
A Deep Forest Improvement by Using Weighted
Schemes

Lev Utkin, Andrei Konstantinov, Anna Meldo

Mikhail Ryabinin, Viacheslav Chukanov
Peter the Great St.Petersburg Polytechnic University (SPbPU)

St.Petersburg, Russia

lev.utkin@gmail.com, andrue.konst@gmail.com, anna.meldo@yandex.ru

mihail-ryabinin@yandex.ru, kauter1989@gmail.com

Abstract—A modification of the confidence screening mecha-
nism based on adaptive weighing of every training instance at
each cascade level of the Deep Forest is proposed. The modifica-
tion aims to increase the classification accuracy. It is carried out
by assigning weights to training instances at each forest cascade
level in accordance with their classification accuracy. Larger
values of accuracy produce smaller weights. Two strategies for
using the weights are considered. The first one when the weights
are regarded as probabilities of choosing the corresponding
instances in building decision trees. According to the second
strategy, the weights are used in splitting rules. The modification
increases the classification accuracy and may reduce the training
time for many real datasets. Numerical experiments illustrate
good performance of the proposed modification in comparison
with the original Deep Forest proposed by Zhou and Feng.

I. INTRODUCTION

One of the very popular approaches to classification is the
ensemble methodology. A basic idea of the classifier ensemble
learning is to construct multiple classifiers from the original
data and then to aggregate their predictions when classifying
unknown samples [1]. One of the interesting ensemble-based
classifier based on random forests (RFs) [2] and the stacking
algorithm [3] was proposed by Zhou and Feng [4] and is called
the Deep Forest (DF) or gcForest. Its structure consists of
layers similarly to a multi-layer neural network structure, but
each layer in gcForest contains many RFs instead of neurons.
gsForest can be regarded as an multi-layer ensemble of deci-
sion tree ensembles. As pointed out by Zhou and Feng [4],
gcForest is much easier to train and can perfectly work when
there are only small-scale training data in contrast to deep
neural networks which require great effort in hyperparameter
tuning and large-scale training data. It is explained by Zhou
and Feng [4] that the main motivation for developing the DF
is to build a deep model which requires a small amount of
training data due to a small number of training parameters.
A lot of numerical experiments provided by Zhou and Feng
[4] illustrated that gcForest outperforms many well-known
methods or comparable with existing methods.

Many modifications of the DF have been developed last
time [5], [6], [7], [8], [9], [10], [11]

One of the crucial shortcomings of the DF is that it passes
all training and testing instances through all levels of the
cascade, leading to significant increase of time complexity.
In order to overcome this difficulty, another improvement of
the original DF was proposed by Pang et al. [12], which

significantly reduces the training and testing times of forests at
each level. According to the improvement, training examples
with high confidence (the maximum value of the estimated
class vector) directly pass to the final stage rather than passing
through all the levels. Pang et al. [12] introduced a confidence
screening mechanism in the general framework of the DF,
which categorizes instances at every level of the cascade into
two subsets: one is easy to predict; and the other is hard.
The improvement opens a door for developing new models
improving the DF.

Therefore, following the ideas of the DF improvement,
we propose a new modification of the confidence screening
mechanism based on adaptive weighing of every training
instance at each cascade level depending on its mean class
vector at the previous level. It is called the Adaptive Weighted
Deep Forest (AWDF). Two ways are considered for applying
weights. The first one is when the weighted instances are
randomly chosen for training trees in accordance with their
weights. This leads to reducing the set of “active” instances
at every level of the forest cascade. The second way is to
use weights in implementing a splitting rule for training the
decision trees. The numerical experiments have shown that
AWDF provides outperformed results.

We will consider the standard classification problem which
can be formally written as follows. Given n training instances
S = {(x1, y1), (x2, y2), ..., (xn, yn)}, in which xi ∈ R

m

represents a feature vector involving m features and yi ∈
{1, ..., C} represents the class of the associated instances,
the task of classification is to construct an accurate classifier
c : Rm → {1, ..., C} that maximizes the probability that
c(xi) = yi for i = 1, ..., n.

