set is constructed and
sent to the user. If the data are not present there, or some
portion of them is missing, they must be loaded from the
physical database storage to the memory, where the next
processing steps are executed. And this part is the bottleneck
and performance limitation of the whole system. The point is,
how to locate and select relevant data based on the user-defined
query? How to access them optimally? What about their
shapes?

Physical database storage is delimited by the data files
belonging to the tablespaces. Internally, each data file is made
up of individual blocks with the same size, usually, 8kB
delimited by the parameter of the database, when creating,
respectively derived from the internal parameters with
emphasis on mapping structure to the memory outside of the
Buffer cache [7], [9]. Thus, during the processing, the whole
block is transferred into the memory, where the relevant data
are searched and located. Selection of the block with relevant
data can be done using two techniques — sequential scanning or
by using index. Sequential data block scanning means, that all
blocks belonging to the particular table are loaded to the
memory Buffer cache step by step, where the evaluation is
done. The core of the processing is just the loading (transfer)

PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

process from the physical storage to the memory using I/O
operations, which are usually time, technically and resource
intensively demanding. Thus, the aim is to avoid such
situations and access the relevant blocks more effectively. The
first solution was proposed shortly with the development of
larger systems where processing took too long, which was
unacceptable.

D. Index

One of the main property of the query processing
optimization is just an index structure reflection. The index
itself is used for direct access to the row inside the database by
using ROWID on the bottom leaf nodes. ROWID is the locator
for the data and consists of these layers: identification of the
data file, in which the row resists, the pointer to the block and
position inside it. Moreover, it uses the specific object
identifier, as well. Thus, based on the definition, ROWID value
is unique for the standalone database [12].

An index is an object of the database with the associated
tablespace, which aim is to monitor data and reflect changes
inside to be prepared for the query to access the row using
ROWID directly. In the database systems, various index
structures and approaches can be used. The most often used is
just the B-tree, respectively B-+tree [6], whereas it maintains
the complex efficiency despite frequent changes of records. It
does not degrade over time and remains balanced. The structure
consists of the tree in which each path from the root to the leaf
has the same length [12]. Three node types are present: root,
internal node, and leaf node. Root and internal node contains
pointers S; and values Kj, the pointer S; refers to nodes with
lower values the corresponding value (X)), pointer S+,
references higher (or equal) values. Leaf nodes are directly
connected to the file data (using pointers).

Model of the B-tree index structure is in Fig. 2. Leaf layer
contains locators of the rows in the physical database — ROWID
values.

PN

FEREER

/]

123 ROWID 253 ROWID

Lp 7o | |

12 ROWID 93 ROWID 697 ROWID

44 ROWID 96 ROWID 197 ROWID 254 ROWID 714 ROWID

56 ROWID 121 ROWID 222 ROWID 255 ROWID 949 ROWID

Fig. 2. B-tree

B+tree index approach is an extension on the leaf layer,
where individual nodes are chained together forming a linked
list. Thus, such layer holds sorted data based on the attributes,
which are there indexed [12].

Other index techniques mostly arise from this category and
improve either modeled data group or data shapes to be
processed, like inverted B+tree key, its unique version, table or
cluster index. Different structural approaches are based on
bitmap or hash indexes, which cannot be, however, universally
used due to specific requirements and limitations [12].

178

E. Index methods

Query processing consists of several steps, which are
consecutively executed. The output of the individual step is
transferred as the input of the subsequent one. Fig. 3 shows the
query processing steps. Parser performs syntactic (command
grammar) and semantic (object existence and access rights)
analyzing of the query and rewriting the original plan to a set of
relational algebra operations. Optimizer suggests the most
effective way to get query results, based on the optimization
methods, developed indexes and collected statistics. Thus, it
selects the best (suboptimal) query execution plan, which is
used in the next Row source generator step. It creates the
execution plan for the given SQL query in the form of a tree,
whose nodes are made up of individual row sources.
Afterward, the SQL query is executed with emphasis on the
provided execution plan. The result set is constructed and sent
to the client [4] [5] [12].

