
Machine Learning Approaches to Choose Heroes in
Dota 2

Iuliia Porokhnenko, Petr Polezhaev, Alexander Shukhman
Orenburg State University

Orenburg, Russian Federation
yulkins2@gmail.com, polezhaev.ds@gmail.com, shukhman@gmail.com

Abstract–The winning in the multiplayer online game Dota 2
for teams is a sum of many factors. One of the most significant of
them is the right choice of heroes for the team. It is possible to
predict a match result based on the chosen heroes for both teams.
This paper considers different approaches to predicting results of
a match using machine learning methods to solve the
classification problem. The experimental comparison of
predictive classification models was done, including the
optimization of their hyperparameters. It showed that the best
classification models are linear regression, linear support vector
machine, as well as neural network with Softplus and Sigmoid
activation functions. The fastest of them is the linear regression
model, so it is best suited for practical implementation.

I. INTRODUCTION
Computer games have become an important social, cultural

and economic factor. Multiplayer online games currently
attract a large number of players and have a wide audience of
observers. In addition, there is a growing interest in games
related to eSports.

ESports includes team or individual competitions based on
computer games. All eSports disciplines are divided into
several main classes, which differ in the properties of spaces,
models, game problem and developed skills of cyber
sportsmen. Multiplayer Online Battle Arena (MOBA) games
are among the most popular in eSports.

Prediction about the results of matches in sports games has
always been a popular topic in the machine learning area.
Sports analytics is often used to make decisions in professional
kinds of sport. Therefore, it can be assumed that such systems
will also be useful for users of multiplayer online games.

MOBA is a genre of computer games that combines the
real-time strategy and computer role-playing. One of the most
popular games in the MOBA genre is Dota 2 developed by
Valve Corporation. Nearly 500 thousand players play it every
day. So, it was selected as a subject of the current research.

In Dota2, two teams of players fight on a certain type of
maps in real time. The map is a combination of three lines
(top, middle and bottom) and the area between them (jungles).
Each player controls one hero, which he chooses from a list of
heroes. Heroes differ from each other in various features and
characteristics. During the match, heroes can become stronger,
develop new skills, enhance their characteristics and acquire

objects. The goal of the game is the destruction of the main
building belonged to the enemy’s team by player controlled
heroes and creeps controlled by artificial intelligence.

Section 2 describes the existing approaches to solving the
problem of increasing the efficiency of a team in the
multiplayer online game DOTA 2. Formulation of machine
learning problem for DOTA 2 and preparation of the training
dataset are considered in Section 3. Section 4 presents the
classifying models chosen from well-known frameworks, the
classifiers are used to solve the formulated problem.
Comparative study results of the classifying models trained on
the prepared dataset, the optimization of their
hyperparameters, as well as the results of neural network study
(on CPU, GPU and TPU) and its hyperparameter optimization,
are described in Section 5.

II. RELATED WORK

There are many different approaches to solving the
problem of increasing the efficiency of a team in the
multiplayer online game DOTA 2.

The success of the team is influenced by many different
factors. They can be divided conditionally into two groups: the
personal contribution of each player and the principle of team
building.

The first group includes such characteristics as the player’s
experience, the sequence of his actions in the game, made
decisions, etc. Paper [1] considers player models and methods,
which can get results closest to the behavior of a real player.
Player models take into account the choice of hero skills
depending on the game situation and the sequence of such
choices to increase their skills. The choice of items for
purchasing by hero was also considered as part of studying the
influence of the hero’s personal contribution to the success of
the whole team [2].

More attention is paid to the principle of team building. In
[3] Nataliia Pobiedina and others prove that a correct choice of
heroes by player is the factor, which has the most significant
effect on the success of a team in the game.

There are several approaches to choosing the heroes for the
match. Existing services, such as DotaBuff [4] and DotaPicker
[5], use analysis of statistic information obtained from played
matches. These statistics are updated sometime after each

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

release of the new update in the game to actualize available
information.

