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Abstract—Massive MIMO technology (MIMO technology 
with large number of antennas) is planned for use in 5G networks 
for significant capacity increasing. However, on the way of 
Massive MIMO application in 5G systems, there are many 
problems. Some problems are related to the development of 
digital signal processing algorithms with good quality 
characteristics and low computational complexity. In this paper 
Chebyshev linear and nonlinear iterative demodulation 
algorithms for MIMO systems are discussed along with Zero-
Forcing (ZF) algorithm and minimum mean square error 
(MMSE) algorithm. For the comparison of these algorithms BER 
performance characteristics were obtained. The nonlinear 
algorithm shows a gain of about 1 dB compared to MMSE and 
has same computational complexity for the case of 64 antennas. 

I. INTRODUCTION 
In the conditions of increasing the transmitted information 

volume, the requirements for the throughput of radio 
communication systems are also increasing. MIMO (Multiple 
Input Multiple Output) technology [1], [2], which uses multiple 
transmitting and multiple receiving antennas, is widely used to 
significantly increase the capacity of modern radio 
communication systems. One of the ways to increase the 
throughput of radio communication systems, which does not 
require the use of additional resources, is the use of highly 
efficient digital signal processing algorithms. 

Massive MIMO technology (i.e. MIMO technology with a 
large number of antennas) is planned for use in 5G networks in 
order to increase the capacity. This technology allows to obtain 
high spectral efficiency and high energy efficiency of the radio 
communication systems. However, on the way of Massive 
MIMO application in 5G systems, there are many problems. 
Some problems are related to the development of digital signal 
processing algorithms with good quality characteristics and low 
computational complexity. 

In this paper Chebyshev linear and nonlinear iterative 
demodulation algorithms for MIMO systems are discussed 
along with Zero-Forcing (ZF) algorithm and minimum mean 
square error (MMSE) algorithm. For the comparison of these 
algorithms BER performance characteristics were obtained. 
The noise immunity characteristics of these algorithms for the 
MIMO system with different number of transmitting and 

receiving antennas were obtained – dependences of bit error 
ratio (BER) on the signal-to-noise ratio (SNR). 

II. MODEL OF MIMO SYSTEM 
Fig. 1 shows the MIMO block diagram. The model of the 

signal at the input of the demodulator is the following [2]: 

y Hs n                                 (1) 

where y – received signals vector of 1M  dimension; H 
– complex matrix of MIMO radio channel of M M  
dimension; s – vector of transmitted information symbols of 

1M  dimension; n – Gaussian random vector of noise of 
1M dimension. Elements hij of MIMO channel matrix H 

represent the complex transmission coefficients from the j-th 
transmitting antenna to the i-th receiving antenna.  

 
Fig. 1. MIMO system block diagram 

The algorithm for MIMO system simulation has several 
steps: generation of bit vector b and information symbol vector 
s for all transmitting antennas, generation of MIMO channel 
matrix H, consisting of complex coefficients hij; generation of 
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complex Gaussian noise vector n and obtaining of its mixture 
with signal s; demodulation of signal y and obtaining of 
information symbol vector estimation ŝ  and corresponding
vector b̂ ; comparing of b̂   b  vectors and errors detection. 
Finally, bit error ratio (BER) is calculated for given signal-to-
noise ratio (SNR) value. These steps are performed for a given 
number of experiments and SNR values to achieve average 
BER performance for different SNR values. A detailed 
description of this algorithm can be found in paper [3]. 

III. LINEAR DEMODULATION ALGORITHMS

In MIMO systems ZF (Zero Forcing) algorithm can be used 
for demodulation. The ZF estimation of information symbols is 
the following [2], [4]: 

2ˆ arg min
I

ZF

s C

-1s y - Hs (H H) H y   (2) 

where IC  denotes I-dimensional continuous complex 

space; s  – estimation of received information symbol vector
s ; y – received signals vector which has dimension 1M ;
H  – complex matrix of MIMO radio channel which has 
dimension M M ; -1(H H) H – pseudoinverse matrix with 

respect to the channel matrix H ; H  – Hermitian conjugate
matrix with respect to the channel matrix H . It can be seen 
from equation (2) that Zero Forcing demodulation algorithm 
does not take into account the presence of noise n , which 
results in a significant loss in noise immunity (Fig. 2). 

Let us now consider minimum mean-square error (MMSE) 
demodulation algorithm. The estimation ˆ MMSE , optimal by
MMSE criteria, can be found as follows [2], [4]: 

ˆ MMSE 2 -1= [H H + 2 1] H y ,   (3) 

where 22  – complex noise dispersion, 1  – identity 
matrix. 

