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Abstract—In paper develops a structure of a mechanical 
manipulator with six degrees of freedom. A mathematical model 
of the manipulator is investigated using the matrix method and 
the matrix Lagrange second-kind dynamic equations. As a result 
of the analysis of the mathematical model, generalized 
coordinates, velocities and accelerations for the links of the robot 
are obtained, the spatial trajectory of the movement of the 
gripper of the manipulator is determined. The developed 
mathematical model of the robot allows you to design automated 
robotic systems with six degrees of freedom. 

I. INTRODUCTION 

Recently, automated robotic systems have been actively 
applied to the economic development of industrial countries. 
Such automated systems include industrial robots, manipulators 
and can achieve up to 75% increase in industrial production. 
Industrial robots are widely used in the automotive industry, in 
electronics, in metalworking, in the production of rubber and 
plastics, in the food industry, in pharmaceuticals, as well as in 
other fields.  

Industrial robot - automatically controlled multi-purpose 
drive mechanism that performs industrial automation tasks. A 
manipulator is a machine, a mechanism that consists of 
consecutive connected links. Manipulators are designed to 
capture and move objects in three-dimensional space. The 
manipulator can be controlled by an operator or a 
programmable electronic controller. The two connected links of 
the manipulator represent a kinematic pair. 

The task of developing a nonlinear mathematical model of a 
mechanical manipulator with six degrees of freedom is 
considered. When creating dynamic equations of motion, the 
matrix method and the Lagrange equations of the second kind 
are used. The mechanical manipulator under study is used to 
create automated systems for the maintenance of machinery 
and equipment. The mechanical manipulator performs 
functions similar to those of a human hand. In industrial 
production, technological manipulators are used to creating 
automated complexes. Manipulators are used for assembly 
operations, for machining, welding, for servicing mechanisms, 
devices, and machines, for removing and installing equipment, 
for changing parts, for tools. 

The main function of the mechanical manipulator is 
determined by the kinematic scheme and consists of moving 
the gripper with the processing object to a given point in space. 
The paper proposes a kinematic structure of a mechanical 
manipulator with six degrees of freedom.  

The mathematical model is represented by a nonlinear 
system of six ordinary second-order differential equations. 

To build a solution to the proposed system, analytical 
methods are used. The purpose of the study of the model of the 
manipulator is to determine the main dynamic characteristics. 
The basic dynamic characteristics of the motion of a 
manipulator with six degrees of freedom are determined. 

Currently, a large number of scientific articles devoted to 
the problems of simulation of robots. We give some scientific 
work in the field of research of manipulators. In the article [1], 
adaptive impedance control was developed for a robotic 
manipulator using neural networks and the Lyapunov method. 
Simulations are carried out to verify the proposed control.  

In the article [2] discusses forging manipulators for the 
modern industry. Forging manipulator systems with a large 
payload is usually characterized by a large output load and a 
large capacitive load. The study analyzed the general 
kinematics and forces of the main mechanism of the 
manipulator.  

In the article [3] discusses the use of flexible manipulators 
in various robotic applications. Research is being carried out in 
the field of modeling, sensor systems and controllers for the use 
of flexible robotic manipulators. A brief description of the main 
modeling methods is presented, followed by an overview of 
practical alternatives to sensor systems. A detailed review of 
control strategies for flexible manipulators is presented.  

In the article [4], adaptive neural networks are used to 
design controls for suppressing vibrations of a flexible robotic 
manipulator. To improve the accuracy of the description of the 
elastic deflection of a flexible manipulator, the system is 
modeled using an approach with concentrated spring masses. 
Numerical simulation for a concentrated model of a flexible 
robotic system is carried out to test the effectiveness of control.  

In the article [5] proposes a new adaptive controller that 
uses the Bat algorithm to control a robotic arm. The sliding 
mode controller is one of the control methods that provide high 
reliability and low tracking error.  

In the article [6] presents a conveyor mechanism, which is a 
classic case of manipulating a conveyor with one degree of 
mobility. The geometry and kinematics of the conventional 
manipulator used in classical mechanics are considered. The 
manipulator is used on lifting platforms, on chairs for the 
disabled, on cranes, forklifts.  

In the article [7], the neural network controller is designed 
to suppress the vibration of a flexible robotic manipulator 
system with an input dead zone. The flexible manipulator 
model is based on the concentrated spring-mass method. The 
dynamics of the manipulator and the influence of the input 
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dead zone are approximated by a neural network with a radial 
basis function. 

In the article [8] article presents the kinematic diagram of 
the manipulator for lifting and solves the nonlinear dynamic 
model of the lift using the analytical method of 
transformations. 