Machine learning is another approach, which is used for
the selection of heroes in the game.

In [6] Filip Beskyd considers a decision tree and a neural
network to predict the outcome of the game based on chosen
heroes.

Zhengxing Chen and others [7] compared Monte-Carlo
method, logistic regression and gradient boosting to predict the
outcome of a match.

It worth nothing that all authors, who use the machine
learning approach in their research, gain accuracy ranged from
50% to 70%. Moreover, the use of the same machine learning
models by different researchers gives different results. This
happens because these models are applied to different datasets
or they are configured by different hyperparameters or
structures (for neural networks).

At present, there are no studies, which can help to choose
the most efficient set of hyperparameters that affect the
accuracy of predicting game outcome.

III. FORMULATION OF MACHINE LEARNING PROBLEM AND
DATASET PREPARATION

The problem of our research is to build an effective
algorithm for predicting match results based on information
about the DOTA 2 heroes chosen by players. This problem is a
binary classification problem with two output classes meaning
victory for the “radiant” or “dire” team.

The OpenDota API allows developers to get data about
Dota 2 matches. The information about 56,690 matches played
in 2018 was obtained through the OpenDota API. This
information corresponds to a number of requirements.

First, game modes must be such that each hero has a non-
zero probability of appearing in the game. Such modes are “all
pick” (each player chooses one from all the heroes), “single
draft” (each player chooses one from three random heroes),
“all random” (each player gets a random hero), “random draft”
(players take turns choosing heroes from a pool of 50 random
heroes), “captain’s draft” (each team is assigned a captain who
chooses heroes from the list of random heroes), “captain’s
mode” (each team is assigned a captain who chooses heroes
for his team and prohibits ones for opponents).

Secondly, the skill level of the players in the match must
be high. Such a requirement is necessary, so only those
matches are considered to learn our model, in which heroes are
selected based on any strategic considerations.

Thirdly, only those matches are taken into account in
which players do not leave the match until the end. This is
necessary so that the math result depends only on skills and
choice of the team's heroes, and doesn’t depend on the balance
and the number of players.

Based on downloaded data, a training set of labeled data
was created consisting of pairs of vectors (x, y). Here x is a
vector of size 216, which contains information about picks

(pick is the choice of a hero), the first half of which is for the
“radiant” team, the second half for the “dire” team:

radiant" team
 had played with the hero

" team
 had played with the hero

There are 108 different heroes, and each of them can be
selected once by both teams. Vector contains information
about the match result:

For further research, it was necessary to compare various
classification methods and select the optimal combination of
their hyperparameters.

IV. CLASSIFICATION MODELS FOR SOLVING THE
PROBLEM

Gradient Boosting Classification (GBC) is a machine
learning method for solving regression and classification
problems that creates a prediction model as a linear
combination of basic classifiers, which minimize the
differentiated loss function.

Random Forest Classification (RFC) is a machine learning
algorithm that uses a set of decision trees, which reduces
retraining problems and improves accuracy in comparison
with a single tree. The result is obtained by aggregating the
responses of multiple decision trees.

XGBoost Classification (XGBC) uses pre-sorted algorithm
and Histogram-based algorithm for computing the best split
[8].

Logistic regression (LR) is a method for constructing a
linear classifier to estimate a posteriori probabilities of
belonging objects to classes. It is a statistical model used to
predict the probability of an event occurring by fitting data to a
logistic curve. LR is a very powerful algorithm, especially for
high-dimensional problems. It is actively used in Kaggle
competitions along with tree boosting approaches.

Linear support vector classification (LSVC) is an
algorithm for solving classification problems using only the
linear core. Compared to the SVM algorithm, Linear SVC
learns faster and scales better.

CatBoost Classification (CBC) is a machine learning
algorithm using gradient boosting on decision trees, it
available in the CatBoost library from Yandex. It is a follower
of the MatrixNet algorithm, which is used for ranking and
forecasting. Also, it is the base for recommender technologies.

