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Abstract—The smart monitoring system (SMS) vision relies on 
the use of ICT to efficiently manage and maximize the utility of 
network infrastructures and services in order to improve the 
quality of service and network performance. Many aspects of 
SMS projects are dynamic data driven application system where 
data from sensors monitoring the system state are used to drive 
computations that in turn can dynamically adapt and improve 
the monitoring process as the complex system evolves. In this 
context, a research and development of new paradigm of 
Distributed Big Data Driven Framework (DBDF) for monitoring 
data in mobile network infrastructures entails the ability to 
dynamically incorporate more accurate information for network 
monitoring and controlling purposes through obtaining real-time 
measurements from the base stations, user demands and claims, 
and other sensors (for weather conditions, etc.). The proposed 
framework consists of network probes, data parsing application, 
Message-Oriented Middleware, real-time and offline data models, 
Big Data storage and Decision layers, and Other data sources. 
Each Big Data layer might be implemented using comparative 
analysis of the most effective Big Data solutions. In addition, as a 
proof of concept, the roaming users detection model was created 
based on Apache Spark application. The model filters streaming 
protocols data, deserializes it into Json format and finally sends it 
to Kafka application. The experiments with the model 
demonstrated and acknowledged the capacities of the Apache 
Spark in building foundation for Big Data hub as a basic 
application for online mobile network data processing. 

I. INTRODUCTION 
 The number of smartphone users has already reached 4.61 billion 
users in 2016, and upward trend is forecast for the market with 5.07 
billion users by the end of 2019 [1]. The process of rapid mobile 
users growth is immutably leading to the proportional increase of data 
being generated by mobile subscribers, user equipment, cellular 
nodes and whole mobile network. This is becoming more challenging 
for mobile operators to overcome constantly increasing data volumes 
for many different protocols and mobile network interfaces using 
traditional approaches with standalone systems, relational databases, 
many different formats of data storage and transmission. Thus, the 
appearance of new challenges generates new approaches such as Big 
Data, Internet of Things, Machine-to-Machine Communications etc. 
in application to cellular network data storage, aggregation, 
transformation, enhancement and transfer. 

In fact, cellular network has many different protocols for data 
transmission and corresponding interfaces. Each node of the network 
is communicating with other node(s) and external environment 
according to worldwide standards 3GPP [2] and ITU [3]. Every 
protocol has its own parameters, which are different from one 
network element to another. The complexity of protocols, its 

differentiation, volumes of data being transferred and importance of 
data have led to the need of searching new ways of cellular data 
analysis, using last technology achievements such as Big Data 
methods and technologies. 

In many respects, the monitoring services in mobile networks are 
dynamic data driven application systems (DDDAS) where data from 
sensors monitoring the system drives computations that in turn can 
dynamically adapt and improve the monitoring process as the 
network evolves. In this work, we propose a Distributed Big Data 
Driven Framework (DBDF) for Cellular Network Monitoring Data on 
the basis of the Dynamic Data-Driven Application System (DDDAS) 
paradigm [4] and a core concept of Lambda architecture [5-7], 
specifically targeted at scalable and secure real-time Big Data 
application systems, comparative analysis of different Big Data 
methods, techniques and tools. 

The new concept of DBDF is targeted at management 
representatives and decision makers in Mobile Engineering, 
Operating and Planning departments and is intended to help them in 
managing cellular network in real-time on the basis of network 
measurements, simulation and optimization models. The suggested 
Framework consists of different components that realize distributed 
smart monitoring paradigm for the cellular network data as it is 
presented in Fig. 1. 

