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Abstract—In the drastic period of climate change the con-
tinuous data monitoring of snow characteristic is required.The
immensely impact of snow on hydro production, water resource
management and its inhabitants, drive to the need for the
importance of snow information such as its extent, dynamics and
water it holds at global and local scale. At present, there are
various approaches such as traditional ground-based approach,
optical satellite imaging and the radio, which are available for
snow monitoring at global scale. However, the use of these
approaches incurs from large labor and high monitoring cost.
Since, the advance in sensor technologies and Internet of Things
(Iot), provides an appealing possibility to develop a framework
for monitoring snow parameters at enormously low cost. In this
study. we implemented two machine learning classifiers model
based on the input acquired from the low-cost wearable sensor
platform. The results of Random forest classifier showed the
accuracy of 88.8%, indicate a promising alternative in snow
depth measurements with in-situ validation, when data or wireless
sensor network are not available or affordable.

I. INTRODUCTION

Various studies have established and determined the rel-
evance of snow to the climate system. Comprehending the
snow occurrence and dynamic is essential to understand the
phenomena like global warming, which primarily causes dras-
tic change in climate condition. It also plays a key role in
understanding ecological processes, climate feedback and frost
penetration [1], [2], [3]. The need to monitor snow conditions
in northern regions is very important for hydropower [4],
domestic and industrial extraction, due to the seasonal runoff
changes occurring at the period of spring flood, whereas, it
is also considered important for prediction and prevention
of flood [4], [5], [6]. Furthermore, snow accumulation and
ablation are mass balance for glaciers and polar ices [7]. Ice
layers in snow play a significant role for the timing of the snow
melt release, for the potentials of quest for reindeers, small
mammals, birds of prey and for avalanche risk assessment [8],
[9]. Among factors often associated with snow information,
one distinguishes snow depth, snow water equivalent (SWE),
snow density, which provide handful information about the
snow characteristics. Snow depth provides important informa-
tion regarding soil process, water resources, surface energy
and ecological system for snow cover studies. Similarly, it
provides insights in identification of other relevant properties
of snow such as SWE and snow density. Knowing these
properties, allows the researchers to understand the structure
and formation of snow pack as well as snow drift model [10].

Traditionally, manual investigations were used to measure

the snow depth and snow density. The foremost benefits of
such snow survey manual are the direct measurements and
in situ validation of the snow depth and SWE data. Though,
they are highly demanding in terms of time and labor and,
sometimes become unfeasible in remote, complex or hazardous
terrain [11], [12]. On the contrary, remote sensing instru-
ments on airborne and space platforms are an alternative to
groundbased measurements of snow properties. The advance in
remote sensing technologies provided new ways of modalities
and data with enhanced spatial and spectral resolution [13].
For instance, airborne laser scanning (ALS) is a remote sensing
tool with the ability to retrieve surface elevations at high spatial
resolutions in rough terrain and in heavily forested region
[14]. Recently, the continuous adoption of this technology in
measuring and mapping the snow surface characteristics are
rapidly emerging as a new standard. To date, the methodology
to calculate snow depth from airborne. Lidar data requires two
datasets, one during the time when the surface is snow free
and another when it is covered with snow and computed the
difference of snow surface and bare ground using point to
point, point to grid and grid to grid algorithm to estimate the
snow depth [15], [16].

Both terrestrial [17] and airborne [18] Light Detection
and Ranging (Lidar) technologies provided high resolution in
estimating the spatial distribution of snow depth. Nevertheless,
these technologies encounter some limitations as well. The
key limitations for Terrestrial Laser Scanning were restricted
only to easily observable and accessible areas. On the other
hand, Airborne Laser Scanning requires a proper planning
and repetitive flights which incur to long time and excessive
expenses [19]. Though, the current techniques used are highly
reliable. They are limited to provide spatial coverage at larger
extent and demands operational costs time and labor, which
calls for future research on the issue.

This study aims to overcome the above challenges (op-
erational costs, time and labor experience in remote sensing
technologies and WSN deployment challenges) by utilizing the
low-cost sensor in the form of wearable device. The goal is
to introduce a new perspective in data acquisition and analysis
from a handed low-cost sensor in terms of wearable platform,
for estimating and classifying the snow depth measurements.

II. WEARABLE PLATFORM

The wearable platform was developed by utilizing the
synergy of three sensors, namely, flexi force sensitive resis-
tor, temperature and humidity sensor and Bluetooth sensor,
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Fig. 1. Bluetooth sensor is employed solely for transmission
purpose. An android application was also developed to store
the readings obtained from the sensors on a mobile application
and send it over to a cloud platform for further processing.

