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Abstract—In this paper we discuss the possibility of 
adversarial examples appearance in high-tech medical images 
(Computer tomography and Magnetic resonance imaging), due to 
the noise inherent in the technology of their formation, and 
therefore we suggest ways to counteract this effect. As the idea of 
the paper we put two questions: 1.Can individual instances of 
real high-tech medical images work as AE when being analyzed 
with the use of neural networks? 2. Is it possible to defend oneself 
against such «natural» adversarial attacks with the simplest 
possible means? In our research, we tried the following defence 
methods: adversarial training, Gaussian data augmentation and 
bounded RELU (see section 3 for a detailed description). We 
conducted the experiment with the use of the neural network - a 
variant of convolutional network structure combining U-Net with 
the region proposal networks. As the source data two datasets 
were chosen - the Lung Image Database Consortium image 
collection containing 1018 lung cancer screening thoracic CT 
scans and Brain MRI DataSet containing clinical imaging data of 
glioma patients (a total of 274 cases). The experiments showed 
that the degree of manifestation of AE varies depending on the 
type of training model. When training a model not using 
techniques of defences on adversarial examples, the number of 
incorrectly recognized images is quite large (200 per 10,000 for 
CT and 285 per 10,000 for MRI). By proper selecting of the 
activation function of CNN, it can be reduced to 60 and 68, 
respectively. With augmentation of training dataset by Gaussian 
noised images, this number drops to 21 and 26. An even greater 
reduction in the number of incorrectly recognized images is 
achieved using the Adversarial Training method – 12 and 15. 
Thus, it is shown that the adversarial effect is possible after the 
application of adversarial training techniques, but the degree of 
noise in such an image will be much higher than before using 
these techniques, and it will be easy enough for the doctor to 
recognize them visually and exclude them from further 
consideration. 

I.  INTRODUCTION

In recent years, medical images have entered the category 
of leading diagnostic tools. High-tech medical images, such as 
formed by computer tomography (CT) or Magnetic resonance 
imaging  (MRI), have become part of the daily practice of 
doctors. For example, medical images are considered one of 
the most informative means of diagnosing serious diseases 
such as lung cancer, brain cancer, multiple sclerosis. 

However, the accuracy of diagnosis of these diseases, even 
with the use of high-tech medical images, leaves much to be 

desired. For example, the accuracy of diagnosing lung cancer 
even by an experienced radiologist does not exceed 75% with 
a high sensitivity and rather low specificity [1]. The fact is that 
the difference between malignant and benign pulmonary nodes 
lies mainly in their morphological characteristics, which are 
poorly described by a set of independent features and are to be 
evaluated integrally. Therefore, in recent years, the attention of 
both physicians and IT professionals has been drawn to 
the development of automated tools for diagnosing 
cancer.  

One of the most promising approaches was the use of 
neural networks, which do not require the assignment of 
classifying features in an explicit form. In this direction great 
efforts were made by the developers: for example, the 
Kaggle’s Data Science Bowl 2017 competition [2] was 
entirely devoted to the diagnosis of lung cancer. Neural 
networks of various types were used, including convolution 
neural networks (CNN), deep neural network (DNN),  stacked 
autoencoder (SAE) neural network etc. [3]. Diagnostic 
accuracy on experimental datasets exceeded 90% [4, 5].The 
components are arranged in the order in which they should be 
in the article. 

However, in 2014, the phenomenon of adversarial 
examples (AE) was discovered [6], which significantly 
undermined the credibility of the results obtained by neural 
networks. According to [6], “adversarial examples are 
obtained by imperceptibly small perturbations to a correctly 
classified input image, so that it is no longer classified 
correctly”. 

In subsequent studies [7], it was shown that it is quite easy 
to create AE that are difficult to distinguish visually, since 
they are similar to the result of noise on benign images. Such 
examples were built for images from various subject areas, 
including medical images [8]. 