The paper is organized as follows. A short introduction
to the gcForest architecture proposed by Zhou and Feng [4]
is given in Section 2. Section 3 provides a description of
the confidence screening mechanism proposed by Pang et al.
[12]. AWDF algorithm is considered in Section 4. Numerical
experiments with real data illustrating cases when the proposed
AWDF outperforms gcForest are given in Section 5. Conclud-
ing remarks are provided in Section 6.

II. DEEP FORESTS: A SHORT INTRODUCTION

One of the important peculiarities of gcForest [4] is its
cascade structure. Every cascade is represented as an ensemble
of RFs, i.e., the DF is an ensemble of the decision tree

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

ensembles. The cascade structure is a main part of a total
gcForest structure. It implements the idea of representation
learning by means of the layer-by-layer processing of raw
features. Each level of cascade structure receives feature in-
formation processed by its preceding level, and outputs its
processing result to the next level. The architecture of the
cascade proposed by Zhou and Feng [4] is shown in Fig. 1.
It can be seen from the figure that each level of the cascade
consists of several (four in the picture) different RFs which
generate 3-dimensional class vectors concatenated each other
and with the original input. It should be noted that this structure
of forests can be modified in order to improve the gcForest
for a certain application. After the last level, we have the
feature representation of the input feature vector, which can
be classified in order to get the final prediction. The gcForest
representational learning ability is enhanced by applying the
second part of gcForest called as the so-called multi-grained
scanning. The multi-grained scanning structure uses sliding
windows to scan the raw features. Its output is a set of feature
vectors produced by sliding windows of multiple sizes. We
mainly pay attention to the first part of gcForest because our
modification relates to the cascade structure.

Given an instance, each forest produces an estimate of
a class probability distribution by counting the percentage
of different classes of examples at the leaf node where the
concerned instance falls into, and then averaging across all
trees in the same forest as it is schematically shown in Fig.
2. The class distributions form a class vector or a RF class
probability distribution, which is then concatenated with the
original input vector to be input to the next level of cascade.
The usage of the class vector as a result of the RF classification
is very similar to the idea underlying the stacking algorithm [3]
which trains the first-level learners using the original training
dataset. Then the stacking algorithm generates a new dataset
to train the second-level learner (meta-learner) such that the
outputs of the first-level learners are regarded as input features
for the second-level learner while the original labels are still
regarded as labels of the new training data. In contrast to the
standard stacking algorithm, gcForest simultaneously uses the
original input vector and the class vectors (meta-learners) at the
next level of cascade by means of their concatenation. Different
ways can be proposed for the feature vector representation at
every level of the cascade. One of the ways is to add new
class vectors to the vector from the previous level. In this
case, the feature vector is enlarged and enlarged after every
cascade level. Another way is to concatenate only class vectors
produced at a level with the original vector. In this case, the
feature vector does not change after every cascade level. We
will use the second scheme.

After the last level, we have the feature representation of
the input feature vector, which can be classified in order to get
the final prediction. Zhou and Feng [4] propose to use different
forests (random forests, complete-random tree forests) at every
level in order to provide the diversity which is an important
requirement for the RF construction.

III. THE CONFIDENCE SCREENING MECHANISM

According to [12], the main idea underlying the confidence
screening mechanism is that an instance is pushed to the next
level of the cascade only if it is determined to require a higher

Fig. 1. The architecture of the cascade forest [4]

Fig. 2. The RF class probability distribution computation

level of learning; otherwise, it is predicted using the model at
the current level.