Algorithm (3) takes into account the presence of noise in 
radio channel and therefore it has a higher noise immunity 
compared to ZF algorithm. This can be seen in Fig. 2, which 
shows the dependences of the average BER for ZF and MMSE 
algorithms for different SNR values. Simulation was performed 
for MIMO system with 8 transmitting and 8 receiving antennas 
for 10,000 experiments. The same figure shows the linear 
Chebyshev algorithm for the case of 16 iterations, which is 
considered further. 
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Fig. 2. BER performance for ZF and MMSE demodulation algorithms and Chebyshev linear iterative demodulation algorithm for the case of 8 transmitting and 8 
receiving antennas 

To implement these demodulation algorithms, it is 
necessary to calculate the inverse matrix. This task is a very 
difficult in real-time conditions for MIMO systems with large 
number of antennas. However, it is impossible to calculate in 
advance the inverse of MIMO channel matrix, which depends 

on the complex transmission coefficients of radio channel, 
since matrix H  varies randomly. Thus, in case of large 
number of transmitting and receiving antennas, the use of these 
demodulation algorithms in practice becomes difficult for 
implementation. 
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IV. LINEAR CHEBYSHEV ITERATIVE DEMODULATION 
ALGORITHM 

This problem can be solved using iterative methods that 
have less computational complexity than MMSE algorithm. 
These methods iteratively solve a system of linear equations 

ˆHs = y , using some initial approximation ˆ0s . Approximate 
solution is consistently calculated during several steps 
(iterations) [5], [6]. 

Let us consider Chebyshev iterative algorithm. The iteration 
scheme (4) with variable iteration parameters (5) is called the 
Chebyshev iteration scheme [5]: 

-1
-1

ˆ ˆ
ˆi i

i
i

s - s
+ Hs = y ,              (4) 

1 2E H E , 1 0 , 

0

01i
i

, 1,2,...,i n , 0
1 2

2
,  

0
1
1

,    1

2

,             (5) 

where 1 2,  – minimum and maximum eigenvalues of 

matrix H , 
2 1cos

2i
i

n
 – the zeros of the Chebyshev 

polynomial ( ) cos( arccos )n x n x  on the interval 

1 1x . In this case, the following estimate takes place: 

0ˆ ˆn nqHs y Hs y , nq ,            (6) 

where 1
2
1

2
1

n

n nq , 1
1
1

. Let us write the 

expression for the parameters i : 

2 1 2 1
2 12 / [ ( )(cos )

2
1,2,...,

i
i

n
i n

.           (7) 

Let us rewrite the expression (7) of a sequence of iterative 
parameters with a given maximum number of iterations maxi , 

associated with the roots of Chebyshev polynomials, in the 
following form [4]: 

2 1 2 1

1
1 2cos

2 2max

i
i i

,          (8) 

where 2 1,  – maximum and minimum eigenvalues of the 
channel matrix, maxi  – maximum number of iterations, which 

is used in the Chebyshev demodulation algorithm. 

Fig. 3 shows the noise immunity dependencies 
( )BER f SNR , obtained by MMSE demodulation algorithm 

and linear Chebyshev iterative algorithm using expression (8) 
for the parameters i  for the case of 32 iterations at different 
SNR values. The simulation was carried out for MIMO system 
with 32 transmitting and 32 receiving antennas with a number 
of experiments equal to 10,000. The same figure shows 
nonlinear Chebyshev algorithm for the case of 32 iterations, 
which is considered further. 
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Fig. 3. BER performance of MMSE demodulation algorithm and linear and nonlinear Chebyshev iterative demodulation algorithms for the case of 32 transmitting 
and 32 receiving antennas
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To increase the computational stability of algorithm (4) – 
(7) the order is important, in which the zeros of the Chebyshev 
polynomial are taken. The rule for constructing such a 
sequence of parameters { }i  of (8) is known [4],[5], for which 
the convergence of the iterative method is monotonic and there 
is no computational instability. From the sequence of 
parameters (8), it is necessary to form a permutation containing 
only the values of the iterative parameters with odd numbers 
and arrange them in a certain order as follows [4], [5]:  

1 {1}, (2 ) ( )
2 1

m m
i i , (2 ) (2 )

2 2 14m m
i im            (9) 

For example, optimal permutation for 8 iterations is the 
following [5]: {1; 15; 7; 9; 3; 13; 5; 11}. 

For 16 iterations optimal permutation is the following [5]: 
{1;31;15;17;7;25;9;23;3;29;13;19;5;27;11;21}. 

Using the permutations, better convergence with the same 
number of iterations can be obtained. The rate of convergence 
of the iterative process (4) - (7) with the permutation of the 
iterative parameters (9) can be found from the following 
expression [5]: 

0
1 2( ) ln

2
n n ,                (10) 

where 0 ( )n  – number of iterations sufficient to solve the 

system of linear equations with a given accuracy 0 . 

