
Distributed Big Data Driven Framework for Cellular
Network Monitoring Data

Alexander Suleykin
V. A. Trapeznikov Institute of Control Sciences,

Russian Academy of Sciences,
Moscow, Russia

aless.sull@mail.ru

Peter Panfilov
School of Business Informatics

National Research University – Higher School of
Economics

Moscow, Russia
ppanfilov@hse.ru

Abstract—The smart monitoring system (SMS) vision relies on
the use of ICT to efficiently manage and maximize the utility of
network infrastructures and services in order to improve the
quality of service and network performance. Many aspects of
SMS projects are dynamic data driven application system where
data from sensors monitoring the system state are used to drive
computations that in turn can dynamically adapt and improve
the monitoring process as the complex system evolves. In this
context, a research and development of new paradigm of
Distributed Big Data Driven Framework (DBDF) for monitoring
data in mobile network infrastructures entails the ability to
dynamically incorporate more accurate information for network
monitoring and controlling purposes through obtaining real-time
measurements from the base stations, user demands and claims,
and other sensors (for weather conditions, etc.). The proposed
framework consists of network probes, data parsing application,
Message-Oriented Middleware, real-time and offline data models,
Big Data storage and Decision layers, and Other data sources.
Each Big Data layer might be implemented using comparative
analysis of the most effective Big Data solutions. In addition, as a
proof of concept, the roaming users detection model was created
based on Apache Spark application. The model filters streaming
protocols data, deserializes it into Json format and finally sends it
to Kafka application. The experiments with the model
demonstrated and acknowledged the capacities of the Apache
Spark in building foundation for Big Data hub as a basic
application for online mobile network data processing.

I. INTRODUCTION
 The number of smartphone users has already reached 4.61 billion
users in 2016, and upward trend is forecast for the market with 5.07
billion users by the end of 2019 [1]. The process of rapid mobile
users growth is immutably leading to the proportional increase of data
being generated by mobile subscribers, user equipment, cellular
nodes and whole mobile network. This is becoming more challenging
for mobile operators to overcome constantly increasing data volumes
for many different protocols and mobile network interfaces using
traditional approaches with standalone systems, relational databases,
many different formats of data storage and transmission. Thus, the
appearance of new challenges generates new approaches such as Big
Data, Internet of Things, Machine-to-Machine Communications etc.
in application to cellular network data storage, aggregation,
transformation, enhancement and transfer.

In fact, cellular network has many different protocols for data
transmission and corresponding interfaces. Each node of the network
is communicating with other node(s) and external environment
according to worldwide standards 3GPP [2] and ITU [3]. Every
protocol has its own parameters, which are different from one
network element to another. The complexity of protocols, its

differentiation, volumes of data being transferred and importance of
data have led to the need of searching new ways of cellular data
analysis, using last technology achievements such as Big Data
methods and technologies.

In many respects, the monitoring services in mobile networks are
dynamic data driven application systems (DDDAS) where data from
sensors monitoring the system drives computations that in turn can
dynamically adapt and improve the monitoring process as the
network evolves. In this work, we propose a Distributed Big Data
Driven Framework (DBDF) for Cellular Network Monitoring Data on
the basis of the Dynamic Data-Driven Application System (DDDAS)
paradigm [4] and a core concept of Lambda architecture [5-7],
specifically targeted at scalable and secure real-time Big Data
application systems, comparative analysis of different Big Data
methods, techniques and tools.

The new concept of DBDF is targeted at management
representatives and decision makers in Mobile Engineering,
Operating and Planning departments and is intended to help them in
managing cellular network in real-time on the basis of network
measurements, simulation and optimization models. The suggested
Framework consists of different components that realize distributed
smart monitoring paradigm for the cellular network data as it is
presented in Fig. 1.