Result set

‘ Execution plan set

'S

‘ Select execution plan

SQL statement

Fig. 3. SQL statement evaluation

The most important step in terms of the processing
efficiency, optimization and access rules is just the execution
plan, which determines usage of indexes. Access methods can
be, in principle, divided into two categories — direct access to
the data files (Table Access Full — TAF method) or access by
using an index (/ndex Scan) or just by their combination. TAF
traverses the entire table, all data blocks associated with the
table, which can be physically widespread into multiple data
files. The word entire table is significant. For each data
segment, High Water Mark (HWM) symbol is defined
determining the last block for the particular structure, which
can be generally empty, whereas new blocks are not associated
separately, but as the group forming extents. That means, that
also blocks with no valid data must be moved into the memory
for the evaluation. Even more significant limitation is formed
by the fragmentation properties. Block does not need to be
completely full, in the real environment, there is significant
fragmentation on the block granularity caused by the variability
of individual row size, as well as processes of data changes,
where the updated row does not fit the originally allocated
space [12] [13]. To ensure efficiency and robust performance, it
is necessary to limit the usage of 7AF methods.

The aim of the index definition is to remove such impact.
Index for the primary key and unique constraints are defined
automatically, others are user-provided. The index can
significantly improve the performance of the query, but there is
slowdown during data modification operations, whereas the
change must be applied inside the index, as well. Therefore, it
is not effective, even possible to define all suitable indexes [12]
[14]. As a consequence, whereas no suitable index is proposed,

PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

TAF methods are repeatedly used resulting in poor performance
and user complaints.

Index scan method category searches the data based on the
index. The output of this method can be either whole data set if
all of the required attributes are present in the index or set of
ROWIDs, which are consequently processed and particular
blocks are loaded into the memory by using ROWID scan
method. Following Index scan types can be distinguished:

e Index Unique Scan — based on the condition, which
always produces unique data, thus either one or no

rows are selected.

Index Range Scan — standard method, in which the
index columns are in the appropriate order, but there
is no guarantee that the result will be no more than
one record.

Full Index Scan — the whole index is searched in
a sorted manner and particular ROWIDs on the leaf
layer are selected. The condition on the leaf layer can
be directly evaluated.

Index Skip Scan — method, in which the leading index
attribute is not suitable, but the rest ones are
appropriate. In that case, it works like the index in the
index, thus the first index attribute is skipped.

Point of the processing is, therefore, the suitability of the
index. If the order of attributes is not suitable, the index is not
used. Let have a table T consisting of four attributes: 4, B, C,
D. Let have an index / formed by the pair of the attributes 4, B.
If the query requests values of the attribute C based on the
attribute D, it is clear, that the particular index cannot be used.
Thus, the TAF method is used. The only solution to cover the
problem is to create a new index, which has, however, negative
aspects in the term of the change management performance. If
the system is dynamic with various query construction types
over time, the problem is much deeper. The whole table must
be scanned sequentially with emphasis on the data
fragmentation. Therefore, performance is getting worse and
worse. Deleting old records does not solve the problem, too,
whereas the number of blocks allocated for the object is never
decremented (HWM cannot be shifted to the left part of the
linked list). The point is therefore clear — propose the solution
to cover the problem by removing the impact of full table scan
necessity. Next section deals with our proposed solution.

III. OWN CONTRIBUTION — INDEX

Limitation of using Full index scan method category is
based on the fact, that the context reflected by the Where clause
conditions can be evaluated directly in the leaf layer of the
index. Thus, although the order of the attributes inside the
index does not fit the query, relevant attributes are present,
however in non-suitable order. As a consequence, if the
ROWID on the leaf layer is selected by passing the Where
condition of the query, it is certain, that the record will contain
the data needed to create the result set. Thus, no irrelevant data
block is loaded into the memory Buffer cache, except for the
migrated row problem.