A decision tree in every forest produces an estimate of
the class probability distribution p = (p1, ..., pC) by counting
the percentage of different classes of training instances at the
leaf node where the concerned instance falls into. Then the
class probabilities vi = (vi,1, ..., vi,C) of xi for every RF
are computed by averaging all class probability distributions
p across all trees as it is shown in Fig. 2, where we partly
modify a picture from [4] in order to illustrate how elements
of the class vector are derived as a simple sum.

Suppose that every RFs consists of T decision trees, every
cascade level contains M RFs, and the number of cascade
levels is Q. Then a current level of the cascade produces M
class vectors vi,1, ...,vi,M which are then concatenated with
the original vector xi to be input to the next level of the
cascade, i.e., the training set for the next level is defined as

S∗ = {((xi,vi,1, ...,vi,M), yi), i = 1, ..., n}.

At level q, if the prediction confidence of one instance is
larger than threshold ηq , then its final prediction is produced
at the current level, otherwise it needs to go through the
next level (and potentially all levels in the cascade). One
of the ways to define the prediction confidence of instance
((xi,vi,1, ...,vi,M), yi) is to find the mean vector of class
probabilities, namely,

vi =
1

M

M∑
k=1

vi,k.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 452 --

Let us introduce the indicator I defined as

I =

{
1, max(vi,1, ..., vi,C) ≥ ηq,
0, otherwise.

The choice of the threshold ηq is considered by Pang et al.
[12] in detail, where ηq at level q is determined automatically
based on the cross-validated error rate of all the training
instances.

If the indicator I is 0, then the feature vector xi has to
go through the next level. If I = 1, the final prediction is
produced at the current level during testing such that

yi = argc=1,...,C max vi,c.

During training, we do not need to go through the next level
if I = 1 and

argc=1,...,C max vi,c = yi,

otherwise the instance has to go through the next level q + 1.

IV. THE ADAPTIVE WEIGHTED DEEP FOREST CLASSIFIER

In the adaptive weighted deep forest classifier, a special
weighted scheme is proposed. Let us return to the definition
of the class probabilities in the DF. A decision tree in every
RF produces an estimate of the class probability distribution
p = (p1, ..., pC) by counting the percentage of different classes
of training instances at the leaf node where the concerned
instance falls into. Let us consider a training instance with
the feature vector xi and class label yi. Then we compute the
class probabilities vi = (vi,1, ..., vi,C) of the instance xi for
every RF at a level of the forest cascade by averaging all class
probability distributions p across all trees as it is shown in
Fig. 2.

Let us introduce the vector oi = (0, ..., 0, 1yi , 0, ..., 0),
where the index of the unit element is yi. It is obvious that the
training instance xi is perfectly classified by every RF if the
corresponding vector of class probabilities vi totally coincides
with the vector oi. In accordance with the confidence screening
mechanism, the instance xi in this case should not go through
the next level of the forest cascade. One of the ways to stop
the instance moving through the next level is to assign to it
the weight 0. Suppose now that the the training instance xi
is misclassified, and its vector of class probabilities vi is far
from the vector oi. Then we have to try to build the RF at
the next level such that the training instance xi will be not
misclassified. This implies that this instance has to participate
in the tree building. This can be done by assigning to it a
weight closed to 1. Hence, we can conclude that the distance
(or its function) between vectors vi and oi defines whether the
instance will be used at the next level or not. Moreover, we
can introduce weights which take into account the difference
of the distances.

So, a weight is assigned to every instance xi at a current
forest cascade level in accordance with its mean class vector
vi at the previous level. Then the weight wi is determined as
a function f of a distance between the mean vector of class
probabilities vi and the vector oi, denoted as d(vi,oi). By
having the mean class vector vi for instance xi at the current
level q, we can write the weight of instance xi as the following
function:

wi = f(d(vi,oi)).