II. RELATED WORK 
Big Data models and techniques, such as machine learning and 

data mining demonstrate a huge potential for the ever growing and 
demanding application area of cellular network data processing. In 
our previous work [8], a Data-Driven Smart Management (DDSM) 
approach for cellular network operation and planning was introduced, 
which proposes the development of a system comprising of 
subsystems for real base stations and network measurements, network 
simulation, optimization model and real-time decision making. The 
simulation of network problem zones detection and prioritization 
based on user complaints data, area population density data and base 
station characteristics was enhanced with heuristic-based 
optimization model using analytically predefined threshold. The 
recent survey of Big Data analytics in wireless and wired network 
design [9] showed that integration of many different protocols/traffic 
layers all together is the best way to building robust data 
communication networks with refined performance and intelligent 
features. There are examples of research works where an architectural 
framework for applying the big data analytics in the mobile cellular 
networks [10] is considered. However, actual output of this work was 
limited to the analysis of hardware aspects of data exchange (i.e. GPS 
and base stations) and the discussion of a role of MapReduce in 
handling this data. In [11], many challenges in creating big data 
frameworks were introduced based on real-time big data processing, 
as well as, the role of RAM, CPU and GPU and different 
computational models discussed. In addition, the role of data 
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Fig. 1. The architectural overview of the DBDF – a concept 

management, data security, collection and analytics was illustrated, 
and the real-time processing frameworks based on Apache Spark and 
Storm were introduced. 

In our attempt of building the Big Data framework for the cellular 
network data, we are aiming at full cellular network distributed data 
architecture from the collection of data from network elements 
thought parsing, aggregation and real-time data analysis to storage, 
offline data analysis and the data exchange with external consumers 
for additional profit for telecom companies (Fig. 1). 

III. DISTRIBUTED COMPUTING AND BIG DATA 

A. Distributed systems issues 
The area of distributed systems in the general area of computer 

science studies theoretical issues of organization of distributed 
computing and data processing. Also, distributed systems are 
sometimes defined in more narrow sense, as the application of 
distributed computer systems to solve time-consuming computational 
tasks. In this context, distributed computations are a special case of 
parallel computations, i.e. simultaneous or concurrent solution of 
different parts of a single computational problem using several 
(interconnected) computing devices. Note that when studying parallel 
concepts, the main emphasis is usually on methods of division of a 
solved task into subtasks, which can be solved concurrently for the 
maximum acceleration of computations. The main issue of the 
organization of parallel computing using distributed systems is in the 
accounting for differences in the characteristics of available 
computing resources and the availability of significant time delay in 
the exchange of data between them. 

Over the past few years, distributed systems have become 
increasingly popular and important in many application areas and for 
many application problems. The main reasons for the growth of their 
significance can be identified as follows: 

 Geographically distributed computing environment. Today in 
most cases the computing environment itself is by nature a 
geographically distributed system. As an example is the 
banking network. Each bank serves accounts of their 
customers and processes transactions with them. In case of 
transferring money from one bank to another it requires the 

implementation of interbank transactions and the bank 
systems interaction. Another example of a geographically 
distributed computing environment is the Internet itself. 

 The requirement to increase computing performance. The 
performance of traditional uniprocessor systems is fast and 
steadily approaching to its limit. Different architectures (such 
as superscalar architecture, matrix and vector processors, 
single-chip multiprocessor systems) are designed to increase 
the performance of computing systems due to various 
mechanisms for parallel execution of commands. However, 
all these techniques can increase productivity by a factor of 
tens of comparisons with classical sequential solutions. 
Besides, the scalability of such approaches leaves much to be 
desired. To increase the productivity in hundreds or thousands 
of times and at the same time to ensure good scalability of the 
solution it is necessary to put together multiple processors 
and ensure their effective interaction. This principle is 
realized in the form of large multiprocessor or multi-
computer complex. 

 Shared resources. An important goal of creating and the use 
of distributed systems is the provision of users (and 
applications) to access remote resources and ensuring their 
joint use. In this formulation the term resource refers both to 
hardware components computer system, and to software 
abstractions with which the distributed system works. For 
example, a computer user 1 can use the disk space of 
computer 2 for storing data files. Or, a single application can 
use free computing power of several computers to speed up 
own computations. Distributed databases and distributed 
system of objects can be an excellent example of a joint use 
of software components, where appropriate software 
abstractions are distributed over several computers and co-
served by several processes. 