The authors developed a computer program [9] for 
calculating models of industrial manipulators. The program is 
registered and implemented at several enterprises for the design 
and automation of control systems for industrial manipulators. 

A computer program allows the calculation of any kinematic 
schemes of manipulators up to six degrees of freedom. The 
program consists of the following modules: for calculating the 
displacement matrices, for calculating the absolute coordinates 
of the robot grip, for determining the kinetic and potential 
energy of the manipulator links, for compiling the Lagrange 
matrix equations and for solving the dynamic equations of the 
manipulator by the analytical method of transformations. 

II. MODELING OF THE MANIPULATOR WITH SIX 

DEGREES OF FREEDOM 

Consider the kinematic scheme of the manipulator (Fig. 1), 
which includes five rotational kinematic pairs and one 
translational pair. 

 
Fig. 1. Kinematic scheme of the manipulator 

 

When developing the dynamic equations of a robot, we 
apply the matrix method and Lagrange matrix dynamic 
equations. In the matrix method, extended transition matrices 
from one coordinate system of the manipulator links to another 
coordinate system are used. The links of the industrial 
manipulator are modeled by rods, the joints are modeled by 
cylindrical joints and sliding joints without friction. 

By the matrix method [10], we apply the transition 
matrices for the coordinate systems of the links of the 
manipulator. When moving from one coordinate system to the 
next coordinate system, no more than four movements are 

necessary: a turn around an axis, two shifts along the axes and 
a turn. 

Define the coordinate system of the links of the robot in 
points 1 2 3 4 5 6, , , , ,O O O O O O . The initial coordinate system is 

connected to the fixed base of the manipulator at 0O . 

Let us take as a generalized iq  coordinates of a robot with 

six degrees of freedom: the angle of rotation around the rack, 
the angle of inclination of the rack, the length of the extension 
of the arm, the angle of rotation of the arm, the angle of 
rotation and inclination of the gripper. Here we measure 
angles in radians, lengths in centimeters.  

The three-dimensional model of an industrial manipulator 
was built and modeling was carried out in a specialized 
computer program (Fig. 2). 

 
Fig. 2. Three-dimensional model of the manipulator 

Transition from the coordinate system 0O  to the coordinate 

system 1O  performed by the following: rotation around the z 

axis at an angle 1q , a shift along the z axis by 1a  and rotate 

around the x axis at an angle / 2 . 

Transition from the coordinate system 1O  to the coordinate 

system 2O  performed by the following: a shift along the z 

axis by 3q  and rotate around the x axis at an angle 2q . 

Transition from the coordinate system 2O  to the 

coordinate system 3O  performed by the following: a shift 

along the z axis by 3a   

Transition from the coordinate system 3O  to the coordinate 

system 4O  performed by the following: a shift along the z 

axis by 4a  and rotate around the x axis at an angle 4q . 

Transition from the coordinate system 4O  to the 

coordinate system 5O  performed by the following: rotation 

around the z axis at an angle 5q , a shift along the z axis by 5a   
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Transition from the coordinate system 5O  to the coordinate 

system 6  O  performed by the following: a shift along the z 

axis by 6a  and rotate around the x axis at an angle 6q . 

We introduce the radius vector of points  ,iO  in the i – th 

coordinate system:  1
T

i i i iR x y z  . 

Transition matrix 1,i iA   connects the radius of the vector in 

the coordinate systems i – 1 and i: 1 1,i i i iR A R  .  

Denote function:    ,i i i iC Cos q S Sin q  . 

The transition matrices to the next coordinate system are 
defined: 

1 1

1 1
01

1

0 0

0 0

0 1 0

0 0 0 1

C S

S C
A

a

 
 
 
 
 
 

,  

2 2
12

2 2 3

1 0 0 0

0 0
,

0

0 0 0 1

C S
A

S C q

 
  
 
 
 

  

23
3

1 0 0 0

0 1 0 0
,

0 0 1

0 0 0 1

A
a

 
 
 
 
 
 

  

4 4
34

4 4 4

1 0 0 0

0 0
,

0

0 0 0 1

C S
A

S C a

 
  
 
 
 

5 5

5 5
45

5

0 0

0 0

0 0 1

0 0 0 1

C S

S C
A

a

 
 
 
 
 
 

, 

6 6
56

6 6 6

1 0 0 0

0 0

0

0 0 0 1

C S
A

S C a

 
  
 
 
 

. 