II. RELATED WORK
Big Data models and techniques, such as machine learning and

data mining demonstrate a huge potential for the ever growing and
demanding application area of cellular network data processing. In
our previous work [8], a Data-Driven Smart Management (DDSM)
approach for cellular network operation and planning was introduced,
which proposes the development of a system comprising of
subsystems for real base stations and network measurements, network
simulation, optimization model and real-time decision making. The
simulation of network problem zones detection and prioritization
based on user complaints data, area population density data and base
station characteristics was enhanced with heuristic-based
optimization model using analytically predefined threshold. The
recent survey of Big Data analytics in wireless and wired network
design [9] showed that integration of many different protocols/traffic
layers all together is the best way to building robust data
communication networks with refined performance and intelligent
features. There are examples of research works where an architectural
framework for applying the big data analytics in the mobile cellular
networks [10] is considered. However, actual output of this work was
limited to the analysis of hardware aspects of data exchange (i.e. GPS
and base stations) and the discussion of a role of MapReduce in
handling this data. In [11], many challenges in creating big data
frameworks were introduced based on real-time big data processing,
as well as, the role of RAM, CPU and GPU and different
computational models discussed. In addition, the role of data

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Fast circuit (real time processing)

Slow circuit (batch processing)

Big Data Real
Time Data
Collection

Decision makers

Protocols
Structure

Middleware

Real Time Data
Models
Roaming
User

Detection

Network
Troubleshoo
ting Issues

Other data sources

Base Station
Characteristics

Data Lake

Case specific
Data

Big Data storage

Data
queries

Network
Operation

Network
Planning

Network
Engineering

Other data
consumers

Big Data Real
Time Data
Parsing
Data

Parsing
Application

Universal
Output Data

Format

Offline data models

Geo
Reports

Recommendations

External
environment

Real
System

MAP

DIAMETER

SIP

IuPS

SIP

GTP

RTP

Others

Additional
Income

Offline Data
Analysis

Advertisments Hypothesis
Verification

Vendor Specific

Cellular Network
Probes

Geo
Positioning

Data
Collection

Data
Enrichment

Case
Specific
Models

Fig. 1. The architectural overview of the DBDF – a concept

management, data security, collection and analytics was illustrated,
and the real-time processing frameworks based on Apache Spark and
Storm were introduced.

In our attempt of building the Big Data framework for the cellular
network data, we are aiming at full cellular network distributed data
architecture from the collection of data from network elements
thought parsing, aggregation and real-time data analysis to storage,
offline data analysis and the data exchange with external consumers
for additional profit for telecom companies (Fig. 1).

III. DISTRIBUTED COMPUTING AND BIG DATA

A. Distributed systems issues
The area of distributed systems in the general area of computer

science studies theoretical issues of organization of distributed
computing and data processing. Also, distributed systems are
sometimes defined in more narrow sense, as the application of
distributed computer systems to solve time-consuming computational
tasks. In this context, distributed computations are a special case of
parallel computations, i.e. simultaneous or concurrent solution of
different parts of a single computational problem using several
(interconnected) computing devices. Note that when studying parallel
concepts, the main emphasis is usually on methods of division of a
solved task into subtasks, which can be solved concurrently for the
maximum acceleration of computations. The main issue of the
organization of parallel computing using distributed systems is in the
accounting for differences in the characteristics of available
computing resources and the availability of significant time delay in
the exchange of data between them.

Over the past few years, distributed systems have become
increasingly popular and important in many application areas and for
many application problems. The main reasons for the growth of their
significance can be identified as follows:

 Geographically distributed computing environment. Today in
most cases the computing environment itself is by nature a
geographically distributed system. As an example is the
banking network. Each bank serves accounts of their
customers and processes transactions with them. In case of
transferring money from one bank to another it requires the

implementation of interbank transactions and the bank
systems interaction. Another example of a geographically
distributed computing environment is the Internet itself.

 The requirement to increase computing performance. The
performance of traditional uniprocessor systems is fast and
steadily approaching to its limit. Different architectures (such
as superscalar architecture, matrix and vector processors,
single-chip multiprocessor systems) are designed to increase
the performance of computing systems due to various
mechanisms for parallel execution of commands. However,
all these techniques can increase productivity by a factor of
tens of comparisons with classical sequential solutions.
Besides, the scalability of such approaches leaves much to be
desired. To increase the productivity in hundreds or thousands
of times and at the same time to ensure good scalability of the
solution it is necessary to put together multiple processors
and ensure their effective interaction. This principle is
realized in the form of large multiprocessor or multi-
computer complex.