 Fault tolerance. In the traditional "unallocated" computer 
systems based on a single computer (possibly high-
performance), failure of one of its components usually leads 
to the failure of the entire system. Such a malfunction in one 
or more components of the system is called a partial failure if 
it does not affect other components. A characteristic feature 
of distributed systems, which distinguishes them from single 
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computers, is resistance to partial failures, i.e. the system 
continues to function after partial failures, however, slightly 
reducing the overall performance. A similar possibility is 
achieved by redundancy when the system additional hardware 
(hardware redundancy) or processes (software redundancy) 
that make possible correct functioning of the system if it is 
not working or incorrect operation of some of its components. 
In this case distributed system tries to hide the facts of 
failures or errors in some processes from other processes. For 
example, in systems with triple modular redundancy (English 
Triple Modular Redundancy, TMR) three identical 
computational modules are used for identical calculations, 
and the correct result is determined by a simple vote [12]. 

B. Big Data issues 
Distributed computing techniques have been widely used by data 

scientists before the advent of Big Data concept. Thus, standard and 
time-consuming algorithms were successfully replaced by their 
distributed versions with the aim of agilizing the learning process. 
For many of current issues with Big Data processing, especially in 
cellular network monitoring with such high volumes of data, a 
distributed approach is becoming immutable nowadays. The first 
framework that enabled the processing of large-scale data was 
MapReduce concept (2003). This tool was aimed to easily handle 
huge datasets in an automatic and distributed way using MapReduce 
paradigm, and usual user is able to use a distributed and scalable tool 
without worrying about technical nuances: data partitioning, failure 
recovery or job communication. However, MapReduce concept is not 
designed to scale well when dealing with iterative and online 
processes, and usually deal with batch data tasks with relatively huge 
latency comparing with online data processing. This paradigm would 
be implemented in Batch layer for Big Data storage. 

Another group of methods is based on distributed in-memory 
computing, micro-batch and real-time techniques. These methods are 
used for online Big Data processing with millions of tuples per 
second per node. In our proposed solution these methods are used in 
real-time data transformation component, real-time data parsing and 
also might be used in real-time data models. 

Message-driven applications are applications, which allow 
processing of future messages that arrive after subscription. The main 
advantage of such systems is that many consumers can access the 
same data in independent way. Thus, a message-driven approach is 
proposed to be used in Big Data real-time data collection to enable 
many data consumers easily access cellular network monitoring data. 

C. Dynamic Data Driven Application Systems Paradigm 
The DDDAS paradigm implies that real-time application data are 

dynamically incorporated into computations in order to steer the 
measurement process of an application system [4]. A generic 
DDDAS platform performs timely monitoring, planning, and control 
of distributed operations at complex systems and allows to 
reproducing the system operations in the most accurate manner. The 
components of system architecture of DDDAS platform and 
methodologies include 1) smart monitor (implements smart 
algorithms for state estimation, fault detection and localization, model 
fidelity selection); 2) real time data driven adaptive distributed 
simulation, using 3) distributed data base of the system, and 4) 
decision support system (user or customer side management 
decisions, service pricing and operation planning). 

It has been demonstrated that this paradigm can be directly used 
to realize smart management systems and services in mobile network 
infrastructures. For example, DDDAS-supported DDSM architecture 
provides an approach to address issues such as creating more efficient 

and reliable cellular networks and to mitigate mobile traffic and QoS 
problems [12]. 

The concept of DDSM in investigates new approaches and tools 
for the real-time data acquisition and timely control of complex CN 
environments via incorporation of dynamic data into adaptive 
simulations. Such an application of the DDDAS paradigm in cellular 
network infrastructures promises more accurate information for 
monitoring and controlling purposes through obtaining real-time 
measurements from the base stations, computing and networking 
resources, and other sensors (for weather conditions, etc.). 