The transition matrices from the fixed coordinate system 

0O  to iO  are determined: 0 01 12 1  i i iA A A A    

1 1 2 2 1 3 1

1 1 2 1 2 1 3
02

2 2 10

0 0 0 1

C S S C S q S

S C S C C C q
A

C S a

   
 
 
 
 
 

, 

1 1 2 2 1 3 2 1 3 1

1 1 2 1 2 3 1 2 1 3
03

2 2 1 3 20

0 0 0 1

C S S C S a C S q S

S C S C C a C C C q
A

C S a a S

    
  
  
 
 

, 

1 4 1 2 2 1 4

1 1 4 2 1 2 4
04

2 4 2 40

0 0

C C S S C S S

S C C S C C S
A

C C S S

 
 
  



 , 

2 4 1 1 2 4 3 2 1 4 2 1 3 1

1 2 4 1 2 4 3 1 2 4 1 2 1 3

4 2 2 4 1 3 2 4 2

0 1

C C S S S S a C S a C S q S

C C C C S S a C C a C C C q

C S C S a a S a S

     
   
  



, 

 
 

 

1 5 4 1 2 2 1 4 5

5 1 1 4 2 1 2 4 5
05

2 4 2 4 5

0

C C C S S C S S S

C S C C S C C S S
A

C C S S S

   
  
  



 , 

 
 

 

5 4 1 2 2 1 4 1 5

5 1 4 2 1 2 4 1 5

5 2 4 2 4

0

C C S S C S S C S

C C C S C C S S S

C C C S S

  
 

 
 , 

2 4 1 1 2 4

1 2 4 1 2 4

4 2 2 4

0

C C S S S S

C C C C S S

C S C S

 



 , 

 
 

 

3 2 1 4 2 1 3 1 5 2 4 1 1 2 4

3 1 2 4 1 2 1 3 5 1 2 4 1 2 4

1 3 2 4 2 5 4 2 2 4

1

a C S a C S q S a C C S S S S

a C C a C C C q a C C C C S S

a a S a S a C S C S

     


    


    


 . 

Denote the coordinates  6 6 6, ,x y z  of the gripper in 

the coordinate system 6O . In a fixed system 0O , the 

coordinates of the gripper are defined: 

   
06 3 2 1 4 2 1 3 1

5 2 4 1 1 2 4 6 2 4 1 1 2 4

x a C S a C S q S

a C C S S S S a C C S S S S

    

     

  
  

 

1 5 4 1 2 2 1 4 5 6

6 5 4 1 2 2 1 4 1 5

2 4 1 1 2 4 6 6

(

)

C C C S S C S S S x

C C C S S C S S C S

C C S S S S S y

   

   

  

     6 2 4 1 1 2 4 5 4 1 2 2 1 4 1 5 6 6 ,C C C S S S S C C S S C S S C S S z     
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   
06 3 1 2 4 1 2 1 3

5 1 2 4 1 2 4 6 1 2 4 1 2 4

y a C C a C C C q

a C C C C S S a C C C C S S

   

   
   

  
  

5 1 1 4 2 1 2 4 5 6

6 5 1 4 2 1 2 4 1 5(

C S C C S C C S S x

C C C C S C C S S S

  

  
  

 
     

1 2 4 1 2 4 6 6

6 1 2 4 1 2 4 5 1 4 2 1 2 4 1 5 6 6

)

,

C C C C S S S y

C C C C C S S C C C S C C S S S S z

 

   

  

 
   

   

06 1 3 2 4 2 5 4 2 2 4

6 4 2 2 4 2 4 2 4 5 6

5 6 2 4 2 4 4 2 2 4 6 6( )

z a a S a S a C S C S

a C S C S C C S S S x

C C C C S S C S C S S y

     

    

    

   

    6 4 2 2 4 5 2 4 2 4 6 6C C S C S C C C S S S z    .  

Determine the kinetic energy of all links of the robot using 
transition matrices: 

 0 0

1

2
T

i i i iT tr A H A    ,           (1) 

Where iH –link inertia matrix,  im  - link weight. 

Determine the potential energy of the links: 

T
i i i iP m G A R   ,            (2) 

where   1
T

i i i iR x y z  – matrix column coordinates 

of the center of gravity link, 

 0 0 0T
iG g   – matrix line of gravitational 

acceleration. 

Total potential energy is determined: 

 
    
      

1 1 2 3 4 5 6

2 4 5 5 5 6 6

2 4 4 5 6 3 3 4 5 6

a m m m m m m

P g Sin q q a m a a m

Sin q a m m m a m m m m

      

    

       

  

We write the system of dynamic equations of motion of the 
manipulator using the Lagrange equation: 

0
' i
i i i

d T T P
Q

dt q q q

   
       

 ,          (3) 

where  iQ  –generalized forces generated by the electric 

drive link. 