However, the appearance of AE  is mainly associated with 
attacks of adversaries (intruders); other ways of the 
appearance of AE in images, including medical  images, are 
not considered in the available literature. This paper discusses 
the possibility of an appearance of AE in high-tech medical 
images, due to the noise inherent in the technology of 
their formation, and suggests ways to counteract this 
effect. 
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II. BACKGROUND AND RELATED WORKS

A. Nature of Adversarial Examples 
The phenomenon of AE occurs when processing images 

using neural networks. In the notion of [9], a full neural 
network F(x) is defined as follows:   

       F(x) = softmax(Z(x)) = y   (1) 

consisting of layers 

   F = softmax  Fn  Fn 1 …  F1    (2) 

where  

ˆ( )i i iF x x .     (3) 

Here x Rn is an input vector, y Rm is an output vector,  is 
some non-linear activation function, i  is a matrix of model 
weights, and ˆ

i   is a vector of model biases. Note that the
output vector y  is formed using softmax function Z(x) = z so 
that 0  yi  1 and y1+… +ym = 1, yi being  the probability that 
input x belongs to class i. In this case, the entire network 
works as a classifier giving the label C(x) = arg maxi F(x)i to 
the input x. The correct label of x is denoted as C*(x). 

[6] defines AE in a following way: it is an input x' similar 
to a valid input x so that C(x')  C*(x). A closeness (similarity) 
between x' and x is, as a rule, associated with the visual 
indistinguishability of the corresponding images x' and x and 
should be defined in a proper way. Most widely-used are three 
distance metrics: L0 (the number of differing pixels in x' and 
x); L2 (the standard Euclidean distance between x' and x); L
(the maximum difference between any pair of pixels in x' and 
x). However, the generally accepted metric for measurement 
of human perceptual similarity has not yet been developed. 

Techniques of artificial AE formation are called 
adversarial attacks. In our work we use the attacks of two 
simplest types: fast gradient sign method (FGSM) [10] and 
Jacobian-based saliency map approach (JSMA) [11]. In FGSM 
adversarial example is generated by performing one step in the 
direction of the gradients sign with step-width  as hyper-
parameter. JSMA estimates the Jacobian values of target and 
not-target classes and thus chooses pixel of input image to be 
perturbed.  

B. Adversarial Examples in High-Tech Medical Images: 
State of the Art 

Analysis of the literature shows that the study of the effect 
of AE on medical images mainly focuses on target attacks. 
These attacks aim to make the neural network to classify an 
adversarial input x' as a given target class t such that t  C*(x) 
although x' and x are visually similar. Two types of problems 
are mainly under consideration: on the one hand, the potential 
hazards of adversarial attacks; on the other hand, the ways to 
artificially construct targeted adversarial examples and to 
counteract them. 

Namely, the authors [12] highlight economic and 
organizational features of the healthcare system that favor 
adversarial attacks as a means of conscious fraud. Scenarios for 
deception of health insurance companies with application of AE 
in dermatology, radiology and ophthalmology are discussed. In 
order to show the vulnerability of standard medical deep learning 
systems to adversarial attacks, the authors implement patch [13] 
and human-imperceptible attacks. They argue that the white and 
black box projected gradient descent (PGD) attack strategies [14] 
are the best for the latter case, that is, attacks trained using PGD 
are minimally visible. 

In [15], the authors apply to chest X-Ray images AE attacks 
of different categories, namely: gradient-based attacks, score-
based attacks and decision-based attacks [16]. In the latter case, 
the attack relies on the final decision of the model and manifests 
itself in a blurring of the classification boundary. The authors 
[15] apply methods like Gaussian blur, contrast reduction and 
additive Gaussian noise and show that in all these cases, the 
result of the attack is visually noticeable in the image. 

Authors [17] examined the robustness of a variety of medical 
imaging models in relation to various disturbances, including AE 
as well as noise, outliers and ambiguous input data. 
Dermatoscopic images and whole brain MRI scans were used as 
the originals, and different variants of gradient-based 
adversarial example generation method [10 , 18] were applied. 
To simulate noisy images modality-specific distributions were 
used, namely: Gaussian noise for dermatoscopic images and 
Rician noise for brain MRI images. The authors have visually 
shown that all the above types of added perturbations are 
effectively imperceptible to the human eye, and moreover, the 
manifestation of AE in the image can be considered as a kind 
of noise. For a comparative study of the statistical properties 
of the above kinds of typical noise vs adversarial noise, 
the authors used to-distributed Stochastic Neighbor 
Embedding [19].  

At the same time, another type of AE attacks, namely 
untargeted adversarial attack, is defined in [6]. In this case, the 
AE can be any input x' such that C(x')  C*(x) provided that x 
and x' are close (similar) in a proper way. With regard to medical 
images it means that the valid and adversarial images should be 
indistinguishable under conditions typical for their formation. 
The review showed that the possibility of an untargeted 
adversarial attack on medical images as well as means to combat 
it are hardly considered in the literature. 