D. Lambda Architecture for Big Data Applications 
Building a reliable and efficient distributed big data application 

that satisfies a variety of end-user latency requirements is a 
challenging task. Lambda Architecture (LA) represents a useful 
framework to designing such applications. The appearance of the LA 
concept was inspired by the following motivations: 

 the need for a robust and fault-tolerant system, both against 
human mistakes and hardware failures; 

 the system should be linearly scalable scaling out rather than 
up; 

 to serve a wide range of workloads and use cases, where low-
latency reads and updates are required, with support of ad-hoc 
queries; 

 the system should be extensible and features should be added 
easily.  

The Lambda Architecture (LA) comprises of 3 main parts: 

 Batch layer. This layer has two functions: manage the main 
append-only raw data streams and pre-compute arbitrary 
query functions calling batch views. In our DBDF 
architecture this is a so called “slow circuit” layer, where 
cellular network data is coming from real-time data collection 
component using batches. 

 Speed layer. There are different fast and incremental 
algorithms are used with low latency, the speed layer deals 
only with recent data. In our proposed DBDF framework 
these are key components that are represented as “fast 
circuit”, and all components inside this Speed layer deal with 
online (real-time) data. Computation latency is key issue 
there. 

 Serving layer. This layer indexes the batch views in Batch 
layer and data can be queried using ad hoc with low latency. 
This layer is not included in our current DBDF 
implementation and will be considered as a future work 
aimed at organizing and building Cellular network 
monitoring Serving data layer [6-8]. 

E. Distributed Computing for CN monitoring data 
In fact, cellular network data is a streaming data from interfaces, 

base stations, billing system etc. represent high-loaded systems with 
Gigabytes of data per second, and it is even compressed data. Thus, 
CN streaming monitoring data need to be parsed and processed on the 
cluster of computers with application of Big Data methods for 
processing of very large volumes of data. Distributed methods and 
techniques of data processing for cellular monitoring data play 
important role for whole CN data processing pipeline. All application 
systems and methods should be adopted for distributed computing, 
high performance data analytics, and support scalable, reliable, secure 
and distributed data processing. This is a key requirement to all 
selected or developed tools for processing CN data. 

IV. KEY ARCHITECTURAL COMPONENTS OF DBDF 
 We can group major components of the DBDF in 8 blocks: 
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1) Real CN that consists of network elements like RNCs, BSs, 
NodeBs, eNodeBs, MMEs, GGSNs and other nodes collecting and 
transferring data to/from different cellular interfaces. The real cellular 
network consists of many different elements, and every network 
generation has their own protocols for data exchange and interfaces. 
The complexity of the network is amplified by the plane of data 
transfer – user plane and control plane, and the type of transferred 
data – voice, SMS, data itself.  

In addition, the CN measurements might be represented as base 
stations characteristics, weather conditions, or subscriber’s 
complaints, etc. This data comprises of different attributes and 
properties of the real CN system.  

2) Events-Driven data records are records that appeared after 
some event happened on CN. It means that different data records 
should be created and transferred after some CN event. Thus, these 
events might be presented as data intercommunication between nodes 
(transactions), data about base station parameters, user complaints, 
etc.   

Base station records are the characteristics of base station with 
their geo-positioning, supportive technology, LAC code, Cells, 
address, vendor etc. User complaints are complaints records that 
being collected in connection to the particular geographical location. 
Different transactions are records that represent a part of one 
subscriber session. The data in transactions are being transferred 
according to 3GPP and ITU standards in predefined format – CN data 
exchange protocols.  

3) Big Data Driven programming languages is a special 
application capable of processing huge volumes of data (gigabit per 
second, Gbps) that parses all highly compressed protocol data 
(depends on vendor format) to the one unified data format, or capable 
to process data records received from real system (BS parameters, 
complaints). The data parsing is implemented via programming 
language, the choice of which is highly important because different 
frameworks offer diverse functionality and more adopted for some 
particular cases. 

4) Message-Oriented Middleware is the Continuous Streaming 
data storage with predefined data structure according to different 
protocols. This is middleware that provides opportunity for many data 
consumers to get data in real-time as well as send data for storage 
using batches. The thing is that there might be many data consumers, 
which might be internal mobile company departments as well as 
external partners. Actually, it depends on the use cases – more data 
use cases, more data consumers are. So the most important 
requirements for this layer is to be capable with extremely fast data 
streams, be reliable, scalable and support many different data 
consumers. 