Linear Chebyshev method provides a high rate of 
convergence, but to determine the iterative parameters, a priori 
knowledge of the minimum and maximum eigenvalues 2 1,  

of MIMO channel matrix H  is necessary, which limits its 
applicability. 

Instead of eigenvalues, it is advisable to use their 
approximate estimates. The following expressions are known 
for estimating the eigenvalues of the Hermitian matrix [6]: 

1 1 1

min
N

iji M j
T , 2 1 1

max
N

iji M j
T ,         (11) 

where ijT - the element of matrix . Matrix  is defined as 
follows: 

22T = H H + 1 ,            (12) 

where 22  – complex noise dispersion,  1  – identity 

matrix,– H Hermitian conjugate matrix with respect to matrix 
H . 

However, the considered linear demodulation algorithms 
with a relatively low implementation complexity lose in terms 
of the noise immunity characteristics compared to the 
demodulator that is optimal by the maximum likelihood (ML) 
criteria. The expression for the demodulator, that is optimal by 
ML criteria is the following [2]: 

ˆ arg min
Is

s y - Hs               (13) 

where  is a discrete set of values of a single complex 
information symbol and I  is a discrete set of values of 
complex information symbols vector s. The difference y - Hs  is 
called discrepancy. Maximum likelihood estimate minimizes 
the square of the discrepancy norm. The computational 
complexity of ML algorithm grows exponentially with the 
number of antennas [6], [7], [8]. 

Thus, the algorithm that is optimal by the maximum 
likelihood criteria for the case with large number of antennas 
cannot be implemented due to the extremely high 
computational complexity. Simple linear algorithms — the ZF 
algorithm, the MMSE algorithm, and the Chebyshev linear 
iterative algorithm do not use important a priori information 
about the discreteness of the set of vector information symbols, 
which explains the loss in noise immunity. 

It follows that the actual task is the development of 
demodulation algorithms taking into account a priori 
information about the possible values of information symbols 
and with acceptable computational complexity having noise 
immunity, close to the noise immunity of ML demodulator. In 
order to improve the characteristics of linear iterative 
demodulation algorithms and bring them closer to the 
potentially possible, reaching the noise immunity values of ML 
algorithm, it is necessary to go beyond the linear algorithms 
and consider nonlinear algorithms. There are approaches that 
allow to synthesize nonlinear iterative algorithms for 
demodulation of discrete signals [4], [6]. 

V. NONLINEAR CHEBYSHEV ITERATIVE DEMODULATION 
ALGORITHM 

Consider the demodulation algorithm based on the non-
linear Chebyshev method. The fundamental difference of this 
algorithm from linear Chebyshev iterative algorithm is the 
presence of a nonlinear function ˆ( )f s  at each iteration. This 
nonlinear function depends on the type of modulation used. In 
our case, this is the function of hyperbolic tangent 

1ˆ
(...) ( )is

f th
D

          (14) 

where D is the parameter of the nonlinear algorithm. 

Nonlinear Chebyshev iterative demodulation algorithm can 
be written in the following form: 

2 1
1 1

ˆ
ˆ ˆ ( ( 2 ) ( )i
i i i

s
s s th

D
H Y H H + 1     (15) 

Fig. 4 shows the noise immunity dependencies obtained for 
MMSE algorithm, linear and nonlinear Chebyshev iterative 
algorithms for MIMO system with 64 transmitting and 64 
receiving antennas for the case of 32 iterations and 10,000 
experiments. As can be seen from the noise immunity 
characteristics, the gain for the nonlinear Chebyshev algorithm 
is about 1 dB compared to the MMSE algorithm and about 2 

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 310 ----------------------------------------------------------------------------



dB compared to the linear Chebyshev algorithm (with an SNR 
of more than 8 dB). It should be noted that computational 

complexity for these algorithms is about the same. Fig. 4 shows 
that with an increase in SNR, an increase in noise immunity is 
observed. 
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Fig. 4. BER performance of MMSE demodulation algorithm and linear and nonlinear Chebyshev iterative demodulation algorithms for the case of 64 
transmitting and 64 receiving antennas

VI. SIMULATION OF CONSIDERED ALGORITHMS 

For the analysis of digital signal processing algorithms 
along with the theoretical analysis computer simulation is often 
used [2], [4]. In this paper, the results of the analysis of the 
considered algorithms are obtained by computer simulation. 
Radio communication systems are systems with a large number 
of elements and functional links between them and various 
random effects on these elements. At the same time, many 
different signal conversions with high speed digital signal 
processing take place. 

With the rapid increase in the capabilities of computer 
technology due to the tremendous growth of the complexity of 
modern radio communication systems, simulation models are 
becoming extremely important. The simulation process is a 
convenient, flexible, powerful tool for developing and 
analyzing new digital signal processing algorithms. However, 
for successful simulation of radio communication systems, it is 
necessary to solve problems related to algorithms optimization 
— effective methods are needed to form mathematical models 
of radio communication systems and their elements which have 
minimal complexity. 