The weight wi is used for training RFs at the next level
q+1. It is obvious that the function f increases with d(vi,oi).
In particular, if instance xi is correctly classified at level q such
that the distance d(vi,oi) is 0, then the weight wi has to be
0. In this case, the instance is not used at the next level. In
other words, due to the small weight, the instance xi will have
lesser chance to appear in the trees of the next level compared
to other instances. If the distance is 1 (xi is totally incorrectly
classified), then the weight wi has to be also 1 or to have
some maximal value. Simple examples of the function f are
wi = (d(vi,oi))

2
or wi = d(vi,oi). Moreover, the distance

can be also differently taken. One of the most popular distances
is Euclidean one, i.e., d(vi,oi) = ||vi − oi||2.

Another way for determining the weights is to consider the
following function:

wi = 1− f(vi · oTi).

In this case, we analyze only a probability of the class
yi, i.e., vi,yi . If this probability of an instance is close to 1
(correct classification), then the corresponding weight of the
instance is close to 0. If the probability of the instance is close
to 0 (incorrect classification), then the corresponding weight is
close to 1. A simplest case is wi = 1−vi ·oTi . This definition
of weights almost coincides with the rule for decision about
going the instance through the next level in the confidence
screening mechanism (see the previous section).

It should be noted that the normalized weights w1, ..., wn
define a probability distribution on instances in the training
data, which can be used for building decision trees of a RF.

We define two strategies for using the weights. In ac-
cordance with the first strategy, we randomly draw instances
from the training set with replacement in accordance with this
probability distribution. If the weight of the i-th instance is
very close to 0, it does not take part in building decision trees.
In other words, instances with a high prediction confidence are
predicted using the model at the current level.

In addition to the above weighted procedure, we can also
introduce a threshold ηq to compare it with the value 1−wi. If
the 1− wi ≥ ηq , then the corresponding instance is predicted
by using the model at current level. In sum, the number of
instances for training are reduced at every level simplifying
the whole training process. However, if the training set is
imbalanced, then the number of randomly drawn instances of
a class may be very small to be used for training.

The proposed approach is very close to the AdaBoost
algorithm [13], where instances from a training set are drawn
for classification from an iteratively updated sample distri-
bution defined on elements of the training set. Every level
of the DF can be viewed as an iteration in AdaBoost. The
sample distribution ensures that instances misclassified by the
previous classifier (at the previous iteration) are more likely
to be included in the training data of the next classifier. In
each iteration, the weights of all misclassified instances are
increased while the weights of correctly classified examples
are decreased.

According to the second strategy, we apply the procedure
of direct use of the weights during learning in a splitting rule,
which is implemented in many versions of the decision tree

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 453 --

TABLE I. A BRIEF INTRODUCTION ABOUT DATA SETS

Data set Abbreviation m n C
Adult Income Adult 14 48842 2

Car Car 6 1728 4

Diabetic Retinopathy Diabet 20 1151 2

EEG Eye State EEG 15 14980 2

Haberman’s Breast Cancer Survival Haberman 3 306 2

Ionosphere Ion 34 351 2

Seeds Seeds 7 210 3

Seismic Mining Seismic 19 2584 2

Teaching Assistant Evaluation TAE 5 151 3

Tic-Tac-Toe Endgame TTTE 9 958 2

algorithms, for example, in C4.5 and CART. In particular,
the weights and the entropy measure are combined in the
splitting rule. The weights are again viewed as probabilities
of instances and used in definition of the entropy measure.
This strategy does not simplify the whole deep forest training
process because all instances are used for training the trees.
However, the problem of a lack of instances of a certain class
at some level is avoided in this case.

The confidence screening mechanism can be considered as
a special case of the AWDF classifier. Let us assign the weights
0 or 1 to an instance at level q if its prediction confidence
is larger or smaller than threshold ηq , respectively. In this
case, the instance with weight 0 does not go through the next
level, and RFs of the next level are built without this instance.
This implies that the confidence screening mechanism can be
regarded as a special case of the proposed AWDF classifier.