The implementations of classification methods for training
and testing were used from the Scikit-learn, XGBoost and
CatBoost libraries. Keras with Tensorflow were used to
implement the neural network.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 346 --

We chose these libraries due to their popularity, high level
of optimization, availability of good documentation, examples,
as well as a large community of users.

Python was used to develop a Jupyter notebook for training
and evaluation of abovementioned algorithms.

V. EXPERIMENTAL STUDY OF MODELS
Training and testing of models were carried out with

Google Colaboratory. It is a cloud service to access a remote
machine with machine learning software. The virtual
environment provided by Google has the following
characteristics: Intel (R) Xeon (R) CPU with a clock frequency
of 2.20GHz and 1 core, 13GB of RAM, 33GB of free memory.
All necessary machine-learning libraries (except CatBoost)
and their dependencies are included to it. CatBoost was
installed with pip command line tool for Python.

All data is divided into training and test sets. The test set is
10% of the total data, i.e. 5670 matches.

Evaluation of the efficiency of classification models was
carried out using the k-fold cross-validation method (5
blocks). For each classification algorithm, the parameters were
optimized using the GridSearchCV algorithm, which performs
a complete enumeration by a manually defined subset of the
space of hyperparameters of the training algorithm. Table I for
each classification model presents the hyperparameters and
their enumerated values. Table II shows the best combinations
of hyperparameters for each model.

TABLE I. ENUMERATED VALUES OF HYPERPARAMETERS OF CLASSIFICATION
MODELS

Model Hyperparameter Values

LR
penalty l1, l2

C 0.001, 0.01, 0.1, 1.0, 10.0
solver lfbgs

LSVC
C 1, 10, 100

Gamma 0.001, 0.01, 0.1, 1.0, 10.0

GBC

loss deviance
max_features sqrt, log2

criterion mae, friedman_mse
n_estimators 10

RFC

n_estimators 200, 500
max_features log2, auto, sqrt
max_depth 10, 25, 50

criterion gini, entropy

XGBC

colsample_bytree 0.6, 0.8, 1.0
learning_rate 0.05, 0.1

silent 1
nthread 2, 4, 8

min_child_weight 1, 5, 10
n_estimators 5
subsample 0.6, 0.8, 1.0
max_depth 3, 4, 5
objective binary:logistic

CBC

iterations 50, 100
depth 4, 6, 8

loss_function Logloss, CrossEntropy
verbose True

learning_rate 0.01, 0.03, 0.1
l2_leaf_reg -4, 0, 4

TABLE II. OPTIMAL VALUES OF HYPERPARAMETERS OF CLASSIFICATION
MODELS

Model Hyperparameter Hyperparameter
meaning

Optimal
value

LR

penalty Used to specify the norm
used in the penalization l1

C Inverse of regularization
strength 1.0

solver Algorithm to use in the
optimization problem lfbgs

LSVC

C Penalty parameter C of
the error term 10

Gamma
Kernel coefficient for

‘rbf’, ‘poly’ and
‘sigmoid’

1

GBC

loss Loss function to be
optimized deviance

max_features
The number of features

to consider when looking
for the best split

sqrt

criterion The function to measure
the quality of a split mae

n_estimators
The number of

estimators as selected by
early stopping

10

RFC

n_estimators The number of trees in
the forest 500

max_features
The number of features

to consider when looking
for the best split

log2

max_depth The maximum depth of
the tree 50

criterion The function to measure
the quality of a split entropy

XGBC

colsample_bytree
The subsample ratio of

columns when
constructing each tree

1.0

learning_rate
Step size shrinkage used

in update to prevents
overfitting

0.05

silent Verbosity of printing
messages 1

nthread
Number of parallel
threads used to run

XGBoost
4

min_child_weight
Minimum sum of

instance weight (hessian)
needed in a child

10

n_estimators The number of trees in
the forest 5

subsample Subsample ratio of the
training instances 1.0

max_depth Maximum depth of a tree 5

objective Learning task parameter binary:lo
gistic

CBC

iterations The metric to use in
training 100

depth

The maximum number
of trees that can be built
when solving machine

learning problems

6

loss_function The metric to use in
training Logloss

verbose Defines the logging level True
learning_rate The learning rate 0.1

l2_leaf_reg L2 regularization
coefficient 4

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 347 --

Table III presents the values of the efficiency (for optimal
hyperparameters) and the learning time for each classification
model.

