
Monitoring Vegetation Height using Data
Acquisition from Ubiquitous Multi-Sensor’s Platform

Sofeem Nasim, Mourad Oussalah
Centre for Machine Vision and Signal Processing,

University of Oulu, Finland.

sofeem.nasim@oulu.fi, mourad.oussalah@oulu.fi

Ali Torabi Haghighi, Bjron Klove
Water Resources Environmental Engineering, 

University of Oulu, Finland.

ali.torabihaghighi@oulu.fi, bjorn.klove@oulu.fi

Abstract—Vegetation height plays a crucial role in various
ecological and environmental applications, such as biodiversity
assessment and monitoring, landscape characterization, conser-
vation planning and disaster management. Its estimation is
traditionally based on in situ measurements or airborne Light
Detection and Ranging sensors. However, such methods are often
proven insufficient in covering large area landscapes due to
high demands in cost, labor and time. Since, the emergence of
wearable technology, ubiquitous sensors and Internet of Things
offers an appealing framework for monitoring environmental
parameters at extremely low cost, which, in turn, contributes to
the development of affordable real-time vegetation monitoring
system. This is especially relevant to rural environments and
underdeveloped countries. We proposed a methodology for data
acquisition from a ubiquitous sensor wearable platform and
developed a machine-learning model to learn vegetation height on
the basis attribute associated with pressure sensor. The proposed
methods are proven particularly effective in a region where the
land has forestry structure. The results of linear regression model
(r2 = 0.81 and RSME = 16.73 cm) and multi-regression model
(r2= 0.83 and RSME = 15.73 cm), indicate a promising alternative
in vegetation height estimation when in situ or Light Detection
and Ranging data or wireless sensor network are not available
or affordable, thus facilitating and reducing the cost of ecological
monitoring and environmental sustainability planning tasks.

I. INTRODUCTION

Vegetation height is a key indicator for many terrestrial
ecosystems which can be associated with habitats and their
biodiversity and biomass [1], [2]. Besides, Vegetation height
can be utilized for classification of land cover or estimating
forest age and habitat quality. Indeed, it is an essential input
parameter for ecosystems and highly correlated with vegetation
biomass [2] , which is the fundamental element of the carbon
cycle and a substitute for fuel loading estimation [3].

Vegetation has many forms, one of them is referred to as
Herbaceous vegetation or short vegetation, which is found to
play an important role in determination of confined livestock
grazing and climatic variability as agents of vegetation change
[4] . Traditionally, (short) vegetation height is measured using
handheld devices such as hypsometers (for mature trees) or
measuring poles (for seedlings and low vegetation) through
field campaigns [5], [6]. However, these methods are time
consuming, incur high labor cost, and are therefore limited
in scope to mapping at fine scales. Measuring vegetation
height requires a huge amount of effort. Alternatives to these
approaches, numerous technologies are available, in the case
where the possibility and availability of situ measurement are

unattainable, include imaging and radar-based methodologies.
LiDAR, referred to as a 3D laser scanner, is recognized to be
one of the most efficient alternate for recording vegetation data
mostly using airborne sensors [7], [8], [9]. Lidar with its full
waveform digitizing provides highly efficient measurements
at a footprint level of observation for forest structure where
several works have been reported.

Intuitively, pressure-based sensors may provide information
on land cover such as soil properties, water content and vege-
tation properties (density, height etc.) where the relationship
between soil and vegetation is not fully unknown. Indeed,
soil compactness, texture, bulk density and organic / mineral
composition directly influence plant growth, quality and abun-
dance. For instance, Landhaeuser et al. [10]. studied the effects
of soil compactness on the depth and lateral spread of marsh
reed grass. Silva et al. [11]. found that animal trampling can
cause soil compactness and degradation of soil structure, which
negatively affect vegetation growth and height. Similarly, Botta
et al. [12]. reinforced Silva et al.s findings and showed that
even increased frequency of pedestrian or wheels passages can
lead to an increase of dry bulk density, which in turn, affects
vegetation height. The question can therefore be raised to
investigate the extent to which soil patterns can be employed to
estimate vegetation height. Especially, is it possible to perform
such estimation using solely low-cost sensor platforms? With
the recent advances in sensor technologies, including IoT
framework, cloud computing and wearable technology, several
breakthroughs in low cost and efficient environment monitor-
ing technology become accessible to a wider audience (non-
specialist group). Indeed, one notices, for instance, a range of
wireless sensor network deployed for habitat and environment
monitoring applications, see, e.g., the review paper [13]. on
the use of smart and low-cost sensors in agriculture, food and
related applications. Zhou et al. [14]. put forward a scalable
field cost effective IoT powered phenotyping platform, referred
CropQuant, for crop monitoring and trait measurement in a
way to predict vegetation growth.