Fig. 1. Wearable platform: sensor and microcontroller communication

We have chosen DHT 22 temperature and humidity sensor,
due to its high reliability, good stability and compatibility with
Arduino platform. The DHT22 sensor consists of two parts: a
capacitive humidity sensor, which is responsible for measuring
the humidity, and a thermistor that measures the temperature
of its surroundings. The sensor has the capacity to measure the
temperature in the ranges from -40 to +125 degrees Celsius
with +-0.5 degrees accuracy, offering excellent quality, fast
response, anti-interference ability and cost-effectiveness. It can
be easily interfaced with Arduino board, which enables us to
read the temperature from the sensor and display it in the
serial monitor. Flexi force sensor, also referred as the force
sensitive resistor, is used for calculating the pressure value. It
operates by changing its resistance when the external force,
pressure or stress is applied. Here, Tekscan flexi force A 201
was employed. A fixed value resistor of 1Mohm is connected
in a series with the FSR resistance. The connection of FSR
with Arduino is established. In order to determine the force of
unknown loads, a set of input-output voltage measurements
were carried out, and the best linear fit is identified. For
sensor-mobile communication purpose, the HC-05 Bluetooth
sensor was selected because of its simplicity and capability of
transferring the data over a short distance. The module can
easily be interfaced with Arduino board. The logic voltage
level of data pin of HC-05 is 3.3V. Therefore, the connection
of data line between Arduino TX and RX needs to connect
through a voltage divider in order to not burn the module.
An android mobile application is developed using Android
Studio for the purpose of recording the readings from the
developed multi-sensor platform. The application uses the
Bluetooth communication for acquiring the real time sensor
data from the HC-05 Bluetooth module and further, stores
the data information. The acoustic sound sensor was added
in later stage of the study, the rationale behind the idea is
to investigate how sound measurements deviate during the
process of experiment, when interacts with different depths
of snow. The sound sensor is attached to the right end of
the platform. Electret Microphone Amplifier MAX9814 with
Auto gain, have chosen to conduct the testing. The Microphone
consists of four pin VDD, GND, OUT and GAIN. It can be
easily interfaced with Arduino board via connecting the VCC
pin to 5v, GND to GND pin and OUT to any of the analogue
pin of the Arduino board.

III. SNOW DEPTH DATA MEASUREMENTS

A. Study area

The study for this investigation were conducted in 45
different locations points in Oulu region, Finland, see Fig. 2.
Oulu resides in the Middle of Finland and experiences healthy
snow fall during winter season. According to Finnish meteo-
rological statistics https://en.ilmatieteenlaitos.fi/snowstatistics,
the maximum snow depth is usually found around March
period and the ground is almost kept covered with snow
throughout the month. Therefore, we have carried out our
experiments during this month. For simplicity purpose, the
experiments were conducted in the fresh snow fall condition
to avoid any external environmental constraints.

Fig. 2. Study area: snow depth and platform data acquisition were performed

We have collected 90 samples observations and the division
of area wise experiments is as follow: 25 experiments in Area
1, 25 experiments in Area 2, 20 experiments in Area 3, and
finally, 20 experiments in Area 4. The intuition behind is to
perform the experiment covered with different level of snow
depth.

B. Experiment setup and procedures

To evaluate the platform, the experiments were designed,
keeping in consideration the objectives of the various study
parameters. In total 90 experiments were conducted to generate
the datasets. In each experiment, the interest was in collecting
the parameters associated with pressure attributes, acoustic
sound measurements, and temperature and humidity sensor
via foot wearable platform. For this purpose, the sensors
data are obtained automatically through the attached platform.
Whereas other parameters of interest such as snow depth, snow
weight and snow density are only indirectly inferred from the
observation / sensor measurement as detailed later. Armed with
the developed footwear platform, the user performs normal
walking task at each site. The attached platform contains straps
that helps to attach it with the foot and further, the masking
tape is used to assure a firm grip with the foot. The pressure
sensor is placed inside the shoe to record the applied pressure
of the toe on the sensor as shown. The wearable platform
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is very light weight, around 100 grams, whereby, causing no
trouble in movement when attached to the foot. The strap
was tightened comfortably around the ankle position ensuring
that the pressure of the strap would not restrict the subjects
movement during the experiments. On average 30 sec of walk
was performed, covering the surface distance of 10 meter and
35 steps.

C. Field measurements of snow parameters

The measurement of snow depth is carried out on the
same area where the data acquisition platform was enabled.
Initially, we marked the start point and the end point covering
10 meters of distance to perform the experiment and measured
the snow depth at four different points at 2.5 meters interval.
Due to irregular spread of snow over the surface, we took
four measurements di of snow depth as pointed out earlier,
which are then averaged to yield the marked snow depth at
the prescribed site, see Fig. 3, and expression (1) for details.