The ROC AUC (Receiver Operating Characteristic Area
Under Curve), which represents the area bounded by the ROC
curve and the axis of the fraction of false positive
classifications, was used as a metric for assessing the
efficiency of classifiers.

This metric is used because the data is not balanced, that is,
the number of instances in each of the classes is not the same.
For such data, it is better to use the ROC AUC metric, rather
than accuracy, since it is based on True Positive Rate and
False Positive Rate.

TABLE III. EVALUATION OF THE EFFICIENCY OF CLASSIFICATION MODELS

Model ROC AUC Time, seconds
LR 0.7739 0.20

LSVC 0.7739 1.53
GBC 0.7409 16.01
RFC 0.7002 1.36

XGBC 0.7402 18.61
CBC 0.7673 12.85

The analysis of able shows that LR and
LSVC algorithms provide the greatest efficiency of
classification, CBC – slightly less value of AUC. The
fastest method is the LR algorithm. The remaining
algorithms have AUC value close to 0.7.

Fig.1 and Fig. 2 show the normalized confusion matrices
for LR and LSVC algorithm. Both models are difficult
to classify the “radiant” team due to imbalanced
dataset.

Fig. 3 shows the ROC curves that allow evaluating the
quality of the classification. They display the relationship
between True Positive Rate and False Positive Rate.
According to the results, the best classifiers are LR, LSVC and
CBC.

A neural network also can be used to solve the
classification problem. Fig. 4 shows the scheme of the neural
network obtained by the TensorBoard visualizer.

Fig. 1. Normalized confusion matrix for LR algorithm

Fig. 2. Normalized confusion matrix for LSVC algorithm

Fig. 3. ROC curves of classification models

Code Fragment 1 shows the code for the Keras framework
which describes the creation of this network. Used
hyperparameters are presented in Table 4. The network input
layer is a binary vector of 216 values, which is then divided
into two parts x_radiant and x_dire using Keras Lambda
layers, then the Dense layers hero_layer_1, hero_layer_2,
hero_layer_1_1, hero_layer_2_1 are applied to them, which
are necessary to eliminate the influence of the heroes on the
“dire” or “radiant” team on the match result, the resulting
output vectors are concatenated. Then there are three more
hidden Dense layers together with dropout regularization
layers to get a solution. The output layer of the neural network
is the Dense layer with 1 neuron and the Sigmoid activation
function. This network architecture was considered by Mark
Dunne in [9].

Code Fragment 1 Neural network for Keras framework
Input layer, which represents a vector of 216 binary values
input = Input(shape=(216,))
Lambda layer, which extracts the first 108 values of input as
x_radiant (choice of “radiant” team)
x_radiant = Lambda(lambda x: x[:, :108])(input)
Lambda layer, which extracts the next 108 values of input
as x_dire (choice of “dire” team)
x_dire = Lambda(lambda x: x[:, 108:])(input)
Dense layer of NUM_UNITS_IN_FIRST_LAYERS