In a nutshell, our study aims to overcome the challenges of
such operational costs, time and labor experienced in remote
sensing technologies and WSN deployment challenges, by
utilizing the low-cost sensor in the form of wearable device.
The goal is to introduce a new perspective in data acquisition
and analysis from a low cost multisensory handed device
through a wearable platform, for estimating the vegetation
height.
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II. MATERIALS AND METHODOLOGY

A. Study area

This study has been conducted in an 8-type soil variety
area in Oulu region, Finland. see Fig. 1, which highlights dis-
tinct vegetation height levels. Typically, Normalized Difference
Vegetation Index (NDVI) is a standard way to measure healthy
vegetation. Higher (lower) NDVI values indicate healthy (poor)
vegetation quality. Besides, the existence of several repositories
and open data where NDVI values are publicly available pro-
vides us with efficient tool to guide the selection of the study
area in a way to ensure useful differentiation. Accordingly, we
have selected the study area based on NDVI index and the
google earth location to ensure the variability in vegetation
height at each site. However, the exact variation is quite
difficult to estimate solely using the NDVI index. Table I.
features the exact coordinates of the study area, vegetation
type and structure covered that were observed during the
experiment. The description of the structure of vegetation
observed in each area; namely, structure type A, B and C;
is reported in Table II.

TABLE I. DETAIL OF STUDY AREAS LOCATIONS INCLUDING

VEGETATION TYPES AND STRUCTURES

Study Area X coord. Y coord. Veg. type Struct. present
Site 1 65.0693 25.483 Sand None

Site 2 65.0701 25.480 Grassland A, B, C

Site 3 65.0712 25.478 Grassland A, B, C

Site 4 65.0726 25.471 Grassland A, C

Site 5 65.0714 25.465 Grassland A, B

Site 6 65.0633 25.475 Grassland A, B, C

Site 7 65.0646 25.472 Grassland A, B, C

Site 8 65.0644 25.467 Grassland None

TABLE II. VEGETATION STRUCTURES PRESENTS IN STUDY AREAS

Structure type Description
A Mixture of Woody and Herbaceous Plants

B Woody plants dominate Herbaceous plants

C Herbaceous plants

Fig. 1. Study areas near kuivasjrvi, Oulu, Finland; (a) Site 1; (b) Site 2; (c)
Site 3; (d) Site 4; (e) Site 5; (f) Site 6; (g) Site 7; (h) Site 8

B. Wearable platform design and description

The wearable platform developed with the synergy of three
sensors, namely, flexi force sensitive resistor, temperature and
humidity, and Bluetooth module is utilized for strengthening
the overall building of the wearable platform see Fig. 2, while
Bluetooth module is employed solely for transmission purpose.
An android application is also developed to store the readings
obtained from the sensors on a mobile application.

Fig. 2. Wearable platform representation: image view of the developed system

We have chosen DHT 22 temperature and humidity sensor,
due to its high reliability, good stability and compatibility with
Arduino platform. The DHT22 sensor consists of two parts: a
capacitive humidity sensor, which is responsible for measuring
the humidity, and a thermistor that measures the temperature
of its surroundings. The sensor has the capacity to measure the
temperature in the ranges from -40 to +125 degrees Celsius
with +-0.5 degrees accuracy, offering excellent quality, fast
response, anti-interference ability and cost-effectiveness. This
enables us to read the temperature from the sensor and display
it in the serial monitor. Flexi force sensor, also referred as
the force sensitive resistor, is used for calculating the pressure
value. It operates on changing its resistance when the external
force, pressure or stress is applied. Tekscan flexi force A 201
became nowadays quite a standard and among most popular
instruments for measuring force in wearable platforms. A fixed
value resistor of 1Mohm is connected in a series with the FSR
resistance. The connection of FSR with Arduino is established
by joining one end to the power pin and the other end to
the fixed value resistor ground, the point where the resistor
is connected to analogue pin of Arduino board. In order to
determine the force of unknown loads, the equation for the
best fit is to be derived. For this purpose, a set of input-output
voltage measurements should be carried out. Next, voltage-
force graph is plotted, and the best linear fit is identified.
In agreement with manufacture recommendation, a Voltage
vs Force graph is plotted in order to find the best linear
fit. Bluetooth module. We employed the HC-05 Bluetooth
module because of its simplicity and capability of transferring
the data over a short distance. The module can easily be
interfaced with Arduino board. The logic voltage level of data
pin of HC-05 is 3.3V. Therefore, the connection of data line
between Arduino TX and RX needs to connect through a
voltage divider in order to not burn the module. On other
hand, the pin of Bluetooth can be connected directly to the
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Arduino board. An android mobile application is developed
using Android Studio, for the purpose to record the reading
from the developed multi-sensor platform. The application uses
the Bluetooth communication for acquiring the real time sensor
data from the HC-05 Bluetooth module and further, stores the
data information.