5) Real-time and offline data models. It might be different 
data driven models and it might be considered as a simulation engine 
of the DBDFCN architecture. The models like those used in Problem 
Zones detection and prioritization [8] allow for optimization of 
operational costs for Mobile equipment maintenance and finding new 
ways of profit generation for Mobile providers. 

6) Other data sources are sources within a mobile network 
company, which are used for model generation. It might be different 
databases – SQL, NoSQL, in-memory and not, but the main concept 
is that data should be used for Real-time data models. Other data 
sources as a part of Architectural framework are considered as 
additional on-demand data for models. These sources are usually data 
bases that might be maintained and exploited by different departments. 
For our previous work [8] we have used Base stations data base, 
complaints data base and population density per region data. 

Generally, the particular use cases and different requirements dictate 
the selection of the tool. 

7) Big Data storage and queries layer is a component 
responsible for protocols data storage, report generation, validation of 
hypotheses and protocols data analysis. It can be done by using SQL 
queries to some database.  

Offline storage is an Architectural component that realizes the 
cellular network protocols data reliable and scalable storage for offline 
analysis, hypothesis validation and different kinds of on-demand 
reports.  

8) Decision layer, which is the output of Big Data models and 
reports. It might be streaming data in special predefined format, 
regularly-based reports or triggered data events after filtering. The 
decision support layer is the environment specially designed for 
Network Engineers, Planners, Operators, Managers and other data 
consumers. This includes all applications that are needed in order to 
make decision based on models output performed in previous steps of 
data pipeline. Decision makers are making their decisions based on 
this data and manage the real system – detect and weight problem 
zones on the cellular network [8], plan the network capacity and 
performance, base stations construction, manage Radio network 
elements and other. 

V. EXPERIMENTS AND RESULTS 

A. Use case and data description 
In order to prove the concept of applicability of proposed 

architectural solution, the Roaming users detection model has been 
created and tested on the basis of real cellular network of one of the 
largest mobile providers in Russia. 

Mobile providers are curious about their subscribers who go 
abroad as well as migration in different regions internally. In fact, the 
significant percent of all telecom operator’s income belongs to 
roaming users. Usually data usage, voice calls and SMS delivery are 
highly expensive in other countries, and telecom companies are 
extremely interested to not only detect abroad users, but also do it in 
almost real-time regime in order to offer to such users special set of 
services and options, as well as for internally relocated users. 

Thus, telecom companies need: 

• the ability to obtain data about the geolocation of the 
subscriber in real time for communication with the subscriber 
in Real-Time Marketing system;  

• the ability to proactively detect the presence of blocking 
inconsistencies on the side of billing systems and HLRs 
(Home Location Registered). 

To analyze the subscribers movement to other countries and to 
other regions inside country, according to specifications 3GPP and 
ITU we have looked at MAP (Mobile Application Part) protocol for 
2G and 3G technologies (if user is currently using 2G or 3G 
network), or Diameter for 4G generation. The following attributes of 
the data would have been organized in messaging system entities 
(Table I). 

We have searched for Cancel location and Update location events 
only. From the business logic perspective, we would be searching for 
the following events: 

• start of another country visit; 
• change of operator; 
• change of country;  
• return to country of origin; 
• change of VLR (Visitor Location Registered). 
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TABLE I.  FILTERED MAP AND DIAMETER ATTRIBUTES 

Protocol Event type Filtered Attributes

MAP 
CancelLocation/ 
UpdateLocation 

MSISDN 
IMSI 
VLR 
Timestamp  
SccpCallingDigits
SccpCalledDigits 

MAP UpdateGPRSLocation 

MSISDN 
IMSI 
Back Calling Address
Timestamp 

Diameter 
UpdateLocation/ 
Cancel Location 

IMSI 
MSISDN 
OriginRealm 

 

B. Experimental setup parameters 
For messaging system, an Apache Kafka application was selected 

as a system with strong performance according to different 
benchmarks. It can handle more than 100 000 events per second [13]. 