Our proposed solution uses a different principle. If
accepted, the defined index will be used in any case. If the
index based on the attributes is not suitable for the query, it will

179

be used only as of the access path to the data blocks with the
real data. The importance of our solution definition is described
in the following example. Let have 4 data rows for the table.
For simplicity, let assume, that each data row is located in the
separate data block at the beginning. Then, insert two new
rows, which will be located in the same data block. Notice, that
the blocks are associated in the object in the form of individual
extents, not the blocks directly. So, let assume, that the extent
contains two blocks. Thus, after the execution, 6 blocks will be
used, the last one will be empty. Now, in the third step, remove
the data of the third tuple. What about the results? The third
block will be associated with the table but will be totally
empty. It is clear, that only four data blocks are relevant for the
evaluation, just only they contain the same data portions. By
index, they are accessible via ROWID values of the index.
However, in this case, if the index does not contain the
attributes characterizing the query condition, 7AF approach
method is used. Unfortunately, TAF method does not have any
information about the empty blocks associated with the table,
no data defragmentation or migration is done due to
performance impacts — such table would be inaccessible during
such process, which is not acceptable. Moreover, nowadays,
the number of update statements is high and is still rising, thus,
data consolidation would require to be executed too often to
ensure the benefit, but it is too resource demanding. Overall,
the improvement would be minimal, even if any. Thus, by
using TAF in the described situation, six blocks would be
loaded into the memory, but two of them do not provide any
data. The global efficiency would be 4/6 — just a bit higher than
66%. Sure, it is just a simple demonstration of the problem, in
the real environment, performance significantly below 50%
would be reached, so more than half of the system work would
be unnecessary for the evaluation and the processing. This is,
of course, a huge problem in terms of the performance and
growth of the data requirements and complexity. Individual
processing steps are shown in Fig. 4. The black color of the
block represents its occupation, white blocks are empty.

HWM

N N .. s,

HWM
TR R

HWM

-l .

Fig. 4. Data block modeling

state S,

state Sy

In this paper, we propose own solution based on the Master
index. It uses the fact, that each data row in the relational
database can be uniquely identified using the primary key, thus
each table usually contains a primary key definition, which has
the property of the uniqueness and the minimalism. Whereas
the value of the primary key must be present from the
definition (cannot hold undefined NULL value) and primary
key automatically creates the index, in the system, at least one
index exists with ROWID pointers to each data are present
inside. From this point of view, if the index would be used, just
the relevant blocks would be selected. The solution is shown in
the data flow diagram in Fig. 5. When the query is obtained to
be evaluated, first of all, existing index suitability is evaluated.

PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

If there is a suitable index, naturally, it is used. In this case,
therefore, there is no change compared to existing approaches.
One of the Index scan methods is used, either Index unique
scan, Index range scan or Index full scan with its variants. If
there is, however, no suitable index based on the data
characteristics and conditions, own proposed solution as the
data optimizer extension is used. The system evaluates,
whether there is the Master index definition for the particular
table. If not, the TAF method must be used with all its
limitations. However, if one of the indexes is so marked, it will
be used, not for the data evaluation, just as data access.

®
v

query definition

@ndition management and evaluati(D
yes

index suitability?

master index usage

result set composition

Fig. 5. Data flow — Index access selection

A. Master index definition

There is only one strict requirement for the Master index
definition (MID) — all data rows must be accessed via it. Thus,
it must cover all the data. As mentioned, most often relational
database index structure is B-tree, respectively B+tree. It has
one limitation — undefined (NULL) values are not indexed. So,
if at least one of the indexed column has the property of
potentially holding NULL value, there is no certitude, that all
the data are present by using index. However, whereas in
principle, each table is delimited by the primary key definition,
such suitable index should always be present. The point is just,
whether it is the best suitable or not.

Master index definition is defined for each table and can be
selected either automatically or manually based on the user
decision. The decision for the table can be selected this way:

Alter table <table name> set MID=<index_name>;

In the previous case, the user defines the Master index
manually. Thus, if the index is dropped or denoted as
corrupted (needs to be rebuilt), MID parameter is
automatically set to NULL and proposed technology will not
be used later. Thus, if the setting for the table would be NULL,
the proposed extension would not be applicable for the table
resulting in using original 74F method.