C. Noise Characteristics in High-Tech Medical Images 
As a rule, AE are being masked as adding noise components 

to the valid image. In this paper, the problem of AE is considered 
on two examples of high-tech medical images – namely on CT 
images of the lungs as well as on MRI images of brain.  

Noises of high-tech medical images can be characterized by 
various parameters, but the most wide-spread are the type of 
statistical distribution and peak signal-to-noise ratio (PSNR): 

1020 log iMAX
PSNR

MSE .  (4) 

Here MAXi is the maximum brightness of an image pixel, 
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MSE is the mean square error of pixels within the whole image. 
It should be noted that in various sources the value of PSNR is 
given either in decibels or directly in relative units, which 
complicates the comparative analysis.  

Various ways of noise reduction of high-tech medical images 
are proposed [20], however, radiologists' opinion of them is 
contradictory [21], since noise suppression measures may impair 
the distinctiveness of the image. In this regard, physicians prefer 
not to use noise reduction during visual inspection, and most of 
the problems are solved by radiologists directly in the presence 
of noise. Moreover, in recent years, low-dose CT has been 
increasingly used in clinical practice [22], which is more benign 
to the patient's health, but leads to a significant increase in the 
noise level in the image. 

Noises on CT images have complex nature, depending on the 
equipment parameters (first of all, tube current-time product 
being  the product of the x-ray tube current and the CT scanner 
exposure) as well as on the patient parameters (for example, his 
size) and on the experiment parameters (for example, slice 
thickness) []. As shown in the literature (see [24] and the review 
in it), the CT noise statistics is characterized by a non-stationary 
spatial distribution and the presence of higher moments. It is 
modeled differently in different spatial areas of the image. A 
mixture of off-center gamma distributions (nc- ) is proposed as 
the most generalized model. Other sources use special versions 
of this model up to the Gaussian distribution. The working range 
of PSNR for CT images lies in the range of 30–40 dB, and for 
low-dose CT it decreases to 20–30 dB and below [22, 25, 26]. 

No less complex nature is demonstrated by noise on MRI 
images [27]. The impact factors include the equipment 
parameters (like configuration of coils and scanner drifts) as well 
as the experiment parameters (like time to echo, time to repeat, 
slice thickness, flip angle, voxel volume). Besides, the signal 
fluctuations in a given voxel are influenced by physiological 
noise (like cerebral metabolism), as well as by subject's 
movements. 

Depending on the number and configuration of the coils, the 
noise distribution may vary from complex Gaussian to Rice 
distribution. With the presence of artifacts, the distribution 
becomes more asymmetric, shifting towards the right tail, and is 
no longer described analytically [28]. A comparative analysis of 
literature data [27, 29, 30], as well as direct consultations with 
radiologists showed that the characteristic values of PSNR for 
MRI lie in the range of 10–300 in absolute terms, which roughly 
corresponds to 20–50 dB according to (4). 

Comparing the above results, we put the following question: 
can individual instances of real high-tech medical images work 
as AE when being analyzed with the use of neural networks? 
The second question we set for ourselves was the following: is it 
possible to defend oneself against such «natural» adversarial 
attacks with the simplest possible means?  In our investigation, 
we tried the defense methods proposed in [8], namely: 
adversarial training, Gaussian data augmentation and bounded 
RELU (see section 3 for a detailed description).  

The rest of the paper is organized as follows. Section III 
describes the experimental technique, as well as the architecture 
of the neural network used and the simulation parameters. 

Section IV presents and discusses the results of the experiment. 
Section V formulates the conclusion on the work. 

III. METODOLOGY 
To answer the questions posed in Section II, we conducted 

a set of experiments each consisting of the following  
steps. 

1) We train a neural network on dataset consisting of CT 
or, respectively, MRI images. 

2) From this dataset, we select an image with Pclass source = 
0.72, and generate 10,000 noisy copies of this image, 
thereby forming a “noisy” dataset. 

3) We make the classification of "noisy" dataset using a 
neural network trained in step 1 and calculate for it the 
values of  Pclass result  

4) According to the classification results taken from the 
softmax layer (see expression (2)), we determine the 
number of elements of the “noisy” dataset, for which 
Pclass result < 0.5. 