The model itself was executed on the basis of Apache Spark 
application, which is the largest open source project in data 
processing [14]. Since its release, Apache Spark, the unified analytics 
engine, has seen rapid adoption by enterprises across a wide range of 
industries. Internet powerhouses such as Netflix, Yahoo, and eBay 
have deployed Spark at massive scale, collectively processing 
multiple petabytes of data on clusters of over 8,000 nodes. It has 
quickly become the largest open source community in big data, with 
over 1000 contributors from 250+ organizations [14-15]. 

For experiment, the YARN was chosen as a resource manager for 
Apache Spark. This manager is actually managing all cluster 
resources available for Spark jobs, which means that the capacity and 
performance of application are limited by resource manager YARN.  

The data streaming of MAP and Diameter protocols was 
organized using one of the largest telecom company in Russia, and 
data were received in Kafka application in thrift data format, during 
the job implementation converted in Json data format and finally sent 
to another Kafka messaging system to topics according to event types 
described above (Table I). The average streaming size is really 
challenging with average 37 300 records per second for MAP 
protocol and average 24 200 records per second for Diameter 
protocol, with 61 500  records per second in total. 

All installations of Spark, YARN and other support applications 
were done by Hortonworks (HDP version is 2.6.3.0-235).  

Common configuration parameters are: 

• Java version is 1.8.0_77 (Oracle Corporation); 
• Scala version is 2.11.8; 

• Operational system is Linux; 
• Operational system version is 3.10.0-514.21.1.el7.x86_64. 

The experiment was performed on powerful cluster. The 
characteristics of cluster and YARN resources available for all Spark 
jobs performed on the cluster are the following: 

• 3 nodes for YARN allocated; 
• Memory allocated for all YARN containers on a node is 

306Gb. Total memory is 918 GB; 
• Minimum Container Size (Memory) is 2048Mb; 
• Maximum Container Size (Memory) is 100Gb; 
• Number of virtual cores is 32; 
• Percentage of physical CPU allocated for all containers on a 

node is 80%; 
• Minimum Container Size (VCores) is 1; 
• Maximum Container Size (VCores) is 32. VCores total is 96; 

• 1 second interval between jobs; 
• 2 Spark Executors selected on default. 

The configuration file of Spark has the following parameters 
(Table II): 

TABLE II. SPARK CONFIGURATION PARAMETERS 

Parameter Description Value 

app.test Mark of a test run. 
With it, the launch time is 
limited, as are the data about the
number of rows in stdout. 

true/false 

app.test.milisecond The test run time in 
milliseconds, because Stream is 
triggered every 1 second, it is 
necessary that the value is > 
1000 (preferably> 10000 
because the time is spent also 
for the start of the job waiting, 
etc., it may not to have time to 
start)

120000 

app.log The level of logging in the job. 
Toggles the standard for log4j 
logging levels. 

OFF/ FATAL/ 
ERROR/ WARN/ 
INFO/ DEBUG/ 
TRACE/ ALL

app.metrics.enable Enabling metric records true/false
app.metrics.index Index name in Elastic for index 

storage 
Index_name (i. e. 
kafka2rtm_metrics)

app.metrics.dateformat Date format for the index. 
Corresponds to the formats for 
Elastic

Date_format (i. e. 
yyyy-MM) 

app.metrics.hosts Hosts Elastic Host 
1:Port1;Host2:Port
2;... 
Example 
(http://big-
data:9092;....)

app.buffer.min The size of the delay in minutes. 
The message is not older than 
the current time - the delay will 
be filtered and sent to the output 
queue.

minutes(example 
20) 

in.kafka.servers Inbound topics Kafka servers Host 
1:Port1;Host2:Port
2;... 
Example 
(http://big-
data:9092;....)

in.kafka.group.id The name of the application in 
Kafka for reading from the 
topics, should be unique for the 
kafka cluster, under this name 
kafka saves the offset. 