Fig. 3. Snow depth data and measurement points

d =
∑

i=1,4

dn
4

(1)

where di stands for the snow-depth at given site.

Another important parameter employed in the study was
the snow density. The density is computed using a simple
mass volume equation. For this purpose, we have also gathered
samples of snow along the process of snow-depth measurement
where a predefined volume of snow is collected and then
weighted in order to determine the corresponding density.

D. Platform data acquisition

During each test, the measurement of applied force
(kilogram-force kgf) is enumerated using the embedded flexi
force resistance sensor. More specifically, the heel force or
pressure of steps is measured and communicated via Bluetooth
sensors to Android application, where it is logged. Fig. 4, ex-
emplifies the pressure measurements at one of the experiment
locations, while acoustic measurements are shown in Fig. 5.

Fig. 4. Pressure sensor measurements points

On average 30 sec of walk was performed by the user
covering a 10 meter and 34 steps surface (combining right and
left footsteps), where at each foot movement, pressure reading
at the subsequent time periods were collected and shown in
Fig. 4. In latter, the zero value indicates the swing phase of
the walk, occurring when the left foot is in contact with the
surface. Whereas, values greater than zero indicate some stance
phase where the right foot (device attached to) is in contact
with ground surface.

Fig. 5. Sound sensor measurement points

Similarly, the acoustic signal, temperature and humidity
were also recorded via sensory platform. Before training,
during the data preprocessing stage, the pressure magnitude at
zero scale were eliminated. Further, all the data points obtained
via pressure and sound sensors were normalized using the
maximum and minimum values according to equation (2).

x′ = (x−min(x))/(max(x)−min(x)) (2)

E. Variable extraction for classification of snow depth

A machine-learning based approach was devised in order
to classify the snow depth measurements. Two classification
algorithms were considered for classification of snow depth.
This boils down to using pressure sensor and/or sound sensor
for deriving attributes for the machine learning model. On the
other hand, ground truth measurements of snow depth, snow
weight and density were carried out using field measurement,
which then serve as a basis for training database of our learning
model. Initially, as the attributes of our classification model,
seven attributes or features were considered: maximum pres-
sure, minimum-pressure, average-pressure values, maximum-
sound, minimum-sound, and average-sound and snow density.
Table I summarizes the set of attributes related to pressure
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measurements and found relevant in this study. The tempera-
ture and humidity were left out in the subsequent analysis and
training of the classifier, due to lack of enough variation in
the readings of both parameters, due to short span of time of
experiment.

TABLE I. LIST OF ATTRIBUTES CONSIDERED BY THE CLASSIFIER

SYSTEM

Measurement Attributes Mode of Collection Relevance

Pressure Max, Min and Mean
Automatic via

Sensory platform
Predictor

independent

Sound Max, Min and Mean
Automatic via

Sensory platform
Predictor

independent

Temperature Temperature observed
Automatic via

Sensory platform

Not included
in subsequent

analysis

Humidity Humidity observed
Automatic via

Sensory platform

Not included
in subsequent

analysis

Snow Para. Snow Density Computed
Predictor
dependent

Snow Para. Snow Volume Computed
dependent
variable

Snow Para. Snow Weight
Field

measurement
Dependent

variable

Snow Para. Snow Depth
Field

measurement
Target

variable

TABLE II. LABEL ENCODING OF SNOW DEPTH

Categorizing SD measurement Class label
10-15 cm 1

15-20 cm 2

20-25 cm 3

25-30 cm 4

30-35 cm 5

35-40 cm 6

To convert our problem into a classification problem, we
have associated a class label to each range of snow depth.
During the evaluation phase, the maximum and the minimum
snow depth were recorded between 40cm to 10cm. Therefore,
we divide the snow depth classes in the range of 5cm as
summarized in Table II.

IV. DATA ANALYSIS & RESULTS

A. Correlation analysis

To better understand the relationships between variables,
we first computed Pearson correlation (r) between the attributes
and the target variables. Table III indicates very weak or no
linear relation between mean pressure, max sound, min sound
and snow depth, as their Pearsons correlation is close to zero.
In contrary, very weak significant correlation relationship exist
between the mean pressure and snow depth r(89) = 0.15, n =
90. However, a strongly significant inverse relationship ob-
served between the maximum pressure and minimum pressure
with SD r (89) = -0.84, n = 90.