5) We make a quantitative assessment of the similarity 
(distinguishability) of the source image used in step 2, 
and the images selected in step 4, using L2 distance 
metric mentioned above: 

                 
2'

2 i i
i

L x x .                (5) 

The specifics and parameters of each step are explained 
below.  

TABLE I.  NETWORK ARCHITECTURE AND PARAMETERS 

Layer Type  Input Output 
Convolution + ReLU 3 3 3 0 1 
Convolution + ReLU 3 3 3 1 2 

Max Pooling 2 2x2 2 3
Convolution + ReLU 3 3 3 3 4 
Convolution + ReLU 3 3 3 4 5 

Max Pooling 2 2x2 5 6
Convolution + ReLU 3 3 3 6 7 
Convolution + ReLU 3 3 3 7 8 

Max Pooling 2 2x2 8 9
Convolution + ReLU 3 3 3 9 10 
Convolution + ReLU 3 3 3 10 11 

Max Pooling 2 2x2 11 12
Convolution + ReLU 3 3 3 12 13 
Convolution + ReLU 3 3 3 13 14 

UpConvolution 2 2x2 14 15
Convolution + ReLU 3 3 3 15+11 16 
Convolution + ReLU 3 3 3 16 17 

UpConvolution 2 2x2 17 18
Convolution + ReLU 3 3 3 18+8 19 
Convolution + ReLU 3 3 3 19 20 

UpConvolution 2 2x2 20 21
Convolution + ReLU 3 3 3 21+5 22 
Convolution + ReLU 3 3 3 22 23 

UpConvolution 2 2x2 23 24
Convolution + ReLU 3 3 3 24+2 25 

Convolution 1x1x1 25 26 
Softmax 2 26 27 

Parameter    
Learning Rate 0.1   

Momentum 0.9   
Batch Size 128   

Epochs 32   
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To configure the neural network, we used an architecture 
[31] that proved itself well when working with CT images of 
the lungs. It is a variant of convolutional network (CNN) 
structure combining U-Net [32] with the region proposal 
networks (RPN) [33]. The network parameters used are 
presented in Table I.  

For each type of image (CT or MRI respectively), the 
following variants of training were used: 

(a). The network is trained on source data using RELU 
activation function.  

(b). The network is trained on source data augmented by the 
same images with added Gaussian noise; 

( ). The network is trained on source data augmented by AE 
gained using FGSM and JSM attacks; 

(d). The network is trained on source data, but the activation 
functions for the layers are replaced by Bounded ReLU.  

As the source data two datasets were chosen, namely: the 
Lung Image Database Consortium image collection (LIDC-
IDRI) [34] containing 1018 lung cancer screening thoracic CT 
scans and Brain MRI DataSet (BRATS 2015) [35] containing 
clinical imaging data of glioma patients (a total of 274 cases). 

Our study was carried out using Gaussian noise, since if AE is 
manifested in this simple case, then it is even more possible on 
other, more complex noise distributions characteristic of high-
tech medical images described above. 

In all experiments, 8-bit images with a peak brightness of 
MAXi = 255 were used. Gaussian noise was generated from the 
normal distribution with means = 0 and stddev = 0.5. These 
parameters correspond, on the one hand, to the characteristic 
values of the PSNR for CT and MRI working ranges justified in 
Section 2 , and on the other hand, to the typical PSNR values for 
image compression [36], which provide comfortable conditions 
for visual observation of high-tech medical images. 

IV. RESULTS AND DISCUSSION

Histograms reflecting the results of the implementation of 
step 4 of the methodology are shown in ig. 4, 
and corresponding quantitative estimates are given in able 
II. 

