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Abstract—The paper considers a new algorithm for blind 
quality assessment of a slice of X-ray microtomographic image. 
We selected the following factors impacting on micro-CT image 
quality with respect to Digital Rock technology: smoothness, 
sharpness, contrast, absence of high-density regions and ring 
artifacts. We propose algorithms for estimation of partial quality 
measures for named factors inside Region-of-Interest, that is in 
area associated with a sample of rock or granular material. Total 
quality metrics is calculated as a product of these partial 
measures. Our method for quality assessment provides 
reasonable outcomes for synthetic and real slices of micro-CT 
images. We collected experts' judgments about quality of slices. 
Proposed solution has a high correlation with scores of experts 
and outperforms existing blind quality metrics. An application of 
developed method to all slices allows to obtain quality estimation 
for 3D micro-CT image. 

I. INTRODUCTION 
X-ray computed microtomography (micro-CT) [3] is widely 

used for analysis of various solid and granular materials [4]. 
Digital Rock is an example analytic technology based on 
micro-CT data. This technology is applied for estimation of 
reservoir rocks characteristics in oil and gas industry [1], [2]. 
Micro-CT “reconstructs” a 3D image of a rock sample from 
shadow projections. Such digital representation of a core 
sample enables simulation of its physical and chemical 
properties. Obviously, the image quality strongly effects on the 
adequacy and accuracy of such digital model. So far, an 
operator of micro-CT system made visual quality estimation of 
reconstructed image. It may lead to selection of non-optimal 
parameters of scanning and/or reconstruction. Sometimes, 
micro-CT image can be inapplicable for building a proper 
digital representation, because its quality is too low. It is 
preferable to substitute the subjective visual quality assessment 
by numeric one. The aim of our work is to develop an 
algorithm and software tool for the quantitative quality 
assessment of a microtomographic image. 

The main challenge of creation of technique for image 
quality assessment is transformation of subjective knowledge, 
experience and intuition of experimenters to objective numeric 
scale. Quality is a vague notion. How to formalize it 
quantitatively? Are there universal criteria for any type of 
image or distinct measures for limited subset of images? That is 
why, image quality assessment (IQA) is one of the hottest 
problems in image and video processing. The no-reference 

(blind or unsupervised) IQA methods are intended for assessing 
the quality of an image with no prior information about its 
reference pristine version. Despite huge efforts, so far there are 
no commonly adopted blind quality metrics intended for any 
type of image affected by several types of various defects [5].  

The majority of existing quality measures is aimed with 
conventional photo of natural scenes. In the best of our 
knowledge, there are no numerical quality metrics intended for 
assessment of X-ray micro-CT images in a prior art. Quality of 
micro-CT image depends on many factors. Part of them are 
general for any images, e.g. noise, blur, brightness and contrast. 
Other factors are specific for computed tomography, e.g. beam 
hardening, a partial volume effect, the ring artifacts [6]. Some 
artefacts act approximately equal across a slice. Others have a 
local nature. As a rule, several causes of quality impairing 
effect simultaneously. Building of blind quality metric of 
micro-CT image considering joint action of global and local 
influential factors is even more challenging in comparison with 
quality assessment of a conventional photo. 

An operator of micro-CT should have possibility for rapid 
quality assessment to decide re-scan or re-reconstruct image. 
Sometimes third-parties laboratories perform scanning. In that 
case, a customer should have a tool for fast quality evaluation 
of ordered images. Therefore, procedure for quality estimation 
should process an image in several minutes. Typical micro-CT 
image has size about 4000×4000×2000 voxels and bit depth 8 
or 16 bits per voxel. High computing power and huge memory 
are required to handle with such image. We decided to assess 
quality for slices of micro-CT image, because it is way for 
obtaining a fast solution by means of concurrent processing and 
an application of existing optimized libraries for processing of 
2D images. Quality metrics for whole 3D image can be 
calculated based on measures of all slices. In the paper we 
propose new algorithm for blind quality assessment of a slice 
of micro-CT image.  