TABLE III. PEARSON CORRELATION WITH TARGET VARIABLE

Independent Variable Pearson correlation
Max pressure -0.84
Min pressure -0.68

Mean pressure 0.021
Max sound 0.025
Min sound 0.098

Mean Amplitude 0.15
Snow Density 0.034

B. RF and SVM accuracies predicting snow depth

Random Forest (RF) and Support Vector classifiers (SVC)
were used to predict the target variable after being trained on
the training dataset using the underlined attributes or features.
The results showed that the accuracies of RF dominated SVC
in all cases, with subset of one best feature, and when using
either the two best feature or three best features. RF has the
built-in capability of calculating the importance of attributes.
Thus, using the above functionality we have selected the best
attributes for training individual training. Similarly for SVC,
the correlation matrix results of Table III were used to select
the best attributes. Fig. 6 shows the attributes performance,
ranked by importance, a relative measure ranging from 0 to 1.

Fig. 6. Attributes importance for random forest training algorithm

Random Forest without hyper-parameter tuning showed
moderate accuracy of 0.71 in predicting the snow depth. Sub-
sequently, the model is improved with hypermeter tuning using
the validation curve technique, to find the optimal n estimators
and max depth see Fig. 7.

Fig. 7. Validation curve of (a) n estimator and (b) max depth

The results indicate the important improvement of the
model after adjusting the hyper-parameters. The improvements
reflect only for the cases when the model was trained consider-
ing all predictors and one best predictors. In contrary, the SVC
results were lower in terms of accuracy, even, when tested with
the best selected feature, two and three attributes. A decreasing
accuracy level was also observed as well, see Table IV.
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TABLE IV. ACCURACY’S OF ALL CASES WITH RF & SVC

Attributes Matrix
Accuracy of Classifiers in %

RF SVC
w/o-HPtuning HPtuning w/o-HPtuning HPtuning

All Attributes 71.40 72.80 61.1 66

1st best 83.3 88.8 33 33

2nd best 88.8 88.8 22.7 16

3rd best 88.8 88.8 27 27

V. DISCUSSION

The findings indicate the possibility of classifying the
snow depth by utilizing a low-cost foot wearable platform.
The classifiers trained on the acquired data revealed that
the maximum and the mean pressure are significantly more
correlating with the snow depth. This is because the higher
snow depth causes difficulty for adjusting the body balance
and stepping which eventually affects the application of heel
pressure. In contrast, low amount of snow depth over ground
causes less difficulty in stepping patterns. Thus, based on the
above findings and results, we implemented and trained two
classifiers. Random Forest classifier showed good accuracy in
classifying the labelled ranges of snow depth measurements,
when trained on all the incorporated attributes with tuned
hyper-parameter.

However, one should also point out some limitations and
uncertainly pervading the above approach. First, the exper-
iments were mainly conducted with one single user wear-
ing the ubiquitous sensor foot-based platform. This trivially
makes the result pervaded by several uncertainty that are
worth considering in future work. For instance, users body
weight straightforwardly influences the numerical values of the
pressure and acoustic sensor. Nevertheless, we believe that the
influence of such phenomenon is limited, as the interest is on
the correlation of the pressure /acoustic values with the snow
depth not on the exact value of the pressure /acoustic values.
Second, the walking patterns of the individual might also affect
the pressure sensor readings. Although a full investigation of
such effect would require a proper ergonomic analysis, the
short interval between two measurements makes the impact of
such factor likely limited as well. Third, other sensor placed
in the ubiquitous platform, mainly, temperature and humidity,
could not exhibit much variations. The foremost reason behind
this result is the short time span of recording the sensor
measurement, which in turn, resulted in less variability in these
measurements. However, the measurement can be considered
in the condition, when the experiment is conducted for longer
time period, for instance. In future consideration, we will
involve sensor input from temperature and humidity sensor,
which can be utilized in training the model for more efficient
result.

VI. CONCLUSION

In this paper, a new foot wearable platform that inte-
grates pressure, sound and humidity/temperature sensors were
proposed and implemented for the purpose of estimating
snow-depth. We have successfully implemented two machine
learning classifiers, trained on the attributes associated with
pressure, sound and snow density that can be used to classify
different measurement of snow depth. The idea is based on
finding the key variation from the sensor measurement at

different level of snow depth. The approach uses Random
forest and Support vector classifier that involves pressure
(minimum-pressure, maximum-pressure and mean-pressure)
and sound related attributes (minimum-sound, maximum-
sound and mean-sound). The correlation analysis showed that
maximum-pressure and mean-pressure are more significant
and, are important feature for classifying the snow depth.
Although, this is a pilot approach and much work is still
needed in order to construct more efficient machine learning
model, considering users various modalities and possibly of
integrating other soil related sensors. In addition, our approach
provides the feasibility for estimating minimalistic character-
istic of snow coverage nearly at very low cost and, with less
labor demand.
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