 Shared resources. An important goal of creating and the use
of distributed systems is the provision of users (and
applications) to access remote resources and ensuring their
joint use. In this formulation the term resource refers both to
hardware components computer system, and to software
abstractions with which the distributed system works. For
example, a computer user 1 can use the disk space of
computer 2 for storing data files. Or, a single application can
use free computing power of several computers to speed up
own computations. Distributed databases and distributed
system of objects can be an excellent example of a joint use
of software components, where appropriate software
abstractions are distributed over several computers and co-
served by several processes.

 Fault tolerance. In the traditional "unallocated" computer
systems based on a single computer (possibly high-
performance), failure of one of its components usually leads
to the failure of the entire system. Such a malfunction in one
or more components of the system is called a partial failure if
it does not affect other components. A characteristic feature
of distributed systems, which distinguishes them from single

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 431 --

computers, is resistance to partial failures, i.e. the system
continues to function after partial failures, however, slightly
reducing the overall performance. A similar possibility is
achieved by redundancy when the system additional hardware
(hardware redundancy) or processes (software redundancy)
that make possible correct functioning of the system if it is
not working or incorrect operation of some of its components.
In this case distributed system tries to hide the facts of
failures or errors in some processes from other processes. For
example, in systems with triple modular redundancy (English
Triple Modular Redundancy, TMR) three identical
computational modules are used for identical calculations,
and the correct result is determined by a simple vote [12].

B. Big Data issues
Distributed computing techniques have been widely used by data

scientists before the advent of Big Data concept. Thus, standard and
time-consuming algorithms were successfully replaced by their
distributed versions with the aim of agilizing the learning process.
For many of current issues with Big Data processing, especially in
cellular network monitoring with such high volumes of data, a
distributed approach is becoming immutable nowadays. The first
framework that enabled the processing of large-scale data was
MapReduce concept (2003). This tool was aimed to easily handle
huge datasets in an automatic and distributed way using MapReduce
paradigm, and usual user is able to use a distributed and scalable tool
without worrying about technical nuances: data partitioning, failure
recovery or job communication. However, MapReduce concept is not
designed to scale well when dealing with iterative and online
processes, and usually deal with batch data tasks with relatively huge
latency comparing with online data processing. This paradigm would
be implemented in Batch layer for Big Data storage.

Another group of methods is based on distributed in-memory
computing, micro-batch and real-time techniques. These methods are
used for online Big Data processing with millions of tuples per
second per node. In our proposed solution these methods are used in
real-time data transformation component, real-time data parsing and
also might be used in real-time data models.

Message-driven applications are applications, which allow
processing of future messages that arrive after subscription. The main
advantage of such systems is that many consumers can access the
same data in independent way. Thus, a message-driven approach is
proposed to be used in Big Data real-time data collection to enable
many data consumers easily access cellular network monitoring data.

C. Dynamic Data Driven Application Systems Paradigm
The DDDAS paradigm implies that real-time application data are

dynamically incorporated into computations in order to steer the
measurement process of an application system [4]. A generic
DDDAS platform performs timely monitoring, planning, and control
of distributed operations at complex systems and allows to
reproducing the system operations in the most accurate manner. The
components of system architecture of DDDAS platform and
methodologies include 1) smart monitor (implements smart
algorithms for state estimation, fault detection and localization, model
fidelity selection); 2) real time data driven adaptive distributed
simulation, using 3) distributed data base of the system, and 4)
decision support system (user or customer side management
decisions, service pricing and operation planning).

It has been demonstrated that this paradigm can be directly used
to realize smart management systems and services in mobile network
infrastructures. For example, DDDAS-supported DDSM architecture
provides an approach to address issues such as creating more efficient

and reliable cellular networks and to mitigate mobile traffic and QoS
problems [12].

The concept of DDSM in investigates new approaches and tools
for the real-time data acquisition and timely control of complex CN
environments via incorporation of dynamic data into adaptive
simulations. Such an application of the DDDAS paradigm in cellular
network infrastructures promises more accurate information for
monitoring and controlling purposes through obtaining real-time
measurements from the base stations, computing and networking
resources, and other sensors (for weather conditions, etc.).

D. Lambda Architecture for Big Data Applications
Building a reliable and efficient distributed big data application

that satisfies a variety of end-user latency requirements is a
challenging task. Lambda Architecture (LA) represents a useful
framework to designing such applications. The appearance of the LA
concept was inspired by the following motivations:

 the need for a robust and fault-tolerant system, both against
human mistakes and hardware failures;

 the system should be linearly scalable scaling out rather than
up;

 to serve a wide range of workloads and use cases, where low-
latency reads and updates are required, with support of ad-hoc
queries;

 the system should be extensible and features should be added
easily.