Substituting the kinetic, potential energy and generalized 
forces in the Lagrange equations, we get the system of 
equations of motion of the manipulator with six degrees of 
freedom.  

 
 

'' 2
1 1 3 3

2 2 2
3 3 4 4 4 5 5

2 2
3 3 4 4

(0.005 0.005 0.5

0.005 0.5 0.5 0.5 )

(0.005 0.5 0.5

q m a m

a a a a m a m

a a a a

  

    

   

  

 
   

2 2 2 2
3 3 4 4 5 5 6 6 6

2 2 2
2 4 5 5 5 5 6 6 6

0.005 0.5 0.5 0.5 0.5

2 2 ( 0.5 0.5 0.5 )

a a a a a a a a m

Sin q Sin q a m a a a a m

      

        
  

    2 2 2
2 4 5 5 5 5 6 6 62 2 0.5 0.5 0.5Cos q Cos q a m a a a a m         

 
 
 
 

2
4 4 5 6

2
2 3 3 4 5 6

3 4 4 5 6

0.5 0.5 0.5

2 0.5 0.5 0.5 0.5

a m m m

Cos q a m m m m

a a m m m

   


    
   

  

 
 
 

 

4 4 5 6

2 3

3 3 4 5 6

2
3 4 5 6 3

2 2 2

2 2 2 2

a m m m
Cos q q

a m m m m

m m m m q

   
 

    
   

  

        
    

2 4 6 6 5 5 6 2 3 4 3

2 4 6 6 5 5 6

2

2

Cos q Cos q a m a m m Cos q a a q

Sin q Sin q a m a m m

       
     

     2
2 3 4 3 2 3 10.005 )Cos q a a q m q Q      ,  

   
 

2 2 2
2 3 3 3 3 4 4 4''

2 2 2 2
3 3 4 4 5 5

0.005 0.005 0.005 2

0.005 2

m a m a a a a m
q

a a a a a m

       
 
     

 
     

2 2 2 2
3 3 4 4 5 5 6 6 6''

2

4 3 4 6 6 5 5 6

0.005 2 2

2

a a a a a a a a m
q

Cos q a a a m a m m

       
 
    

  

    
    
2 4 6 6 5 5 6

22 '
2 2 4 4 5 6 12 0.5 0.5 0.5

gCos q q a m a m m

Q Sin q a m m m q

    

    
  

    
 

22 '
2 3 3 4 5 6 1

2 2 2
2 4 5 5 5 5 6 6 6

2 0.5 0.5 0.5 0.5

( 2 ( 0.5 ( 0.5 0.5 ) )

Sin q a m m m m q

Sin q q a m a a a a m

    

        
  

      
     

2'
2 4 5 5 6 6 6 3 1

2'
3 4 2 5 5 5 6 6 1

)

( 2

Sin q q a m m a m q q

a Cos q Sin q a m a a m q

    

     
  

    
        

2'
3 2 2 3 1

2'
4 5 6 2 2 2 4 3 12

m gCos q Sin q q q

m m m gCos q Sin q Cos q a q q

    

      

  

        
     

2' ' '
4 5 5 5 6 6 2 1 2 4

2'
4 4 2 6 6 5 5 6 1

2 2 )

( 2

Sin q a m a a m Cos q q q q

a Cos q Sin q a m a m m q

   

     
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      
        

2'
4 5 6 2 2 3 1

2' ' '
4 6 6 5 5 6 2 1 2 4

 

2 2 ),

m m m gCos q Sin q q q

Sin q a m a m m Cos q q q q

     

  
  

     
   

''
3 3 4 5 6 3 2 4 4 5 6

2 3 3 4 5 6

(q m m m m Q Cos q a m m m

Cos q a m m m m

       

   
  

    
   

2 4 5 5 5 6 6

2'
2 3 4 5 6 3 1) ,

Cos q q a m a a m

m m m m m q q

   

   
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    

'' 2 2 2
4 4 5 6 5 5 5 6 5 6 6 6 6

22 '
4 2 4 5 5 6 1

0.005( 2

2 0.5 0.