This paper is organized as follows: in Section II we 
describe existing blind quality assessment methods; in Section 
III we propose new algorithm for blind quality assessment of a 
slice of X-ray microtomographic image; in Section IV we show 
results of testing proposed method on synthetic images, real 
Micro-CT images with different exposure and present 
comparison of assessments by our method and existing blind 
quality assessment methods with experts' judgments; and in 
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Section V we conclude on the applicability of the proposed 
method to assess the quality of micro-CT images.  

II. RELATED WORK 
Paper [7] presents comprehensive classification of existing 

blind IQA methods. Quality assessment approaches lie in two 
main categories: distortion-specific (or partial) and general 
purpose (or universal). There are numerous publications 
devoted to various approaches for evaluation of noise level 
[8], for estimation of image sharpness [9] or blurriness [10], 
and for assessment of artifacts of lossy compressions. 
Frequently algorithms for the distortion-specific quality 
estimation come before correction of corresponding defects, 
for example, sharpness is assessed for finding of parameters 
for sharpening, level of JPEG artifacts is estimated for 
enhancement of compressed images [11]. Majority of the 
distortion-specific quality measures is intended for idealistic 
models of distortion, for example additive white Gaussian 
noise (AWGN) is analyzed only; the metrics are based on 
assumption of a predominance of considered defects over 
other one, whereas real images are affected by several 
distortions jointly. Application of such partial metrics should 
rely on rigorous analysis of possible defects for given image 
type and cross-influence of these distortions. 

The famous general quality metrics employ machine-
learning-based techniques. Almost all existing blind quality 
assessment methods are “opinion aware”: in the training stage, 
feature vectors are extracted from the distorted images, then a 
regression model is learned to map the feature vectors to the 
associated human subjective scores [12], [13]. The models 
were trained on images from Live dataset [14], that contains 29 
pristine images and 779 their copies affected by one from 5 
types of distortions (AWGN, JPEG, JPEG2000, Gaussian 
Blur, Fading). Sometimes the methods apply for training 
several additional corpuses having similar characteristics, e.g. 
TID2008 [15].  

Blind Image Quality Index (BIQI) [12] implements a two-
step approach to assess the quality of photographs. This 
method is based on usage of features originated from natural 
scene statistic (NSS) in wavelet domain [16] and assumptions 
that photos of natural scenes have determined statistic 
properties, these properties are changed due to distortions, and 
type and power of distortion can be predicted. First stage of 
BIQI is classification type of defect. Second one is numerical 
quality estimation via regression model. Support vector 
machine (SVM) is used for training classification and 
regression models. Blind/Referenceless Image Spatial Quality 
Evaluator (BRISQUE) [13] uses features from NSS in spatial 
domain [17]. One regression model for all distortions is 
trained by SVM. Oriented Gradients Image Quality 
Assessment (OG-IQA) method [18] analyzes correlation of 
oriented gradients in spatial domain. It was speculated, 
orientations of local gradients change predictably for distorted 
photos of natural scenes. One regression model for all 
distortions is trained by means of Adaptive Boosting algorithm 
for decision trees. The small number of photos as well as the 
limited number of deformations in training set lead to low 
generalization capability of such models. 

Natural Image Quality Evaluator (NIQE) [19] does not use 
distorted image for training. In this method, multivariate 
Gaussian (MVG) model based on NSS features in spatial 
domain is calculated for pristine photos only. The quality of 
the estimated image is estimated as the distance between its 
MVG and pre-calculated MVG of undistorted photos from 
Live corpus. Integrated Local Natural Image Quality Evaluator 
(IL-NIQE) [20] algorithm exploits the same idea as NIQE, but 
IL-NIQE operates with color channels of photo in salient local 
patches. We suppose, general concept of IL-NIQE can be 
adjusted for assessment of global quality factors (e.g. noise 
and blur) of micro-CT images. Surely, MVG model should be 
trained on representative set of high-quality micro-CT images. 
However, there are no existing quality metrics considering 
local specific micro-CT artifacts.  