The Lambda Architecture (LA) comprises of 3 main parts:

 Batch layer. This layer has two functions: manage the main
append-only raw data streams and pre-compute arbitrary
query functions calling batch views. In our DBDF
architecture this is a so called “slow circuit” layer, where
cellular network data is coming from real-time data collection
component using batches.

 Speed layer. There are different fast and incremental
algorithms are used with low latency, the speed layer deals
only with recent data. In our proposed DBDF framework
these are key components that are represented as “fast
circuit”, and all components inside this Speed layer deal with
online (real-time) data. Computation latency is key issue
there.

 Serving layer. This layer indexes the batch views in Batch
layer and data can be queried using ad hoc with low latency.
This layer is not included in our current DBDF
implementation and will be considered as a future work
aimed at organizing and building Cellular network
monitoring Serving data layer [6-8].

E. Distributed Computing for CN monitoring data
In fact, cellular network data is a streaming data from interfaces,

base stations, billing system etc. represent high-loaded systems with
Gigabytes of data per second, and it is even compressed data. Thus,
CN streaming monitoring data need to be parsed and processed on the
cluster of computers with application of Big Data methods for
processing of very large volumes of data. Distributed methods and
techniques of data processing for cellular monitoring data play
important role for whole CN data processing pipeline. All application
systems and methods should be adopted for distributed computing,
high performance data analytics, and support scalable, reliable, secure
and distributed data processing. This is a key requirement to all
selected or developed tools for processing CN data.

IV. KEY ARCHITECTURAL COMPONENTS OF DBDF
 We can group major components of the DBDF in 8 blocks:

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 432 --

1) Real CN that consists of network elements like RNCs, BSs,
NodeBs, eNodeBs, MMEs, GGSNs and other nodes collecting and
transferring data to/from different cellular interfaces. The real cellular
network consists of many different elements, and every network
generation has their own protocols for data exchange and interfaces.
The complexity of the network is amplified by the plane of data
transfer – user plane and control plane, and the type of transferred
data – voice, SMS, data itself.

In addition, the CN measurements might be represented as base
stations characteristics, weather conditions, or subscriber’s
complaints, etc. This data comprises of different attributes and
properties of the real CN system.

2) Events-Driven data records are records that appeared after
some event happened on CN. It means that different data records
should be created and transferred after some CN event. Thus, these
events might be presented as data intercommunication between nodes
(transactions), data about base station parameters, user complaints,
etc.

Base station records are the characteristics of base station with
their geo-positioning, supportive technology, LAC code, Cells,
address, vendor etc. User complaints are complaints records that
being collected in connection to the particular geographical location.
Different transactions are records that represent a part of one
subscriber session. The data in transactions are being transferred
according to 3GPP and ITU standards in predefined format – CN data
exchange protocols.

3) Big Data Driven programming languages is a special
application capable of processing huge volumes of data (gigabit per
second, Gbps) that parses all highly compressed protocol data
(depends on vendor format) to the one unified data format, or capable
to process data records received from real system (BS parameters,
complaints). The data parsing is implemented via programming
language, the choice of which is highly important because different
frameworks offer diverse functionality and more adopted for some
particular cases.

4) Message-Oriented Middleware is the Continuous Streaming
data storage with predefined data structure according to different
protocols. This is middleware that provides opportunity for many data
consumers to get data in real-time as well as send data for storage
using batches. The thing is that there might be many data consumers,
which might be internal mobile company departments as well as
external partners. Actually, it depends on the use cases – more data
use cases, more data consumers are. So the most important
requirements for this layer is to be capable with extremely fast data
streams, be reliable, scalable and support many different data
consumers.

5) Real-time and offline data models. It might be different
data driven models and it might be considered as a simulation engine
of the DBDFCN architecture. The models like those used in Problem
Zones detection and prioritization [8] allow for optimization of
operational costs for Mobile equipment maintenance and finding new
ways of profit generation for Mobile providers.