name(example 
spark-streaming-
kafka-rtm) 

in.kafka.offset.reset The policy of picking up 
messages if there is no offset, 
two options are earliest or latest 
(read from the first message in 
the topic or from the last, 
respectively) 

earliest/latest 

in.kafka.gsmmap.topik The topic name for incoming 
messages of type GsmMap 

Test_gsm 

in.kafka.diameter.topik The topic name for incoming 
messages of type Diameter 

Test_ diameter 

out.kafka.servers Outbound topics Kafka servers Server1:port, 
server2:port 

out.kafka.updateLocati
onTopik 

Topic name of GsmMap 
UpdateLocation/CancelLocation 

test_rtm_gsmmap_
ulcl 

out.kafka.updateGPRS
Topik

Topic name of GsmMap 
UpdateGRPSLocation 

test_rtm_gsmmap_
ur

out.kafka.diameter.upd
ateLocationTopik 

Topic name Diameter 
UpdateLocation/CancelLocation 

test_rtm_diameter_
ulcl 

out.kafka.group.id Application name in Kafka for 
record in topic 

spark-streaming-
kafka-out 
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To run the application it is necessary to have 3 files in the folder: 

 the startup script (run.sh is in the project in the ./src/main 
folder); 

 stream-1.0-SNAPSHOT-jar-with-dependencies.jar – main 
code implementation file; 

 the folder with configuration file. 

C. Apache Spark job result analysis 
As a result of Spark job implementation, the following results of 

YARN resources are allocated for this particular Spark job: 

 Allocated memory is 6144Mb; 
 Allocated CPU VCores is 3; 
 3 containers running; 
 average Scheduling Delay is 14 ms; 
 average Processing Time is 464 ms; 
 total Delay is 478 ms. 

The data can be viewed using Kafka UI tool. It shows the 
messages in topic (Fig. 2). 

The result of implementation of an algorithm is data streaming 
with described fields above. IMSI and MSISDN fields represent 
“private” information and are cut from the image, but the other 
informative fields are visible. 

The implementation of the model can be repeated for any telecom 
operator using the same protocols, taking into account that the cluster 
should be with the same performance in order to achieve stable work 
of application. Or, the data stream can be also proportionally 
decreased along with the amount of nodes in a cluster and their 
capacity.  

The adequacy of the model was successfully checked by the 
comparison of amount of filtered messages for particular period. 
Thus, using python programming language we connected to Kafka 
application and took two regarded data streams – Map and Diameter 
protocols. We analyzed the same period of time of messages in Kafka 
and filtered them using the same rules that were used for Spark 
application. The amount of filtered messages using python and Spark 
was equal. 

 
Fig. 2. Result messages in Kafka application after Spark job implementation 

The model has proved the possibility of real-time usage of new 
cellular network monitoring service for Big Data processing. Apache 
Spark application might be used for many other real-time models and 
can be considered a real-time Big Data hub engine, which will 
process data according to any of the needed business logic and data 
protocols.  

D. Model advantages 
The comparison with traditional cellular network monitoring 

system and batch processing of data shows the advantages of the 
model based on Apache Spark. In total, the benefits of the model can 
be described as follow (Fig. 3). 

 
Fig. 3. The performance of the roaming users model implemented on the basis 
of Apache Spark and traditional batch processing 

The comparisons show that Spark streaming has many 
advantages comparing with usual batch streaming: 

 average scheduling delay (ASD) for batch processing is much 
longer than Spark delay. Apache Spark streaming runs its 
jobs with only 0.015 seconds delay, while traditional batch 
processing has 0.5 seconds delay in average; 

 average processing time (APT) shows that the same amount 
of data might be processed in 45 seconds intervals, while 
Spark streaming process data in 0.464 time intervals. It is 
achieved because Spark jobs runs each second, and the data 
processing is really fast, in-memory and efficient; 