III. VEGETATION SURVEY

A. Field measurements and height estimation

One of the traditional practitioner-based approach for veg-
etation height measurement, referred to line-point intercept
method, is carried out using the field measurement method
proposed by Jeffery et al. [15], with some alteration. In this
respect, the cover is measured along a linear transect line and
is based on the number of hits on a target species out of the
total number of points measured along that line. In our case,
vegetation height is measured as the height of the tallest plant
part within a 30 cm diameter cylinder projected tangent to
transect. It is measured vertically from the soil surface at the
center of the cylinder, see Fig. 3, for illustration purpose.

Fig. 3. Vegetation field measurement using transcend

Given the geometrical constraints on the study area and
considering the density of the plants (canopy cover), we chosen
to carry out the aforementioned transcend based measurement
five times at regular interval in the region of the study where
the plant density is deemed important. More formally, five
distinct measurements of vegetation height Hi is carried out
at each interval of 2.5 meters. We then estimate the average
maximum vegetation height of canopy cover, over the five
measurements:

Avg.V H =
1

5

∑

i=1,5

Hi (1)

The primary assumption by doing so is that we reasonably
assume that each of the study field is rather associated with
a minimum number of vegetation heights (up to three), corre-
sponding to average transcend measurements according to (1)
in each vegetation type / structure. This is motivated by the fact
that the plants type (either grassland or forest) and structure
type (A, B or C) in each site of study are roughly homogeneous
in terms of height; therefore, it makes sense to consider the
vegetation of the same structure (A,B, C) to be of the same
height. This subsumes at least three pre-requisites. First, the

average operation (1) is carried out for each structure type
present in the study site (up to three, corresponding to A, B, C
structures). Second, the fine-grained variation of the vegetation
height is not the prime concern of the study. Third, there exists
a mechanism (simple GPS locations and/or visual patterns),
which maps the location to the structure type at each site in
order to build the ground truth model, which is required for
the subsequent analysis. The preceding enables us to build the
ground truth in terms of vegetation height for each of the eight
study sites. The overall structure of the ground truth data-set is
highlighted in Table III. Especially, for simplicity purpose and

TABLE III. GROUND TRUTH STRUCTURE OF EACH STUDY AREA

Variables Description
Vegetation type Grassland or Forest

Structure type A, B or C structure

Bounding box
Latitude and Longitude of the top-left and

bottom-right of the approximate rectangular region

Vegetation height Average vegetation height measured using transcend method

location matching, we modelled the region in the same site of
the same structure type, and thus of the same vegetation type,
by a rectangular region. The latter can therefore be represented
using a bounding box.

B. Platform Data acquisition

Several experiments were performed for the acquisition of
sensor data, where around 10 meter of distance is covered by
walk at each designated site. During this walk, the wearable
platform is attached to the foot. In total eight tests were
performed at each study site and each test is carried on
different path for finding the variation in the sensor data. The
general execution plan is shown in Fig. 4, which provides
fined experimental details. Armed with the developed footwear
platform, the user performs normal walking task at each site
ensuring that all structure types present in the site are covered.
At each walk step, the sensory information is transmitted to
mobile station, and thereby to cloud platform to enable further
preprocessing.