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 348 --

neurons
hero_layers_1 = Dense (NUM_UNITS_IN_FIRST_
LAYERS, activation='relu')
Apply it to x_dire, the output is dire_layer1
dire_layer1 = hero_layers_1(x_dire)
Apply it to x_radiant, the output is radiant_layer1
radiant_layer1 = hero_layers_1(x_radiant)
Dense layer of NUM_UNITS_IN_FIRST_LAYERS
neurons
hero_layer_2 = Dense (NUM_UNITS_IN_FIRST_ LAYERS,
activation='relu')
Apply it to dire_layer1, the output is dire_layer2
dire_layer2 = hero_layer_2(dire_layer1)
Apply it to radiant_layer1, the output is radiant_layer2
radiant_layer2 = hero_layer_2(radiant_layer1)
Concatenate dire_layer2 and radiant_layer2
conc = concatenate([dire_layer2, radiant_layer2])
Apply dropout regularizations
dropout1 = Dropout(DROPOUT1)(conc)
dropout2 = Dropout(DROPOUT2)(dropout1)
Dense layer of NUM_UNITS_HIDDEN1 neurons
hidden1 = Dense(NUM_UNITS_HIDDEN1,
activation='relu')(dropout2)
Dropout regularization
drop_hidden1 = Dropout(DROPOUT2)(hidden1)
Dense layer of NUM_UNITS_HIDDEN2 neurons
hidden2 = Dense (NUM_UNITS_HIDDEN2,
activation='relu')(drop_hidden1)
Dropout regularization
drop_hidden2 = Dropout(DROPOUT2)(hidden2)
Dense layer of NUM_UNITS_HIDDEN3 neurons
hidden3 = Dense (NUM_UNITS_HIDDEN3,
activation='relu')(drop_hidden2)
Output layer
output = Dense(1, activation='sigmoid')(hidden3)
Final Keras model
model = Model(inputs=input, outputs=output)

The hyperparameters of the neural network were optimized
by the GridSearchCV algorithm. Table IV contains the
meaning and possible values of each parameter. The optimal
combination of hyperparameters is shown in Table V.

TABLE IV. ENUMERATED VALUES OF HYPERPARAMETERS OF NEURAL
NETWORK

Hyperparameter Hyperparameter meaning Value
DROPOUT1 Percentage of dropped values

of neurons outputs
0.3, 0.5

DROPOUT2 0.3, 0.5
BATCH_SIZE Number of training samples in

the batch
512,
1024

NUM_EPOCHS Number of epochs 50, 100,
150

NUM_UNITS_IN_FIRST
_LAYER

Number of neurons in the first
and second hidden layers

50, 80,
100

NUM_UNITS_HIDDEN1 Number of neurons in the
hidden layer that is the first

after concatenation layer

150, 120,
100

NUM_UNITS_HIDDEN2 Number of neurons in the
hidden layer that is the second

after concatenation layer

100, 75,
50

NUM_UNITS_HIDDEN3 Number of neurons in the
hidden layer that is the third

after concatenation layer

50, 25,
10

Fig. 4. Neural network scheme

TABLE V. THE OPTIMAL COMBINATION OF THE NEURAL NETWORK
HYPERPARAMETERS

11 Value
DROPOUT1 0.5
DROPOUT2 0.5

BATCH_SIZE 512
NUM_EPOCHS 100

NUM_UNITS_IN_FIRST_LAYER 80
NUM_UNITS_HIDDEN1 100
NUM_UNITS_HIDDEN2 50
NUM_UNITS_HIDDEN3 25

The neural network training was conducted using the
Google Collaboratory. This service provides the opportunity to
train models on GPU Tesla K80 with 13 Gb of video memory
and on TPU – Tensor Processing Unit from Google, which is
intended for a larger volume of computations with reduced
precision. TPU uses XLA (Accelerated Linear Algebra) –
compiler that optimizes TensorFlow computations.

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 349 --

Table VI shows the results of neural network training on
CPU, GPU and TPU for optimal combination of
hyperparameters.

TABLE VI. NEURAL NETWORK TRAINING ON CPU, GPU AND TPU

Hardware
accelerator

Time, seconds ROC AUC

CPU 828.52 0.7711
GPU 547.32 0.7705
TPU 304.92 0.7716

We can conclude from obtained results that the fastest way
of training the neural network is using TPU, which is nearly
1.8 times faster than GPU Tesla K80.

Table VII presents the AUC values for the neural network
depending on the number of hidden layers after the
concatenation layer in its structure. Training of the neural
network was performed taking into account the optimal
combination of hyperparameters.