III. ALGORITHM OF QUALITY ASSESSMENT 

A. General workflow 
There are two approaches for the development of IQA 

algorithms: deductive (top-down) and inductive (bottom-up) 
reasoning. Deductive methods are created based on a priori 
knowledge about characteristics of images and factors 
impacting on its quality. Outcomes of deductive inference 
depends on the completeness of the understanding of a 
problem and the feasibility of making a non-contradicting 
formal description. Inductive or supervised machine learning 
algorithms train models based on available dataset. Outcome 
of machine-learning-based techniques depends primarily on 
completeness and consistency of the training, testing, and 
validation sets. It is necessary to collect the representative 
dataset to provide high generalization capability of trained 
model. Collection of big and diverse dataset containing micro-
CT images is quite difficult and time-consuming problem. So, 
we decided to formalize experience and intuition of experts 
about quality of microtomographic image by top-down 
approach. 

 
Fig. 1. Workflow for processing of a slice 
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As a rule, a sample occupies only part of image, so-called 
Region of Interest (ROI). Quality estimation should be done 
inside ROI. After literature analysis [3, 5] and discussions with 
the experts we selected the following main factors that affect 
the quality of micro-CT images obtained for Digital Rock 
technology: noise due to short exposure time, noise-like 
pattern due to insufficient number of shadow projections, 
blurriness, low contrast, presence of high-density (HD) 
regions, and ring artifacts. These factors have cross-influence. 
Nevertheless, our aim is to assess them independently from 
each other, because sometimes it allows to understand causes 
of low quality and to give to an operator of micro-CT system 
the recommendations to improve image quality. We propose to 
estimate the following five partial quality measures that are 
dimensionless values in the range from 0 to 1, where 0 
corresponds to low quality and 1 corresponds to high quality: 
Qn – smoothness; Qb – sharpness; Qc – contrast; Qo – absence 
of HD regions; and Qa – absence of ring (or circle) artifacts.  

Total quality metrics is combining of these partial 
measures. If image has low quality due to any factor then 
corresponding measure should be equal to zero, and total 
quality measure should be equal to zero too. That is why, 
reasonable combining of the partial measures is their 
multiplication: 

,b n a o c
n a o cbQ Q Q Q Q Q

where Q is total quality metrics for the slice; b, n, a, o and 
c lie in the range [0, 1], and they are used to control of 

relative importance of the corresponding partial measures, 
such way for weighting of the multipliers was inspired by 
structure similarity index (SSIM) [14]. 

Fig. 1 shows workflow for quality assessment for a slice of 
microtomographic image. This order of stages is selected 
intentionally, because each next stage applies information 
obtained in previous ones. The first stage is ROI selection. All 
partial measures are estimated for this ROI. Ring artifacts are 
detected in the second stage. Third stage is detection of HD 
regions. Smoothness assessment is performed in the fourth 
stage. The following stages, contrast evaluation and sharpness 
assessment, use the noise level estimation obtained in 
smoothness assessment.  

B. Region of Interest selection 
Intensity range of a slice can vary significantly depending 

on parameters of micro-CT system and sample, especially in 
the case of storing an image having 16 bits per voxel. First 
processing step is intensity normalization of pixels of slice I to 
the range [0, 255]: 

0 : , ,

255 ,
, : , ,

255 : ,

I r c l

I r c l
I r c l I r c u

u l
u I r c

 (1)

where (r, c) is the pixel coordinate of the image, r = 0 ... N-1, 
c = 0 ... M-1, N is the number of rows in the image, M is the 

number of columns, l and u are 1 and 95 percentiles calculated 
from intensity histogram of central part of the slice I. 

The algorithm for selection a region associated with a 
sample searches for a convex region, within which there are 
distinguishable boundaries between areas of different 
intensity. It is important to find the areas inside the sample, 
and there is no need to accurately find the edges of the sample. 
Often, the noise level in micro-CT images is quite high. 
Therefore, many well-known filters for detecting boundaries 
in this case are not applicable, since they will react to noise. In 
addition, it is not the borders themselves that are of interest, 
but areas where there are changes in intensity. A variance filter 
allows to get an image in which relatively large values will be 
in the pixels, around which there is a change in the intensity of 
the image areas, and relatively small values in uniform areas. 
The variance filter [21] is defined as: 

1 1

var 2
0 0

2

1, ,
2 2

, ,

W W

i j

W

W WI r c I r i c j
W

I r c

(2)

where [ ] is the operator of taking the integer part, W is the size 
of a square window, coordinates (r, c) are changed as: 
r = [W / 2] ... N - [W / 2] - 1, c = [W / 2] ... M - [W / 2] – 1; the 
expectation of mean value WI  within the window is 
calculated as: 