6) Other data sources are sources within a mobile network
company, which are used for model generation. It might be different
databases – SQL, NoSQL, in-memory and not, but the main concept
is that data should be used for Real-time data models. Other data
sources as a part of Architectural framework are considered as
additional on-demand data for models. These sources are usually data
bases that might be maintained and exploited by different departments.
For our previous work [8] we have used Base stations data base,
complaints data base and population density per region data.

Generally, the particular use cases and different requirements dictate
the selection of the tool.

7) Big Data storage and queries layer is a component
responsible for protocols data storage, report generation, validation of
hypotheses and protocols data analysis. It can be done by using SQL
queries to some database.

Offline storage is an Architectural component that realizes the
cellular network protocols data reliable and scalable storage for offline
analysis, hypothesis validation and different kinds of on-demand
reports.

8) Decision layer, which is the output of Big Data models and
reports. It might be streaming data in special predefined format,
regularly-based reports or triggered data events after filtering. The
decision support layer is the environment specially designed for
Network Engineers, Planners, Operators, Managers and other data
consumers. This includes all applications that are needed in order to
make decision based on models output performed in previous steps of
data pipeline. Decision makers are making their decisions based on
this data and manage the real system – detect and weight problem
zones on the cellular network [8], plan the network capacity and
performance, base stations construction, manage Radio network
elements and other.

V. EXPERIMENTS AND RESULTS

A. Use case and data description
In order to prove the concept of applicability of proposed

architectural solution, the Roaming users detection model has been
created and tested on the basis of real cellular network of one of the
largest mobile providers in Russia.

Mobile providers are curious about their subscribers who go
abroad as well as migration in different regions internally. In fact, the
significant percent of all telecom operator’s income belongs to
roaming users. Usually data usage, voice calls and SMS delivery are
highly expensive in other countries, and telecom companies are
extremely interested to not only detect abroad users, but also do it in
almost real-time regime in order to offer to such users special set of
services and options, as well as for internally relocated users.

Thus, telecom companies need:

• the ability to obtain data about the geolocation of the
subscriber in real time for communication with the subscriber
in Real-Time Marketing system;

• the ability to proactively detect the presence of blocking
inconsistencies on the side of billing systems and HLRs
(Home Location Registered).

To analyze the subscribers movement to other countries and to
other regions inside country, according to specifications 3GPP and
ITU we have looked at MAP (Mobile Application Part) protocol for
2G and 3G technologies (if user is currently using 2G or 3G
network), or Diameter for 4G generation. The following attributes of
the data would have been organized in messaging system entities
(Table I).

We have searched for Cancel location and Update location events
only. From the business logic perspective, we would be searching for
the following events:

• start of another country visit;
• change of operator;
• change of country;
• return to country of origin;
• change of VLR (Visitor Location Registered).

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 433 --

TABLE I. FILTERED MAP AND DIAMETER ATTRIBUTES

Protocol Event type Filtered Attributes

MAP
CancelLocation/
UpdateLocation

MSISDN
IMSI
VLR
Timestamp
SccpCallingDigits
SccpCalledDigits

MAP UpdateGPRSLocation

MSISDN
IMSI
Back Calling Address
Timestamp

Diameter
UpdateLocation/
Cancel Location

IMSI
MSISDN
OriginRealm

B. Experimental setup parameters
For messaging system, an Apache Kafka application was selected

as a system with strong performance according to different
benchmarks. It can handle more than 100 000 events per second [13].

The model itself was executed on the basis of Apache Spark
application, which is the largest open source project in data
processing [14]. Since its release, Apache Spark, the unified analytics
engine, has seen rapid adoption by enterprises across a wide range of
industries. Internet powerhouses such as Netflix, Yahoo, and eBay
have deployed Spark at massive scale, collectively processing
multiple petabytes of data on clusters of over 8,000 nodes. It has
quickly become the largest open source community in big data, with
over 1000 contributors from 250+ organizations [14-15].

For experiment, the YARN was chosen as a resource manager for
Apache Spark. This manager is actually managing all cluster
resources available for Spark jobs, which means that the capacity and
performance of application are limited by resource manager YARN.

The data streaming of MAP and Diameter protocols was
organized using one of the largest telecom company in Russia, and
data were received in Kafka application in thrift data format, during
the job implementation converted in Json data format and finally sent
to another Kafka messaging system to topics according to event types
described above (Table I). The average streaming size is really
challenging with average 37 300 records per second for MAP
protocol and average 24 200 records per second for Diameter
protocol, with 61 500 records per second in total.