Alter table <table name> set MID=NULL;

180

Selection of the Master index can be done automatically by
the system, as well. The decision is done by the optimizer
based on the current statistics of the index and the whole
system. Suitability of the index to be declared by its size on the
leaf layer. Generally, the fewer amount of nodes indicates
better performance. Another aspect of the selection is just the
availability of the index in the Buffer cache memory structure.
Similar to the table, the index must be loaded into the memory
to be processed, as well. If some index is already available
there, either partially, the process of the loading using I/O
operations are removed, respectively shortened. Therefore, it is
gainful to use automatic system management and decision
making. The option is done on the table granularity by using
the following command:

Alter table <table name> set MID=AUTO;

The advantage of this approach is reflected by efficiency. If
some index is dropped, the system automatically evaluates,
whether it is marked as master or not. If so, a new suitable
index for the processing is selected, if possible.

B. Index master method

In the previous paragraphs, the principle of Master index
definition selection is described. For now, it is necessary to
explain the principle of data access. TAF method principle is
characterized by the sequential scanning of all data blocks
associated with the table. It uses the fact, that the individual
blocks are formed in the extent shape, which is linked together
[11], [12]. As described, for the processing and evaluation, the
block is always loaded into the memory, even if it does not
include relevant data for the query, respectively, it is empty.
Thus, in the first phase of the development of own approach,
the aim was to remove such blocks from the evaluation. Our
firstly defined solution was based on two sides linked list. Each
block then consisted of the information about the fullness of the
direct following block (meodel I). Thanks to that, the empty
block is skipped from the evaluation. The disadvantage is the
necessity to store the two way linked list and modification of
the whole path after the change on the block level, as well. Our
second proposed solution (model 2) improved the original
approach by storing the pointer to the next used data block. The
principle is shown in fig. 6. Black block is occupied, white is
free. Let assume, that the third and last associated blocks are
empty. Bold arrows indicate added pointers to the other blocks.
Whereas the last block is free, the fifth can point either to the
same (fifth block) or NULL pointer can be used regarding the
consecutive way of evaluation. NULL is better from the size
point of view but worse for the management.

a8
B O

Fig. 6. Model 2

After the complex experiments, we came to the conclusion,
that the proposed solution is robust, but not optimal. Inside
each block, specific space had to be allocated for the pointers
and fullness management. As a consequence, each block itself
had to be shortened based on the size. Therefore, we define also
another solution (model 3), which is just based on the Master
index. It is used as the source of pointers to the data blocks. Is it

PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

possible to determine existing and at least partially occupied
blocks? Sure, it is, by using ROWID pointers at the leaf layer.
To ensure the efficiency, we added new parameter associated to
the MID. It holds the pointer to the first node at the leaf layer of
the index. Thanks to that, it is not necessary to traverse the
whole index from the root. Name of the parameter is
MID pointer locator and is maintained automatically, thus if
the structure of the index is changed as the result of
rebalancing, such parameter is automatically notified to ensure
correctness.

MID pointer locator gets the first index node for the
processing, respectively the first ROWID pointing the block
inside the database. B+tree has linked list on the leaf layer,
therefore individual data segments can be directly located from
that level. Logically, there is a list of ROWIDs, which are used
to access the physical data. Thus, non-relevant data blocks are
not processed at all, whereas no ROWID points to them.

Our proposed approach uses the Private Global Area (PGA)
of the server associated for each session separately. In this
structure, local variables are stored. In our case, we use it for
the list of individual blocks. Multiple rows can be located in the
same data block. Therefore, before the evaluation, the address
of the block is extracted from the ROWID value, which is
consecutively checked, whether such block has already been
processed or not. Notice, that the whole block is evaluated, not
only the row itself. The reason is based on the efficiency of /O
operations. It could happen that block with multiple records is
read into the memory. If only one record was evaluated, such a
block would have to be processed later for further records. In
the meantime, however, the block could be removed from the
Buffer cache as it is a clean block type - no changes were made
to it. Thus, the number of I/O operations would increase
beyond the number of blocks actually used. Diagram
expressing the processing steps is shown in Fig. 7.