Fig. 4. General execution plan of the experiment setup

Especially, we mainly focus on pressure sensor output as
the temperature and humidity sensor exhibits no variation due
to the fact that measurements were almost instantaneous so
that there is no variation of temperature or humidity data at the
time of the measurement both within the same site and across
sites. Given the samples of pressure data acquired during the
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walking process at each site / structure type, one determines its
statistics in terms of average pressure value, minimum value
and maximum value. These three entities (average, min and
max of pressure values) are taken as independent variables
in our study to infer vegetation height. The description of
these parameters is listed in Table IV. In total, 62 samples
or observations are collected during experiments, where the
division is as follow: 8 experiments in Site 1(soil type: sand),
no vegetation structure variation, 8 experiments in Site 2 soil
type: sand), all the three vegetation structure A, B, C are
present. 5 in Site 3, 8 in Site 4, 7 in Site 5. 7 in Site 6, 8
experiments in Site 7 and 8 in Site 8. The dataset is split into
training and testing dataset, where 80 perecnt of data is used
for training the linear regression models and 20 percent is used
for testing the model.

TABLE IV. LIST OF INDEPENDENT VARIABLES AND TARGETED

VARIABLE

Attributes Method of Acquiring Importance
x1 = Maximum Pressure Sensors platform Independent

x2 = Minimum Pressure Sensors platform Independent

x3 = Mean Pressure Sensors platform Independent

y = Vegetation Height Point intercept method Target

IV. ESTIMATING VEGETATION HEIGHT USING WEARABLE

PLATFORM

For the purpose of estimating the vegetation height from
the pressure measurement, a multi-regression based approach
is devised in order to assess the relevance of the underlined
independent variables in this estimation process where the
vegetation heights estimated in the field measurement through
transcend method are used to determine the parameters of the
regression model as highlighted in Fig. 3. Table IV summarizes
the set of attributes related to pressure measurement and found
relevant in this study. On the other hand, for the purpose of
simplicity and good results obtained elsewhere, we used a
multilinear regression model. More specifically, considering
the interaction effects of the attribute variables, the regression
model boils down, for a response variable y, to the following

y = β0 + β1x1 + β2x2 + β3x3 (2)

where βi (i=0 to 3) are the parameters, to be determined
using the training dataset, of the model, interpreted as regres-
sion coefficients.

Nevertheless, instead of carrying out the regression analysis
across all attributes, we have also considered the effects of
downgrading the scale of the training by restricting the training
to one predictor variable only. Therefore, the question that
arises is

To which extent can a single attribute xi (i=1,3) estimate
the vegetation height?

Equivalently, the preceding boils down to estimating the
extent to which a single linear regression model of xi is
statistically speaking a good fit to estimate the vegetation
height of the training dataset. Mathematically, this corresponds
to the following fitting equation, where xi stands for x1, x2 or
x3.

y = β0 + β1x1 (3)

Intuitively, the three attributes may show distinct fit with
the training dataset. It is therefore interesting to explore
such trend. This corresponds to a backward elimination-
based strategy where instead of treating the three attributes
simultaneously, leading to a multi-regression model of three
parameters, we will only restrict to the most significant at-
tributes as testified by the simple regression fitting outcome.
Besides, for scaling purpose, we set β0 to one, and therefore,
leaving only β1, β2, and β3 to be estimated using the (multi)
regression model (s). The next section details the result of this
investigation.

V. DISCUSSION AND RESULTS

A. Correlation analysis

For validating and verifying the results, we later applied
statistical analysis, in order to find out whether the associated
attributes show any significance level of correlation with the
targeted variable.

First, in order to show the effect of each individual attribute
(max-pressure, min-pressure and mean-pressure) on (average)
vegetation height as estimated in the field measurement, the
variation of vegetation and each attribute with respect to
various site locations is plotted in Fig. 5. The latter indicate,
any increase (decrease) or the vegetation is translated into
either an increase or a decrease of the attribute value, except
for the site location A (sand), where both vegetation height and
pressure values are meaningless. On other hand, the direction
of variation (either increase or decrease) with respect to that of
vegetation height indicates a positive or a negative correlation
of the given attribute with respect to vegetation height. In
this course, Fig. 5a highlights a rough negative correlation
of maximum pressure with vegetation height. Although a
slight deviation can be observed in site F, C, E and D,
where the maximum pressure slight decreases as vegetation
height. Though, it does not affect the overall trend of negative
correlation. Indeed, the calculus of the Pearson correlation
coefficient between the attribute variable and vegetation height
indicates a correlation value of r = -0.9451 with p-value
0.0013. Likewise, from Fig. 5c, the mean pressure indicates
a similar pattern as for the maximum pressure attribute, with
a Pearson correlation coefficient r = -0.9219 and p-value =
0.0011. However, such trend is less visible in case of min-
pressure attribute as highlighted by the corresponding Pearson
correlation coefficient r = -0.79 but p-value = 0.02.