V. NUMERICAL EXPERIMENTS

In order to illustrate the AWDF classifier, we investigate
the model for datasets from UCI Machine Learning Repository
[14]. Table I is a brief introduction about these data sets, while
more detailed information can be found from, respectively, the
data resources. Table I shows the number of features m for the
corresponding dataset, the number of training instances n and
the number of classes C.

AWDF uses a software in Python which
implements gcForest and is available at
http://lamda.nju.edu.cn/code gcForest.ashx. The AWDF
classifier has the same cascade structure as the standard
gcForest described in [4] (two completely-random tree forests
and two random forests at every level, completely-random
trees are generated by randomly selecting a feature for split
at each node of the tree). The forest cascade is used for
numerical experiments without the Multi-Grained Scanning
part of gcForest. Accuracy measure A used in numerical
experiments is the proportion of correctly classified cases on a
sample of data. To evaluate the average accuracy, we perform
a cross-validation with 50 repetitions, where in each run, we
randomly select ntr = 4n/5 training data and ntest = n/5
testing data. We apply the second strategy to training RFs
by using the weighted instances because we are interesting
in increasing the accuracy of the AWDF classifier, but not
training or testing time. However, we also provide results for
the first strategy.

First of all, our aim is to compare AWDF with gcForest and
to consider different cases of the weight function f . We denote
wi = 1−(vi ·oTi)2 as 1−w2; wi = 1−(vi ·oTi)1/2 as 1−w1/2;
wi = 1 − (vi · oTi) as 1 − w; wi = ||vi − oi||2 (Euclidean

TABLE II. ACCURACY MEASURES GCFOREST AND FOUR CASES OF

THE WEIGHT FUNCTION FOR THE SECOND STRATEGY OF USING WEIGHTS

Data set gcF 1− w2
1− w1/2 L2 1− w

Adult 86.12 86.20 86.26 86.11 86.30
Car 98.28 98.42 98.74 98.45 98.51
Diabet 69.05 69.06 69.69 69.16 69.13
EEG 95.75 95.82 96.16 95.74 95.94

Haberman 74.15 73.90 74.77 74.09 73.65
Ion 94.32 94.32 94.37 94.26 94.64
Seeds 93.17 93.62 93.62 93.08 92.72
Seismic 93.50 93.63 93.53 93.67 93.61
TAE 52.76 53.76 55.14 55.26 55.76
TTTE 99.03 99.09 99.11 99.11 98.99

distance) as L2. Numerical results of comparison of gcForest
(gcF) and four cases of the weight definition are shown in
Table II, where the first column contains abbreviations of the
tested data sets, the second column is the accuracy measure
by using gcForest, other columns correspond to the accuracy
measures of AWDF by different functions of weights. It should
be noted that the largest values of the accuracy measures
obtained by different numbers of trees are shown in Table II.
It can be seen from Table II that at least one of the cases of
the proposed AWDF classifier outperforms gcForest for most
considered data sets. The best performance on each dataset is
shown in bold.

We can also conclude from Table II that there is no the best
choice of the weight function for all datasets. Though, we can
also see that the function wi = 1 − (vi · oTi)1/2 provides the
largest number of the best results. This function makes weights
to be close to 0 if an instance is correctly classified. At the
same time, the “bad” instances have weights close to 1, and
they introduce a large impact in computing the splitting rule.
In contrast to this function, function 1−(vi ·oTi)2 shows worse
results. This is due to the fact that the resulting weights are
close to 0.5. As a result, the difference between weights of
correctly and incorrectly classified instances is smaller, and
the separation effect is reduced.

In order to investigate how the accuracy measures depend
on the number of decision trees in the RF, we depict the
corresponding dependencies in Figs. 3-6 for some datasets. We
compare gcForest and the AWDF classifier by four different
weight functions. We again can see from 3-6 that AWDF
classifier outperforms gcForest for all datasets. Table II is
composed from largest values of accuracy measures given
in Figs. 3-6. It is difficult to determine which type of the
function f provides better results for all datasets. However,
we again can see that the function wi = 1 − (vi · oTi)1/2
leads to the largest accuracy measures for many datasets. We
also should select the function wi = 1 − (vi · oTi), which
also provides outperforming results. For many dataset, the
Euclidean distance, i.e., wi = ||vi − oi||2 gives the smallest
accuracy measures.