®
v

gettmg MID_pointer_ locator

obtaining ROWID
already processed
block?

Qdd such block to the linked list)

v

Cprocess block - ALL RECORDD

reached HWM?
yes

Fig. 7. Data flow — MID_pointer locator and consecutive data management

no

yes

181

C. ROWID vs. BLOCKID

In the previous definition, the principle of using ROWID
values to identify blocks was used. As described, management
was extended to check, whether such block had already been
processed or not. The aim of the solution was clear, to
minimize the amount of I/O operations, which is part of the
most expensive operations of the systems themselves. As a
result, it would be grateful, if the solution can use identifiers of
the block on the leaf layer instead of the ROWIDs. It is,
however not possible directly, whereas there is no possibility
to modify existing index approaches in the core of the
database system. The solution is, therefore, based on two
interconnected index structures. One of them resides the
original and consists of the ROWID values in the leaf layer.
The difference is, that they do not point to the data blocks in
the physical database, but are routed to the second index.
Pointers are always paired — from the index to the block
module and vice versa as well. Thanks to that, any change on
the block management can be easily identified and the whole
supervising layer can be notified. Block module form is
similar to the index; it uses the B+tree structure too. On the
leaf layer, pointers to the physical database are on the block
granularity. If any block is freed, respectively associated
without particular data, such blocks are not part of the block
module and automatically skipped. Master Index method uses
only the block module and scans the blocks in a parallel
manner. If there is any change on the data, the original index is
used, which, however, automatically reflects the change in the
block module, if any change in the segment or extend block
positions are done. Select statements use direct access to the
block module. The architecture of the solution (model 4) is in
Fig. 8.

M
l l UPDATES Instance
...index with ROWIDs
SELECT

...block module

Database

Fig. 8. The architecture of the solution

PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

IV. RESULTS

Performance characteristics have been obtained by using
Oracle 11g database system based on the relational platform.
For the evaluation, a table containing 10 attributes were used,
delimited by the composite primary key consisting of two
attributes. No specific indexes were developed, therefore the
primary key was denoted as Master index.

Experiment results were provided using Oracle Database
11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production;
PL/SQL Release 11.2.0.1.0 — Production. Parameters of the
used computer are:

e Processor: Intel Xeon E5620; 2,4GHz (8 cores),
e Operation memory: 16GB (8 modules, DDR
1333MHz)
HDD: 500GB.

[]
Results and performance solution management were
applied to the models described in the previous sections of this
paper. Four models were evaluated. Model I extends the block
definition by the information about the fullness of the direct
following block. The negative aspect was identified, if
multiple blocks in the linked chain were free, located together
in the group. Model 2 removes such constraint and contains
the pointer to the following used block with relevant data. As
evident from the results, the proposed solution brought
relevant improvement in terms of processing time and size of
the whole structure, as well.

Model 3 uses different architecture. It does not modify the
physical structures inside the database block but uses our
proposed Master index approach. Thus, if the index definition
is not suitable, the marked Master index is used to locate the
data. This approach is very convenient if the data tuples are
modified very often with various size demands for the attribute
values. Solution plays a significant role also in cases of data
fragmentation in the database structure. Improvement of the
solution is carried by the last model 4. Described in section C
of chapter 3.

Obtained results are shown in Fig. 9, which reflects the
performance expressed by the processing time in the second
precision. Values in the graph express the improvement or
slowdowns in the processing time in percentage. The
referential model uses the original method for data access —
Table Access Full. As evident, all of them offer significant
improvement. /0% of the data were part of the result set. In
optimal conditions, perfectly defined index for the query
would require /0% of the processing time in comparison with
the TAF method. In our case, model 1 obtained 23% load,
model 2 required 21%. Significant improvement was reached
when using model 3 — 17%. Architectural model 4 was the
best and required only 13%. Thus, 3% of the processing was
associated with Master index management with an emphasis
on the data location in the leaf layer. Notice, that optimal
solution would require no data fragmentation, which is,
unfortunately, very difficult to ensure in the real system
environment, where the structure and size of attribute values
can vary significantly. As a consequence, real deployment
would degrade to use fixed-size variables, mostly strings,
which, of course, is not entirely appropriate for disk space
requirements.