)

5

q m m m a m a m a a m a m

Q Sin q q a m m q

      

      
  

 
   

   
 

6 6 2 4

24 2 4 3 4 '
1

2 4 6 2 4 3

(

0.5 0.5 2

0.5 2

a m gCos q q

Sin q Sin q q a a
q

Sin q q a Sin q q q

  

         
      

  

      
 

    

2'
4 3 4 2 5 2 4 5 6

2 4 6 6

4 2 4 3 5 6

) (

( 2

0.5 0.5 2

Sin q a a q a gCos q q m m

Sin q q a m

Sin q Sin q q a m m

    

   

    

  

    

    
    

4 2 4 4 5 6

2'
2 4 5 6 3 1

2'
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0.5 0.5 2

)
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Sin q Sin q q a m m

Sin q q m m q q

Sin q a a m m q

      

  

 

  

 ''
5 5 6 5200q m m Q   , 

''
6 6 6200q m Q .             (4) 

The correctness of the mathematical model of the industrial 
manipulator is justified by the use of the universally 
recognized matrix method in the kinematics of manipulators, 
by the application of the traditional matrix Lagrange equations 
in the dynamics of manipulators. 

The fifth and sixth equations of the system are easily 
integrated:  

 
2

5
5

5 6

100
,

t Q
q t

m m



 

 
2

6
6

6

100t Q
q t

m
 .  

To solve the remaining three differential equations of 
system (4), we apply the method of polynomial 
transformations [9,10] with the following parameters: 

1 2 3 4 5 6200 , 60 , 30 , 20 , 20 , 20 ,m m m m m m        

1 2 36000, 60000, 0.01,Q Q Q     

4 5 620000, 0.01, 0.01,Q Q Q     

1 2 3 4 5 630 , 20 , 20 , 30 , 30 , 20 .a a a a a a        

For industrial MP manipulators with the circuit in Fig. 1, 
the kinematic characteristics were calculated for technical 
parameters of masses and lengths of links of the industrial 
manipulator. 

The transformation method [11] allows us to find a 
solution with all the nonlinear components of the original 
system. The method of transformation [12] allows us to 
construct a solution of a nonlinear system of differential 
equations in an analytical form. 

The solution of the system of three differential equations 
(4) is obtained by the method of transformations: 

     
   

1 0.151594 0.6971   0.118335 1.1278    

0.118849 0.6971   0.0117864 1.1278 ,

q t Cos t Cos t

Sin t Sin t

   



     
   

2 0.191824 0.6664   0.14823 1.1331   

0.175084 0.6664   0.0104015 1.1331 ,

q t Cos t Cos t

Sin t Sin t

   


  

     
   

3 0.286225 0.0831   0.215533 1.0636   

2.29318 0.0831   0.0294979 1.0636 ,

q t Cos t Cos t

Sin t Sin t

   


  

     
   

4 0.163246 0.1301   0.113956 1.1341   

1.40722 0.1301   0.0162264 1.1341 ,

q t Cos t Cos t

Sin t Sin t

   


  

     
   

5 0.100686 0.0961   0.0700462 1.141  

1.32824 0.0961   0.0194242 1.141 ,

q t Cos t Cos t

Sin t Sin t

   


  

     
   

6 0.252572 0.1992   0.0145165 1.8115   

1.32734 0.1992   0.108237 1.8115 .

q t Cos t Cos t

Sin t Sin t

   


   

Verification of the industrial manipulator model is 
performed by parallel modeling in a specialized computer 
program. 

Fig. 3 shows the calculation of the generalized coordinates 
for the manipulator. 

 
Fig. 3. Coordinates of links of the manipulator 
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Fig. 4 shows the calculation of the generalized velocities 
for the manipulator. 

Fig. 4. Speed of links of the manipulator 

Fig. 5 shows the calculation of the generalized 
accelerations for the manipulator. 

Fig. 5. Acceleration of the links of the manipulator 

Fig. 6 shows the spatial trajectory of movement of the gripper 
arm relative to the fixed base of the rack.  

Fig. 6. The trajectory of the gripper arm 

The resulting spatial trajectory of the robot grip coincides 
with the actual trajectory for industrial manipulators, which 
also confirms the reliability of the calculations of the 
manipulator model. 

III. CONCLUSION

A kinematic scheme of a manipulator with six degrees of 
freedom has been developed and a mathematical model of a 
manipulator has been investigated using the matrix method. As 
a result of the analysis of the mathematical model, the 
coordinates, velocities, and accelerations of the links of the 
manipulator are determined. The work defines the spatial 
trajectory of the movement of the gripper arm in a fixed 
coordinate system. The developed kinematic scheme of the 
manipulator allows determining the dynamic characteristics of 
the manipulator. Mathematical calculations were checked in 
specialized computer mathematical packages. The 
mathematical model of the manipulator allows the design of 
manipulators with six degrees of freedom and the development 
of automated robotic systems. The authors plan to generalize 
this approach for the design of manipulators with many 
degrees of freedom. 
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