Table III shows accuracy measures in accordance with
the first strategy of using weights when we randomly draw
instances from the training set with replacement in accordance
with the probability distribution corresponding to the weights.
One can see from Table III that AWDF is comparable with
gcForest, but it yields the best accuracy on smaller number
of datasets tested. This can be explained by the fact that we
significantly reduce the training time by removing a large part
of instances from the training process after the first cascade

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 454 --

Fig. 3. Accuracy measures as a function of the number of trees for the Adult
dataset

Fig. 4. Accuracy measures as a function of the number of trees for the Car
dataset

Fig. 5. Accuracy measures as a function of the number of trees for the EEG
dataset

Fig. 6. Accuracy measures as a function of the number of trees for the TAE
dataset

Fig. 7. Accuracy measures as a function of the number of trees for the Car
dataset for the first strategy of using weights

Fig. 8. The training time of classifiers as a function of the number of trees
for the Car dataset for the second strategy of using weights and threshold
ηq = 0.95

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 455 --

TABLE III. ACCURACY MEASURES GCFOREST AND FOUR CASES OF

THE WEIGHT FUNCTION FOR THE FIRST STRATEGY OF USING WEIGHTS

Data set gcF 1− w2
1− w1/2 L2 1− w

Adult 86.12 85.98 85.72 85.95 85.84
Car 98.28 98.16 98.27 97.88 98.39
Diabet 69.05 68.57 69.62 68.25 68.38
EEG 95.75 94.92 95.29 94.70 95.13

Haberman 74.15 72.17 73.22 73.35 72.97
Ion 94.32 93.94 94.10 94.21 93.78
Seeds 93.17 92.90 92.09 92.45 91.88
Seismic 93.50 93.79 93.79 93.60 93.47
TAE 52.76 51.88 52.38 53.63 53.65
TTTE 99.03 98.33 98.81 98.41 98.63

TABLE IV. ACCURACY MEASURES GCFOREST AND FOUR CASES OF

THE WEIGHT FUNCTION FOR THE SECOND STRATEGY OF USING WEIGHTS

AND THRESHOLD ηq = 0.95

Data set gcF 1− w2
1− w1/2 L2 1− w

Adult 86.12 86.09 86.10 86.04 86.13
Car 98.28 96.46 96.83 96.16 96.54
Diabet 69.05 69.71 69.71 69.92 69.84
EEG 95.75 92.54 92.44 92.45 92.47

Haberman 74.15 74.52 73.47 73.10 73.59
Ion 94.32 95.18 94.26 94.91 93.51
Seeds 93.17 93.26 92.90 93.71 93.17
Seismic 93.50 93.37 93.68 93.73 93.54
TAE 52.76 53.26 54.39 53.88 53.38
TTTE 99.03 97.42 97.62 97.20 97.22

level. Perhaps, a more fine tuning of the AWDF classifier
(choice of an appropriate function of weights) may improve
the classification results.

Examples of the dependencies of the accuracy measures on
the number of decision trees in every RF for the first strategy
of using weights are shown in Fig. 7. We clearly see from Fig.
7 that AWDF does not outperform gcForest. It follows from the
above results that the second strategy of using weights provides
better accuracies in comparison with the first strategy.

Let us consider how the introduction of threshold ηq for
AWDF impacts on the accuracy measures. Table IV shows
accuracy measures in accordance with the second strategy of
using weights by ηq = 0.95. One can see from Table IV that
the AWDF classifier yields the best accuracy in most cases. At
the same time, we have to note that the training time by using
the threshold is significantly reduced. Fig. 8 shows examples of
the training time as a function of the number of trees. One can
see that the training time is reduced for AWDF in comparison
with gcForest.