TABLE VII. TRAINING OF THE NEURAL NETWORK FOR A DIFFERENT NUMBER OF
HIDDEN LAYERS

Number of
hidden layers

Time, s ROC AUC

1 56134.62 0.7273
2 56285.84 0.7493
3 547.32 0.7705
4 698.84 0.7630

Analysis of the results shows that the most optimal in
terms of training time and efficiency are three hidden layers in
the structure of the neural network.

In addition, different activation functions were considered
(see Table VIII). Activation functions Softplus, Softsign,
ReLU, Tanh and Sigmoid show good values of ROC AUC
metric. Tanh and Sigmoid demonstrate the best values. The
least efficient is the Exponential function.

Thus, the best implementation of neural network should
use the optimal hyperparameters from Table V, Softplus or
Sigmoid activation function and contain three hidden layers
after the concatenation layer in its structure. For the best
performance, it can be trained on TPU.

VI. CONCLUSION

Analysis of the classification models shows that the
maximum value of ROC AUC metric that can be archived
with hyperparameter optimization is 0.77. In this case, the best
models are Linear Regression, Linear SVC and neural network
with the activation functions Softplus and Sigmoid. The fastest
of them is the linear regression model, so it is best suited for
practical implementation.

TABLE VII. COMPARISON OF ACTIVATION FUNCTIONS

ACTIVATION FUNCTION ROC AUC
SOFTMAX 0.7686

ELU 0.7696
SELU 0.7697

SOFTPLUS 0.7740
SOFTSIGN 0.7704

RELU 0.7715
TANH 0.7702

SIGMOID 0.7740
EXPONENTIAL 0.6197

In the future, we plan to study other factors potentially
affecting the outcome of a match, such as player experience,
characteristics of heroes and their synergy within a team. They
can improve the efficiency of classification models and
provide more accurate information about the match
outcome.

In this case, it will be necessary to use different feature
engineering techniques, which are not applicable to the
classification problem in its current formulation.

ACKNOWLEDGMENT
The research was supported by the Russian Foundation for

Basic Research in the framework of the scientific project No.
18-07-01446 and by the Foundation for Assistance to Small
Innovative Enterprises No. 12794GU/2018 from 04/26/2018.

REFERENCES
[1] J. Pfau, J. D. Smeddinck, & R. Malaka, “Towards Deep Player

Behavior Models in MMORPGs”, in Proceedings of the 2018 Annual
Symposium on Computer-Human Interaction in Play, Oct. 2018, pp.
381-392.

[2] W. Looi, M. Dhaliwal, R. Alhajj, & J. Rokne, “Recommender
System for Items in Dota 2”, IEEE Transactions on Games,
2018.

[3] N. Pobiedina, J. Neidhardt, M. D. C. C. Moreno, L. Grad-Gyenge, &
H. Werthner, “On successful team formation: Statistical analysis of a
multiplayer online game”, in Business Informatics (CBI) 2013 IEEE
15th Conference, July 2013, pp. 55-62.

[4] DotaBuff official website, DotaBuff, Web: https://ru.dotabuff.com/
[5] DotaPicker official website, DotaPicker, Web: http://dotapicker.com/
[6] F. Beskyd, “Predicting the Dota 2 Game Results”, in Czech Technical

University in Prague, Calculation and Information Center,
2018.

[7] Z. Chen, T. H. D. Nguyen, Y. Xu, C. Amato, S. Cooper, Y. Sun, &
M. S. El-Nasr, “The art of drafting: a team-oriented hero
recommendation system for multiplayer online battle arena games”,
in Proceedings of the 12th ACM Conference on Recommender
Systems, Sept. 2018, pp. 200-208.

[8] Towards Data Science, CatBoost vs. Light GBM vs. XGBoost, Web:
https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-
5f93620723db

[9] Github, Tensorflow Dota Predictor, Web:
http://markdunne.github.io/2016/02/07/TensorFlow-Dota-
Model

__PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

-- 350 --