 average interval time (AIT) between Spark jobs is 1 second, 
while interval between batch jobs is usually 1 minute. Batch 
processing cannot run faster because of overheads before job 
start. Each start of job takes some additional resources and 
needs some time to start job itself. For batch processing it is 
larger than for streaming; 

 average available time (AAT) for decision makers to trigger 
roaming users shows that time to make a decision for decision 
makers about some action against “caught” users is larger 
with Spark due to its faster computation comparing to the 
traditional batch processing. Usually telecom providers are  
interested in users with no more than 15 minutes delay when 
the event occurred that is the user crossed the country border 
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and this event has been caught by system. After we have this  
event in messaging system, all the rest is depending on us –  
how fast we process data and filter it for triggering and 
sending notifications. Thus, if we consider average time 
between appearance of event in messaging system and this 
event filtered - Spark shows only 1 second delay on average, 
while traditional batch requires more than 1 minute and 15 
seconds. It means that decision makers can have more time to 
understand this user, his behavior and decide on sending any 
notifications. 

E. DBDF benefits and comparisons 
In total, new DBDF framework has the following advantages 

over traditional monitoring systems (Table III): 

TABLE III. DBDF VS TRADITIONAL MONITORING SYSTEM 

metric/system Traditional system 
monitoring 

DBDF 

Scalability low high, not limited 

Reliability low high 

Speed and 
performance 

low high 

Amount of 
possible use cases  

usually alone  not limited 

Data access strict, within 
department 

not strict, within 
company 

New 
hypotheses checks 

not possible, not 
enough data 

easily, all monitoring data 

  

Thus, all DBDF components are scalable and with addition of 
new node in a cluster more performance is available.  

 The storage and processing memory are scalable for all 
DBDF components that represents a significant advantage 
over traditional standalone monitoring systems. The metric 
 is important because of constant traffic growth  
worldwide. 

 The reliability of the solution is explained by the fact that all 
data are replicated in a cluster that makes framework reliable. 
In case of failures of some nodes data are not lost.  

 Speed and performance shows the huge difference. Because 
of the cluster mode and in-memory computations, DBDF is 
processing data very fast, while traditional standalone 
systems are usually performed worse. 

 Amount of possible use cases is not limited with DBDF – all 
monitoring data are collected and stored, and many new use 
cases can be created and discovered. In traditional system 
usually one system is covering one use case, or one 
department. With DBDF, new use cases can be easily 
implemented with all company departments based on 
processing rules (online streaming) or new hypotheses 
validation (offline streaming). 

 Data access is usually strict in traditional monitoring systems, 
while with DBDF all departments can have access to all 
monitoring data and achieve synergy effect all together. It 
means that departments can work together for new use cases 
adaptation and verification. 

 New hypotheses checks are almost not possible with 
traditional systems because of not all monitoring protocols 
are presented in place. In contrast, DBDF open up new 
horizons with petabytes of data exploration.  

CONCLUSION 
The adaptation of new DBDFCN in telecom provider environment 

and deployment of proposed architectural components will help to 
achieve effective, reliable, scalable, speed and secure CN monitoring 
data processing. In CN high volume data streaming it is extremely 
important to build a powerful framework for data processing, 
aggregation, enhancement, enrichment and storage. The proposed 
distributed framework is fully capable with high-loaded CN data 
streams and can be a foundation for future models creation, making 
sure that all data are reliably saved and not lost. 

The proof of concept was achieved by creation of near real-time 
Big Data model for roaming users detection with processing 
performance above 60 000 events per second. The model has been 
created using Apache Spark application and the adequacy of the 
model was checked by the python programming language. The 
created model has revealed that Apache Spark is capable of handling 
thousands and even more events per second and may be considered as 
a foundation for real-time Big Data hub creation. 

The comparisons of the model and DBDF with traditional 
standalone monitoring systems demonstrates many benefits of DBDF 
framework such as its scalability, reliability, speed and performance, 
possibility to check new hypotheses. Apache Spark streaming with 
example of roaming user detection showed that it has less delay, less 
processing time and more time for decision makers comparing with 
traditional batch processing. 
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