VI. CONCLUSION

The proposed modification of the confidence screening
mechanism based on adaptive weighing of every training
instance at each cascade level of DF has demonstrated good
performance in comparison with gcForest by means of numer-
ical experiments on several datasets. Its implementation is very
simple and is similar to the well-known AdaBoost model in a
sense that it updates weights of training instances at each level
of the forest cascade.

The idea underlying AWDF is very simple and its imple-
mentation does not require a large additional time because
weights are computed in a simple way without solving opti-
mization problems.

Similarly to gcForest, the main advantage of the AWDF
classifier is that it opens a door for developing many new
adaptive weight models which could take into account different
rules for updating and assigning the weights to instances at
different levels of the cascade. Moreover, the weights can be
assigned in accordance with the problem solved, for example,
for improving the DF transfer learning algorithms, for improv-
ing the distance metric learning algorithms, etc. In other words,
the weights can control the DF models. The development of
the corresponding algorithms is a problem for further research.

It should be noted that the proposed approach for adaptive
weighing of every training instances at each cascade level can
be simply extended on cases when classifiers different from
RFs are used at every level because there are weighted versions
of the most classifiers. The choice of optimal structures is also
a problem for further research.

ACKNOWLEDGEMENT

This work is supported by the Russian Science Foundation
under grant 18-11-00078.

REFERENCES

[1] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Boca
Raton: CRC Press, 2012.

[2] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[3] D. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[4] Z.-H. Zhou and J. Feng, “Deep forest: Towards an alternative to
deep neural networks,” in Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI’17). Melbourne, Australia:
AAAI Press, 2017, pp. 3553–3559.

[5] Y. Guo, S. Liu, Z. Li, and X. Shang, “BCDForest: a boosting cascade
deep forest model towards the classification of cancer subtypes based
on gene expression data,” BMC Bioinformatics, vol. 19(Suppl 5):118,
pp. 1–13, 2018.

[6] K. Miller, C. Hettinger, J. Humpherys, T. Jarvis, and D. Kartchner,
“Forward thinking: Building deep random forests,” 20 May 2017,
arXiv:1705.07366.

[7] L. Utkin and M. Ryabinin, “A deep forest for transductive transfer
learning by using a consensus measure,” in Artificial Intelligence and
Natural Language. AINL 2017, ser. Communications in Computer and
Information Science, A. Filchenkov, L. Pivovarova, and J. Zizka, Eds.
Cham: Springer, 2018, vol. 789, pp. 194–208.

[8] L. Utkin and M. Ryabinin, “A Siamese deep forest,” Knowledge-Based
Systems, vol. 139, pp. 13–22, 2018.

[9] L. Utkin and M. Ryabinin, “Discriminative metric learning with deep
forest,” May 2017, arXiv:1705.09620v1.

[10] H. Wen, J. Zhang, Q. Lin, K. Yang, T. Jin, F. Lv, X. Pan, P. Huang,
and Z.-J. Zha, “Multi-level deep cascade trees for conversion rate
prediction,” May 2018, arXiv:1805.09484.

[11] T. Wu, Y. Zhao, L. Liu, H. Li, W. Xu, and C. Chen, “A novel hierarchical
regression approach for human facial age estimation based on deep
forest,” in 2018 IEEE 15th International Conference on Networking,
Sensing and Control (ICNSC). Zhuhai: IEEE, 2018, pp. 1–6.

[12] M. Pang, K. Ting, P. Zhao, and Z.-H. Zhou, “Improving deep forest by
confidence screening,” in Proceedings of the 18th IEEE International
Conference on Data Mining (ICDM’18), Singapore, 2018, pp. 1–6.

[13] Y. Freund and R. Schapire, “A decision theoretic generalization of on-
line learning and an application to boosting,” Journal of Computer and
System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[14] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 456 --