All installations of Spark, YARN and other support applications
were done by Hortonworks (HDP version is 2.6.3.0-235).

Common configuration parameters are:

• Java version is 1.8.0_77 (Oracle Corporation);
• Scala version is 2.11.8;

• Operational system is Linux;
• Operational system version is 3.10.0-514.21.1.el7.x86_64.

The experiment was performed on powerful cluster. The
characteristics of cluster and YARN resources available for all Spark
jobs performed on the cluster are the following:

• 3 nodes for YARN allocated;
• Memory allocated for all YARN containers on a node is

306Gb. Total memory is 918 GB;
• Minimum Container Size (Memory) is 2048Mb;
• Maximum Container Size (Memory) is 100Gb;
• Number of virtual cores is 32;
• Percentage of physical CPU allocated for all containers on a

node is 80%;
• Minimum Container Size (VCores) is 1;
• Maximum Container Size (VCores) is 32. VCores total is 96;

• 1 second interval between jobs;
• 2 Spark Executors selected on default.

The configuration file of Spark has the following parameters
(Table II):

TABLE II. SPARK CONFIGURATION PARAMETERS

Parameter Description Value

app.test Mark of a test run.
With it, the launch time is
limited, as are the data about the
number of rows in stdout.

true/false

app.test.milisecond The test run time in
milliseconds, because Stream is
triggered every 1 second, it is
necessary that the value is >
1000 (preferably> 10000
because the time is spent also
for the start of the job waiting,
etc., it may not to have time to
start)

120000

app.log The level of logging in the job.
Toggles the standard for log4j
logging levels.

OFF/ FATAL/
ERROR/ WARN/
INFO/ DEBUG/
TRACE/ ALL

app.metrics.enable Enabling metric records true/false
app.metrics.index Index name in Elastic for index

storage
Index_name (i. e.
kafka2rtm_metrics)

app.metrics.dateformat Date format for the index.
Corresponds to the formats for
Elastic

Date_format (i. e.
yyyy-MM)

app.metrics.hosts Hosts Elastic Host
1:Port1;Host2:Port
2;...
Example
(http://big-
data:9092;....)

app.buffer.min The size of the delay in minutes.
The message is not older than
the current time - the delay will
be filtered and sent to the output
queue.

minutes(example
20)

in.kafka.servers Inbound topics Kafka servers Host
1:Port1;Host2:Port
2;...
Example
(http://big-
data:9092;....)

in.kafka.group.id The name of the application in
Kafka for reading from the
topics, should be unique for the
kafka cluster, under this name
kafka saves the offset.

name(example
spark-streaming-
kafka-rtm)

in.kafka.offset.reset The policy of picking up
messages if there is no offset,
two options are earliest or latest
(read from the first message in
the topic or from the last,
respectively)

earliest/latest

in.kafka.gsmmap.topik The topic name for incoming
messages of type GsmMap

Test_gsm

in.kafka.diameter.topik The topic name for incoming
messages of type Diameter

Test_ diameter

out.kafka.servers Outbound topics Kafka servers Server1:port,
server2:port

out.kafka.updateLocati
onTopik

Topic name of GsmMap
UpdateLocation/CancelLocation

test_rtm_gsmmap_
ulcl

out.kafka.updateGPRS
Topik

Topic name of GsmMap
UpdateGRPSLocation

test_rtm_gsmmap_
ur

out.kafka.diameter.upd
ateLocationTopik

Topic name Diameter
UpdateLocation/CancelLocation

test_rtm_diameter_
ulcl

out.kafka.group.id Application name in Kafka for
record in topic

spark-streaming-
kafka-out

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 434 --

To run the application it is necessary to have 3 files in the folder:

 the startup script (run.sh is in the project in the ./src/main
folder);

 stream-1.0-SNAPSHOT-jar-with-dependencies.jar – main
code implementation file;

 the folder with configuration file.

C. Apache Spark job result analysis
As a result of Spark job implementation, the following results of

YARN resources are allocated for this particular Spark job:

 Allocated memory is 6144Mb;
 Allocated CPU VCores is 3;
 3 containers running;
 average Scheduling Delay is 14 ms;
 average Processing Time is 464 ms;
 total Delay is 478 ms.