182

Performance - processing time [%]

120
100
80
60
40

20

Model 3

0

TAF Model 1 Model 2 Model 4

Fig. 9. Processing time results

When dealing with the size demands for the whole
structure, the following results were obtained. Original
solution with no specific structure and management added was
used as referential. Values are in percentage expressing the
additional demands. Results are in Fig. 10. Model 1 reduces
the size of the block itself to extend the header to store
information about the next block and load it. It required
additional demands of 5%. Model 2 uses only pointers, which
does not need to indicate direct following block if it is empty.
It removes the impact of the free block grouping, as well. It
required just 3% of additional size demands. Slight differences
using only 0,/% can be identified in model 3. It does not,
namely, use any additional structure, just one of the indexes
meeting the requirements is marked as Master. Model 4 is the
most complicated, whereas additional index on block
granularity is used. In this case, the size requires an additional
12%.

Performance - size [%]

Model 1 Model 2 Model 3

114
112
110
108
106
104
102
100

Yo RN}
@ 00

94

TAF

Fig. 10. Size demands

Model 4

The last experiment in this section is based on evaluating
the rate between block occupation and free blocks caused by
data restructuralization, shifting, and fragmentation. Results
are shown in Fig. 11 expressing the rate of actually used
blocks (block, which consists of at least one relevant tuple
inside). Again, we use our four designed models, that are
paired to the original TAF access method. Based on the results,
the suitability of the model I is limited by the value 63, model
2 limitation is 65. Model 3 can work effectively up to 8/ and
model 4 — 84. These values express the rate between free and
used blocks. Thus, the best performance was obtained by the
model 4, which can work effectively up to /6% (100 - 84) of
free blocks. If the rate is less (number of free blocks is lower

PROCEEDING OF THE 25TH CONFERENCE OF FRUCT ASSOCIATION

than 16%), original TAF is more effective, although non-
relevant blocks must be scanned. If there is no free block in
the system — all of them have at least one consistent data tuple,
reached results are following (expressing the slowdown of the
system in terms of the processing time). Values are expressed
in percentage:

e Model 1 58%,

e Model 2 51%,

e Model 3 23%,

e Model 4 23%.

Block rate [%]
180
160
140
120 -
100 7.—IL
80 /,f =
60 ~ //
-
0 -
20 =}.’/’-
0
10 20 30 0 50 60 70 80 90 100
TAF Model 1 Model 2 == e e Model 3 === Model 4

Fig. 11. Block rate results

Proposed solution has been tested in the DBS Oracle
environment, but can be adopted to any relational system,
whereas the principles are the same. We assume that DBS
Oracle is the most comprehensive and powerful system and
technology at the same time [2], [12]. In the near future,
naturally, another paper will be published to compare
individual database systems and proposed solution
performance applied to it.

V. CONCLUSIONS

Effectivity of data processing is one of the most significant
tasks to ensure the performance of the whole system.
Nowadays, the number of data to be handled is high and is still
rising. The structure of the data can evolve, as well. Moreover,
such data dynamically change their values and properties over
time. As a consequence, table complexity is still rising and
more and more new data fragments are identified. Therefore, it
is clear, that these factors must be taken care of when the
database system management is defined. Many systems can be
connected to the same database producing various data
analysis. Thus, data queries can vary significantly resulting in
poor performance, whereas it is not possible to develop all
indexes for the defined properties. Sequential scanning of all
blocks associated with the table is the last step before the total
collapse of the system and user as well, whereas they are not
willing to wait for the result sets. The aim of our proposed
solution is to limit the necessity to use sequential data block
scanning performed by the Table Access Full (TAF) method.
Our technology uses the Master index, which is not used for the
evaluation itself, whereas it does not fit the conditions of the
query. The core is that it contains all the pointers to the data on
the leaf layer. Therefore, the index itself is used as the data
locator. There are two proposed models highlighting the
Master index definition. The first one is based on data row
granularity, the second one is shifted to the block identification
and uses two indexes. Based on the reached results, the best