The results summarized in Table V indicates that there
is a weakly significant inverse relationship between the min
pressure and vegetation height r (61) = -0.39, n = 62, p ¡
0.001. In contrary, a strong statistically negative correlation
observed between the maximum pressure and vegetation height
r (61) = - 0.86, n = 62, p <0.001. Similar relationship holds
for mean pressure output and vegetation height where it was
found r (61) = -0.85, n = 62, p <0.001. Tables V also
exhibit the regression coefficient when a linear fit between the
underlined independent variable (max pressure, min pressure
or mean pressure) and vegetation height is enforced. Clearly,
the small value of Person coefficient indicates again the min
pressure attribute should be discarded and would not predict
the vegetation height appropriately.
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Fig. 5. Linearity Relation between; a) average maximium pressure(kgf)
and vegetation height(cm); b) average maximium pressure(kgf) and vegetation
height(cm); c) average maximium pressure(kgf) and vegetation height(cm)

TABLE V. PEARSONS CORRELATION COEFFICIENT WITH TARGET

VARIABLE AT 95% CONFIDENCE LEVEL

Variables Pearson Corr. Signi. Regression Coef. β
Maximum Pressure -0.86 <0.001 β = -2.11

Minimum Pressure -0.39 <0.001 β = -2.80

Mean Pressure -0.85 <0.001 β = -8.73

The experiments results shows that the higher pressure
readings are observed when exposed to more stiff surface such
as asphalt and sand. In contrary, the stiffness may vary in lands
where different level of vegetation is displayed. The reading
also shows that lands with higher vegetation height experience
lower reading of pressure attributes. This is due to the fact that
smaller stiffness around the surface is sometimes rooted back
to the presence of irregularities and unbalanced cases, which
in turn, causes difficulty in walking, and, thereby, ultimately,
results in lower recording of the pressure values.

B. Multi regression estimation of VH

In order to comprehend the influence of the multiple
attribute on the targeted variable (vegetation height), we ap-
plied a multi-linear regression model with statistical model
selection. For this purpose, we trained the model more ef-
ficiently by applying backward elimination technique [16]
and predefined threshold-based of 0.05. Results of previous
section showed that the max and mean-pressure exhibited
strong and statistically significant negative correlation with
vegetation height when considered either average site values or
the whole readings. Initially, the multi regression model with
backward elimination method considered all the independent
variables (min, max and mean-pressure) during the training
phase. After, training the model, we computed the p-value
for each attribute that is then compared to some predefined
significance threshold, which triggers the decision to maintain
or discard the underlying attribute variable. Especially, the
analysis of variance (ANOVA) is conducted in order to identify
the level of variability within the corresponding regression
model and form the basis for tests of significance.

The Table VI indicates that the p-value of min-pressure
attribute is quite large 0.229 as compared to significance level

TABLE VI. STATISTICAL SUMMARY AFTER FIRST ITERATION OF

MULTI REGRESSION MODEL

Variables Coefficients P-value t Stat Stand. Err.
Intercept 123.587 <0.001 22.337 5.533

Max. 0.743 0.229 1.216 0.611

Min. -1.067 0.014 -2.525 0.423

Mean -5.287 0.010 -2.648 1.997

of 0.05 (threshold). This agrees with previously aforemen-
tioned results. While, the maximum and mean attribute p-value
do not exceed the significant level. Thus, pointed out to be
highly statistically significant and considered to be powerful
predictor for our training model. Therefore, considering such
elimination-based analysis, the next iteration is run without the
min-pressure attribute. The results of this subsequent analysis
are shown in Table VII.

TABLE VII. STATISTICAL SUMMARY OF FINAL ITERATION OF MULTI

REGRESSION MODEL

Variables Coefficients P-value t Stat Stand. Err.
Intercept 123.978 <0.001 22.353 5.546

Max. -1.266 0.002 -3.233 0.392

Mean -3.885 0.021 -2.374 1.637

Finally, the evaluation of the multi-regression model is
conducted based on root mean squared error (RMSE) and
regression coefficient using the training dataset. The predictive
performance of the linear regression and multi regression
model in terms of two evaluation measures for single target
variable is presented in Table VIII.