The data can be viewed using Kafka UI tool. It shows the
messages in topic (Fig. 2).

The result of implementation of an algorithm is data streaming
with described fields above. IMSI and MSISDN fields represent
“private” information and are cut from the image, but the other
informative fields are visible.

The implementation of the model can be repeated for any telecom
operator using the same protocols, taking into account that the cluster
should be with the same performance in order to achieve stable work
of application. Or, the data stream can be also proportionally
decreased along with the amount of nodes in a cluster and their
capacity.

The adequacy of the model was successfully checked by the
comparison of amount of filtered messages for particular period.
Thus, using python programming language we connected to Kafka
application and took two regarded data streams – Map and Diameter
protocols. We analyzed the same period of time of messages in Kafka
and filtered them using the same rules that were used for Spark
application. The amount of filtered messages using python and Spark
was equal.

Fig. 2. Result messages in Kafka application after Spark job implementation

The model has proved the possibility of real-time usage of new
cellular network monitoring service for Big Data processing. Apache
Spark application might be used for many other real-time models and
can be considered a real-time Big Data hub engine, which will
process data according to any of the needed business logic and data
protocols.

D. Model advantages
The comparison with traditional cellular network monitoring

system and batch processing of data shows the advantages of the
model based on Apache Spark. In total, the benefits of the model can
be described as follow (Fig. 3).

Fig. 3. The performance of the roaming users model implemented on the basis
of Apache Spark and traditional batch processing

The comparisons show that Spark streaming has many
advantages comparing with usual batch streaming:

 average scheduling delay (ASD) for batch processing is much
longer than Spark delay. Apache Spark streaming runs its
jobs with only 0.015 seconds delay, while traditional batch
processing has 0.5 seconds delay in average;

 average processing time (APT) shows that the same amount
of data might be processed in 45 seconds intervals, while
Spark streaming process data in 0.464 time intervals. It is
achieved because Spark jobs runs each second, and the data
processing is really fast, in-memory and efficient;

 average interval time (AIT) between Spark jobs is 1 second,
while interval between batch jobs is usually 1 minute. Batch
processing cannot run faster because of overheads before job
start. Each start of job takes some additional resources and
needs some time to start job itself. For batch processing it is
larger than for streaming;

 average available time (AAT) for decision makers to trigger
roaming users shows that time to make a decision for decision
makers about some action against “caught” users is larger
with Spark due to its faster computation comparing to the
traditional batch processing. Usually telecom providers are
interested in users with no more than 15 minutes delay when
the event occurred that is the user crossed the country border

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 435 --

and this event has been caught by system. After we have this
event in messaging system, all the rest is depending on us –
how fast we process data and filter it for triggering and
sending notifications. Thus, if we consider average time
between appearance of event in messaging system and this
event filtered - Spark shows only 1 second delay on average,
while traditional batch requires more than 1 minute and 15
seconds. It means that decision makers can have more time to
understand this user, his behavior and decide on sending any
notifications.

E. DBDF benefits and comparisons
In total, new DBDF framework has the following advantages

over traditional monitoring systems (Table III):

TABLE III. DBDF VS TRADITIONAL MONITORING SYSTEM

metric/system Traditional system
monitoring

DBDF

Scalability low high, not limited

Reliability low high

Speed and
performance

low high

Amount of
possible use cases

usually alone not limited

Data access strict, within
department

not strict, within
company

New
hypotheses checks

not possible, not
enough data

easily, all monitoring data

Thus, all DBDF components are scalable and with addition of
new node in a cluster more performance is available.

 The storage and processing memory are scalable for all
DBDF components that represents a significant advantage
over traditional standalone monitoring systems. The metric
 is important because of constant traffic growth
worldwide.

 The reliability of the solution is explained by the fact that all
data are replicated in a cluster that makes framework reliable.
In case of failures of some nodes data are not lost.

 Speed and performance shows the huge difference. Because
of the cluster mode and in-memory computations, DBDF is
processing data very fast, while traditional standalone
systems are usually performed worse.

 Amount of possible use cases is not limited with DBDF – all
monitoring data are collected and stored, and many new use
cases can be created and discovered. In traditional system
usually one system is covering one use case, or one
department. With DBDF, new use cases can be easily
implemented with all company departments based on
processing rules (online streaming) or new hypotheses
validation (offline streaming).