183

solution reflects block granularity. In this case, in comparison
with the original TAF method, performance in processing time
was lowered to 13%, if one-tenth of data should be provided in
the result set. The principle is based on removing the evaluation
of free blocks, which must be transferred into the memory in
a standard manner. Vice versa, there is approximately /2% of
the increase in size demands. It is caused by the necessity to
develop a new index on the block granularity for the queries. In
the near future, we would like to lower the size demands to
sharpen to performance of the whole solution in such an aspect,
as well. We will also deal with the solution reflection in the
environment of the temporal systems, where several non-
defined values and the whole states can be present.

ACKNOWLEDGMENT

This publication is the result of the project implementation:

Centre of excellence for systems and services of intelligent
transport II., ITMS 26220120050 supported by the Research
& Development Operational Programme funded by the ERDF.

The work is also supported by the project VEGA
1/0089/19 Data analysis methods and decisions support tools
for service systems supporting electric vehicles and Grant
system of the University of Zilina.

_En

"PODPORUJEME VYSKUMNE AKTIVITY NA SLOVENSKU
PROJEKT JE SPOLUFINANCOVANY ZO ZDROJOV EU

Agentdra
Ministerstva Skolstva, vedy, vyskumu a Sportu SR

pre Strukturalne fondy EU

REFERENCES

[1] K. Ahsan, P. Vijay. “Temporal Databases: Information Systems”,

Booktango, 2014.
L. Ashdown. T. Kyte “Oracle database concepts”, Oracle Press, 2015.

C. J. Date, N. Lorentzos, H. Darwen. “Time and Relational Theory :
Temporal Databases in the Relational Model and SQL”, Morgan
Kaufmann, 2015.

M. Erlandsson et all., “Spatial and temporal variations of base cation
release from chemical weathering a hisscope scale”. 2016. In Chemical
Geology, Vol. 441, pp. 1-13

J. Janacek and M. Kvet, “Public service system design by radial
formulation with dividing points”. In Procedia computer science
[elektronicky zdroj], ISSN 1877-0509, Vol. 51 (2015), pp. 2277-2286

T. Johnston. “Bi-temporal data — Theory and Practice”, Morgan
Kaufmann, 2014.

T. Johnston and R. Weis, “Managing Time in Relational Databases”,
Morgan Kaufmann, 2010.

(2]
(3]

(4]

(3]

(6]
(7]
[8] A. Kadir and N. Adnan, “Temporal geospatial analysis of secondary
school students” examination performance”, 2016. In IOP Conference
Series: Earth and Environmental Science, Vol 37, No. 1.

[91 M. Kvet, K. Matiasko, “Transaction Management in Temporal System”,
2014. IEEE conference CISTI 2014, 18.6. —21.6.2014, pp. 868-873

M. Kvet, K. Matiasko, ,,Temporal data Group Management®, 2017.
IEEE conference IDT 2017, 5.7. — 7.7.2017, pp. 218-226

M. Kvet and K. Matiasko, “Uni-temporal modelling extension at the
object vs. attribute level”, IEEE conference UKSim, 20.11 — 22.
11.2014, , pp. 6-11,2013.

D. Kuhn, S. Alapati, B. Padfield, “Expert Oracle Indexing Access
Paths”, Apress, 2016.

S. Li, Z. Qin, H. Song. “A Temporal-Spatial Method for Group
Detection, Locating and Tracking”, In IEEE Access, volume 4, 2016.

[10]

[11]

[12]

[13]

[14] Y. Li et all,, “Spatial and temporal distribution of novel species in
China”, 2016. In Chinese Journal of Ecology, Vol. 35, No. 7, pp. 1684-
1690.

[15] A. Tuzhilin. “Using Temporal Logic and Datalog to Query Databases

Evolving in Time”, Forgotten Books, 2016.