TABLE VIII. EVALUATING THE PERFORMANCE OF LINEAR

REGRESSION AND MULTI REGRESSION FOR ESTIMATING VH

Variables R2 RMSE(cm) Model
Max Pres. 0.81 16.73 127.03-2.12*x1

Max & Mean Pres. 0.83 15.75 122.91-1.25*x1-3.75*x3

The findings shown in Table VII, VIII indicates promising
results and gives intuition for further research in data acqui-
sition obtained through low cost sensors, where the use of
multi-regression of max and mean pressure attribute yields a
decrease in RMSE, and therefore, an increase in prediction
capability.

C. Novelty and discussion on uncertainty of the work

Our findings showed a possibility to identify different
level of vegetation height by utilizing the low-cost foot-
wearable. Both linear-regression and multi-linear regression
models employed in our studies are solely trained on the
pressure sensor attributes (min, max and mean pressure values)
and the obtained findings showed that the maximum, mean
pressure attribute are highly correlated with vegetation height.
Besides, both linear regressions using max-attribute and multi-
regression (with mean and max pressures) shown good results
in terms both RMSE values as well as statistical significance.

For the purpose of simplicity and accommodating the
time constraint, we restricted our experimentation only to few
areas covering different measurements of vegetation heights.
In addition, the experiment is conducted only once at each
site excluding the factor of daily variation of environmental
conditions occurred due to the change in the temperature and
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humidity which might affect the soil moisture and vegetation
structure.

Nevertheless, one should also point out that the experi-
ments were mainly conducted with one single user wearing
the ubiquitous sensor foot-based platform. This trivially makes
the result pervaded by several uncertainty that are worth con-
sidering. First, users body weight straightforwardly influences
the numerical values of the sensor pressure. Nevertheless,
we believe that the influence of such phenomenon is very
limited, as the interest is on the correlation of the pressure
values with the vegetation height not on the exact value of the
pressure values. Second, the walking patterns of the individual
might also affect the pressure sensor readings. Although a full
investigation of such effect would require a proper ergonomic
analysis, the short interval between two measurements makes
the impact of such factor likely limited as well. Third, other
sensor placed in the ubiquitous platform, mainly, temperature
and humidity, could not exhibit much variations. The foremost
reason behind it, as already pointed out, is the short time
span of recording the sensor measurement, which in turn,
resulted in less variability in these measurements. However,
the measurement can be considered in the condition, when
the experiment is conducted for longer period of time, for
instance.In future consideration, we are opted to involve sensor
input from temperature and humidity sensor, which can be
utilized in training the model for more efficient result. In
addition, other modalities such as camera, can be added to
the platform, which in turns, will be useful for investigating
the spatial content of vegetation structure.

VI. CONCLUSION

In this study, data acquisition from the ubiquitous sensors
wearable platform, for predicting the vegetation height were
proposed and evaluated. The approach is based on develop-
ing a machine-learning model to learn the vegetation height
from key attributes associated to pressure, temperature and
humidity measurements. The idea is based on finding the key
variation from the sensor measurement at different level of
vegetation height. The approach uses multi-regression model
that involves pressure related attributes (minimum-pressure,
maximum pressure and mean-pressure). The correlation and
statistical analysis showed that maximum-pressure and mean-
pressure are more significant in predicting the vegetation
height. Thereby, both single and multi-regression models were
appropriately designed and tested.

In general, the results acquired from our approach are
not meant to outperform or even approach some state of art
approaches using more elaborated remote sensing or satellite
imaging techniques, nonetheless, will pave the way for the
development of low-cost ubiquitous technology. Indeed, in
contrary with satellite imaging and advanced remote sensing
technology that demand high operational costs, time and
labor, our approach entitles new opportunities towards data
acquisition at low cost, less time and labor demands. Simi-
larly, the developed approach outperforms traditional in/situ
measurements since it does not require any additional setup
or labor cost. Individual equipped with foot/sensor platform
can conduct the experiment straightforwardly. Besides, the
proposed methodology is less time consuming because the
device automatically gathering some aspects of the vegetation

related parameters and hence, providing crucial information
about its height when feed to developed linear regression
model.

Although, this is a pilot approach and much work is still
needed in order to construct more efficient machine learning
model, considering users various modalities and possibly in-
tegrating other soil related sensors. In addition, our approach
provides the feasibility for estimating minimalistic character-
istic of forest structure nearly at very low cost and less labor
demand.
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[9] B. Petzold, P. Reiss, and W. Stössel, “Laser scanningsurveying and
mapping agencies are using a new technique for the derivation of digital
terrain models,” ISPRS Journal of Photogrammetry and remote Sensing,
vol. 54, no. 2-3, pp. 95–104, 1999.
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