 Data access is usually strict in traditional monitoring systems,
while with DBDF all departments can have access to all
monitoring data and achieve synergy effect all together. It
means that departments can work together for new use cases
adaptation and verification.

 New hypotheses checks are almost not possible with
traditional systems because of not all monitoring protocols
are presented in place. In contrast, DBDF open up new
horizons with petabytes of data exploration.

CONCLUSION
The adaptation of new DBDFCN in telecom provider environment

and deployment of proposed architectural components will help to
achieve effective, reliable, scalable, speed and secure CN monitoring
data processing. In CN high volume data streaming it is extremely
important to build a powerful framework for data processing,
aggregation, enhancement, enrichment and storage. The proposed
distributed framework is fully capable with high-loaded CN data
streams and can be a foundation for future models creation, making
sure that all data are reliably saved and not lost.

The proof of concept was achieved by creation of near real-time
Big Data model for roaming users detection with processing
performance above 60 000 events per second. The model has been
created using Apache Spark application and the adequacy of the
model was checked by the python programming language. The
created model has revealed that Apache Spark is capable of handling
thousands and even more events per second and may be considered as
a foundation for real-time Big Data hub creation.

The comparisons of the model and DBDF with traditional
standalone monitoring systems demonstrates many benefits of DBDF
framework such as its scalability, reliability, speed and performance,
possibility to check new hypotheses. Apache Spark streaming with
example of roaming user detection showed that it has less delay, less
processing time and more time for decision makers comparing with
traditional batch processing.

REFERENCES
[1] https://www.statista.com/statistics/274774/forecast-of-mobile-phone-

users-worldwide (2017). Number of mobile phone users worldwide
from 2013 to 2019 (in billions), Accessed on: 2017-10-11.J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, 1892, pp.68-73.

[2] http://www.3gpp.org/about-3gpp. Accessed on: 2018-01-31. K.
Elissa, “Title of paper if known,” unpublished.

[3] https://www.itu.int/en/itutelecom/Pages/default.aspx. Accessed on:
2018-01-31.

[4] Darema, F. (2004). Dynamic Data Driven Applications Systems: A
New Paradigm for Application Simulations and Measurements.
International Conference on Computational Science. M. Bubak et al.
(Eds.): ICCS 2004, LNCS 3038, pp. 662–669, 2004. © Springer-
Verlag Berlin Heidelberg 2004.

[5] Marz, Nathan and Warren, James (2015). Big Data: Principles and
best practices of scalable realtime data systems, 1st ed.. Manning
Publication Co., 2015.

[6] The Lambda architecture: principles for architecting realtime Big
Data systems, blog post by James Kinle. Available at:
http://jameskinley.tumblr.com/post/37398560534/the-lambda-
architecture-principles-for Accessed on: 2018-02-05.

[7] Lambda Architecture: A state-of-the-art, post by Pere Ferrera.
Available at: http://www.datasalt.com/2014/01/lambda-architecture-
a-state-of-the-art/ Accessed on: 2018-02-05.

[8] A. Suleykin, P. Panfilov (2017). The Simulation-Based Smart
Management Approach for Cellular Network Operation and
Planning, in: Annals for DAAAM for 2017 & Proceedings, DAAAM
International, Viena, 2017, pp.0423-0432.

[9] Big Data Analytics for Wireless and Wired Network Design: A
Survey. Computer Networks 132:180-199 · January 2018. Accessed
on: 02.02.2019.

[10] Big Data Analytics in Mobile Cellular Networks. IEEE Access
4:1985-1996 · May 2016. Accessed on: 02.02.2019.

[11] Real-Time Big Data Processing Framework: Challenges and
Solutions. Appl. Math. Inf. Sci. 9, No. 6, 3169-3190 (2015).
Accessed on: 02.02.2019.

[12] http://window.edu.ru/catalog/pdf2txt/503/80503/60870, p. 1-20.
Accessed on: 2018-03-21.

[13] https://kafka.apache.org/documentation.html#introduction. Kafka 1.0
Documentation. Accessed on: 2018-02-04.

[14] http://spark.apache.org. Apache Spark. Accessed on: 2018-02-04.
[15] https://databricks.com/spark/about/. Accessed on: 2018-03-08.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 436 --