Considering that Pclass source = 0.72>>0.5, i.e. both “noisy” 
datasets were formed from a knowingly correctly recognized 
image, and the dispersion of superimposed noise was taken 
relatively small, one would expect that all elements of “noisy” 
datasets would be correctly recognized, i.e. Pclass result > 0.5. 
However, the experimental results obtained (see fig. 2 as well 
as Table II) do not confirm this assumption. Namely, in all 
experiments, histograms contain elements wit Pclass result<0.5, 
i.e. the corresponding images are not recognized correctly. In 
accordance with the definition of [6], in this case, we can 
speak about the appearance of AE when classifying by CNN 
of high-tech medical images, due to the noise inherent in the 
technology of their formation. 

a 

b 

c  

d 

Fig. 2. Histograms of Pclass values obtained on “noisy” dataset  formed of CT 
image; designations of the pictures correspond to the above described network 
training variants (a)-(d) 
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a 

 b 

c 

 d 

Fig. 3. Histograms of Pclass values obtained on “noisy” dataset  formed of MRI 
image; designations of the pictures correspond to the above described network 
training variants (a)-(d) 

TABLE II. THE PROPORTION OF ELEMENTS OF THE “NOISY” DATASETS, 
RECOGNIZED AS INCORRECT, FOR DIFFERENT TRAINING OPTIONS 

Method 
Elements of “noisy” dataset 

with  Pclass< 0.5, % 
MRI

Source data 2 2.85 
Source data + Gaussian data augmentation 0.21 0.26 
Source data + adversarial training 0.12 0.15 
Source data + Bounded RELU 0.6 0.68 

a 

b 

c 
Fig. 4. Images of lung slices: a - source (classified by CNN as true); b - with the 
addition of Gaussian noise (classified by CNN as true); in - with the addition of 
Gaussian noise, which became AE (classified by CNN as incorrect) 

Meanwhile, as shown by our experiments, the degree of 
manifestation of AE varies depending on the type of training 
model. When training a model not using techniques of 
defences on AE (variant (a)), the number of incorrectly 
recognized images is quite large (200 per 10,000 for CT and 
285 per 10,000 for MRI). By proper selecting of the activation 
function of CNN (variant (d)), it can be reduced to 60 and 68, 
respectively. With augmentation of training dataset by 
Gaussian noised images (variant (b)), this number drops to 21 
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and 26, respectively. An even greater reduction in the number 
of incorrectly recognized images is achieved using the 
Adversarial Training method (variant (c)) – 12 and 15, 
respectively. 

The results are illustrated in Fig. 3, where the real CT 
images of the lungs with different variants of their formation 
are presented. Original images were recorded in DICOM 3.0 
[37] standard. To obtain our illustrations, we used the method 
of preprocessing DICOM data [31], which allows you to select 
a two-dimensional slice of the lung with cutting off other body 
tissues (in particular, the skeleton), and its software 
implementation [38]. To assess the visual similarity of the 
images, 3 practicing radiologists were involved. 

Figures 4 and 5 show the CT images of the lungs obtained 
by the method described above. Fig. 4a corresponds to the 
original image with a value of Pclass source = 0.72 (see step 2 of 
our methodology). In fig. 4b and 4c are shown two variants of 
the same image with the addition of Gaussian noise, which 
correspond to Pclass result =0.68 and Pclass result = 0.45. The 
calculated value of the L2 norm for both images was 1.89. 
According to experts, both images are visually identical, 
although one of them has become AE and will be classified by 
the CNN as incorrect. It can serve as a source of false 
information for the doctor 
Fig. 5 shows a similar comparison of images obtained by CNN 
trained according to variant (c). In this case, the formation of 
AE from the original image is also possible, but this requires a 
significantly higher level of noise (L2 norm increases to 4.72), 
and such images are easily recognized visually. Accordingly, 
the doctor can exclude such images from the body of 
diagnostic documents for a particular patient. 

a 

b 
Fig. 5. Images of lung slices: a - source (classified by CNN as true); b - with 
the use of FGSM technique (classified by CNN as incorrect) 

V. CONCLUSION 
In our work, we investigated two questions: (1) can individual 

instances of real high-tech medical images work as AE when 
being analyzed with the use of CNN? (2)  is it possible to defend 
oneself against such “natural” adversarial attacks with the 
simplest possible means? We answer the both formulated 
questions in the affirmative.  

The paper shows that “natural” technological noises can 
become involuntary adversarial examples in high-tech medical 
images. A problem-oriented study of AE defense techniques 
(Adversarial training, Gaussian Data Augmentation, Bounded 
RELU) was conducted. Adversarial training techniques such 
as FGSM and JSM attacks have been shown to provide the 
best effect for high-tech medical images. It is shown that the 
adversarial effect is possible after the application of 
adversarial training techniques, but the degree of noise in such 
an image will be much higher than before using these 
techniques, and it will be easy enough for the doctor to 
recognize them visually and exclude them from further 
consideration. 
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