During the simulation a radio communication system is 
usually considered as several functional blocks, each of which 
is described using a separate program. Thus, a large and 
complex system is a collection of simple blocks, the use of 
which makes it possible to study them in detail and obtain the 
desired characteristics for analyzing the system.  

In this paper, we simulate demodulation algorithms for a 
MIMO system with different numbers of antennas to evaluate 
the performance of these algorithms. As a result of the 

simulation, the noise immunity characteristics of the MIMO 
system for different demodulation algorithms (the dependences 
of BER versus SNR) were obtained. The number of 
experiments was chosen to ensure the required accuracy of the 
simulation (L=10000). 

TABLE I shows simulation algorithm for the considered 
linear and nonlinear Chebyshev iterative demodulator with the 
sequence of parameters i . The simulation results are the 
immunity characteristics of the MIMO system for different 
numbers of antennas and different numbers of iterations. 

TABLE I  SIMULATION ALGORITHM OF  LINEAR AND NONLINEAR CHEBYSHEV  
DEMODULATORS FOR MIMO SYSTEEM 

Step 
number Simulation program operations Variables that are 

used in the program 
1. Start of signal-to-noise ratio cycle SNR 
2. Start of experiments cycle L=10000 
3. Transmitting antennas cycle M 

Generation of a uniformly distributed 
random variable (for each antenna) x 

Bit generation (1 or 0) from x b 
Modulation (generation of 

information symbol for each 
antenna) 

s 

4. End of the cycle (step 3) 

5. 
Formation of a vector from generated 

information symbols for all 
transmitting antennas 

s 

6. 
MIMO channel matrix generation, 
consisting of complex transmitting 

coefficients 
H 

7. Generation of complex Gaussian 
noise vector n 
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8. Simulation of signal and noise 
mixture 

y Hs n

9. 

Calculation of the sequence of 
iterative parameters. Application of 

the Chebyshev method for 
demodulation 

i  

10. Star of iterations cycle i_max 

11. Obtaining estimate on the i-th 
iteration 

ˆis
12. End of cycle (step 10) 

13. 
Demodulation (obtaining estimate of 

the received vector of information 
symbols) 

ŝ

14. Obtaining estimate of received bits 
vector b̂

15. Comparing vectors b̂   b  and
detection of errors 

errors 

16. Number of errors calculation sum 
17. End of cycle (step 2) 

18. Bit error ratio calculation for each 
SNR value BER 

19. End of cycle (step 1) 

20. 
Plotting bit error ratio versus signal-
to-noise ratio for different numbers 

of antennas 
( )BER f SNR

VII. CONCLUSION

Future 5G systems [1], [9], [10] are aimed at significant 
increase in throughput, including using Massive MIMO 
technology. Iterative demodulation algorithms based on 
Chebyshev method are planned to be used for MIMO systems 
with large number of antennas, as well as for signals with 
higher modulation order. The main limitation of Chebyshev 
iteration method applicability is the need for a priori knowledge 
of MIMO channel matrix H spectrum boundaries (maximum 
and minimum eigenvalues), and with decreasing accuracy of 
these values, the convergence of the algorithm slows down. 
The task of finding estimates for the eigenvalues   of MIMO 
channel matrix and applying the obtained estimates in 
demodulation algorithms requires additional research.  

More attractive are nonlinear algorithms, which have the 
same order of computational complexity and allow to get closer 
to the potential characteristics. Chebyshev nonlinear iterative 
demodulation algorithm provides a gain of about 1 dB 
compared to the MMSE demodulator and about 2 dB compared 
to linear Chebyshev iterative demodulator, moreover, its 
characteristics do not get worse with an increase in the number 
of antennas. The gain in the considered nonlinear demodulation 

algorithm is achieved by using a nonlinear function that takes 
into account the discreteness of information symbols set. 

However, the development of demodulation algorithms 
with characteristics close to ML demodulator but have much 
less computational complexity, requires further research [7], 
[9]. In addition, it is necessary to study nonlinear Chebyshev 
iterative demodulator for signals with high modulation order 
and for larger number of antennas, as well as for MIMO radio 
channels with spatially correlated fading. 

Finally, it should be noted that this report is useful for 
analyzing the characteristics of MIMO with a large number of 
antennas and for a deeper understanding of the iterative 
algorithms for demodulating signals in MIMO systems. For 
very high requirements for 5G systems, it is important to use 
such demodulation algorithms that will increase the spectral 
efficiency and energy efficiency of such systems and have 
acceptable computational complexity. But on the way to the 
practical use of 5G systems, there are a number of difficulties 
[1], [9], [10], for the solution of which these research are 
directed. 
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