1 1

2
0 0

1, , .
2 2

W W

W
i j

W WI r c I r i c j
W (3)

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. An illustration of ROI selection steps: (a) initial slice; (b) the result of 
the variance filter; (c) the result of thresholding for 2b; (d) selected Region of 
Interest 

Fig. 2b shows the result of the variance filter for the image 
in Fig. 2a. The thresholding of the outcome of variance filter 
allows to obtain a binary image, in which pixels with values 1 
identify that in their local neighborhood the intensity changes. 
Fig. 2c shows the result of the thresholding. After application 
of the thresholding several connected regions may be formed. 
To make them “merge” into a single conglomerate, we use a 
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morphological closing operation [22]. Several small areas can 
form near the boundaries of the slice, for example it occurs on 
the outer border of the holder. To exclude these undesirable 
areas from consideration, we process further only the convex 
hull of the largest region. This region extends beyond the 
sample by approximately half to two thirds of the size of the 
window of variance filter. To ensure that the entire region is 
inside the sample, a morphological erosion filter [22] is 
applied with the size of the structural element equal to the size 
of the window of variance filter. 

As the result of ROI selection, we have binary bitmap ROI, 
where one means that pixel is inside ROI and zero means that 
pixel is outside. Area of ROI is calculated as: 

, .ROI
r c

S ROI r c

In addition to ROI, we calculate binary mask MSK for 
excluding pixels equal to 0 (pure black) or 2 1n  (pure 
white), where n is a bit depth. We assume, that intensities in 
these pixels were clipped, and we cannot rely on their values. 
Assessments of smoothness, sharpness and contrast are 
performed for pixels with coordinate (r, c) for which MSK(r, 
c) equals 1. Mask MSK is calculated as logical conjunction of 
ROI and inverted masks for white and black: 

, , , , ,W BMSK r c ROI r c and not f r c and not f r c

where mask for white is: 
1: , 2 , 1,,

0 :

n

W
I r c and ROI r cf r c

otherwise

where mask for black is: 
1: , 0 , 1,

,
0 :B

I r c and ROI r c
f r c

otherwise

C. Selection of high-density regions 
By high-density (HD) regions, we mean parts of the sample, 

in which X-ray attenuation is significantly and abruptly different 
from neighboring parts. The total attenuation of the X-ray 
intensity is an a priori unknown combination of the photoelectric 
effect and the Compton effect [3], which cannot be properly 
accounted in reconstruction model. As a result, such regions 
often cause distortions in reconstructed images, e.g., fake 
decrease of attenuation coefficient around edges of HD particles 
Fig. 3b, strikes Fig. 3a. 

 
(a) 

 
(b) 

Fig. 3. Examples of high-density regions 

Such distortions lead to errors in image segmentation as 
well as in smoothness and sharpness assessments. The larger 
the area of HD regions the stronger the negative impact on 
quality. Percentage of pixels in ROI related to HD regions 
serves as a parameter for quality characterization: 

,
100 ,HDr c

HD
ROI

f r c
P

S

where indicator function fHD for HD pixels selection is: 

1: , , 1,
, ,

0 :
HD

HD
I r c T and ROI r c

f r c
otherwise

where threshold THD is calculated as: 

2 1max 2 1 ,
min ,

2 1

n
n

ROI ROI Wk i
HD

n

c i H k S P
T

where c is a coefficient less 1, HROI is histogram of intensity of 
pixels belonging in ROI, percentage of pure white pixels 
inside ROI PW calculated as: 

,
100 .Wr c

W
ROI

f r c
P

S

Quality measure Qo characterizing of absence of high-density 
regions is calculated as: 

1 .
1o

HD
Q

P

D. Smoothness assessment 
Existing methods for noise level estimation works 

reasonable for a limited type of noises only. As a rule, the 
method is capable to do assessment for additive or 
multiplicative white Gaussian noises (AWGN or MWGN) [8]. 
In case of micro-CT images, we have mixture of several types 
of correlated noises and defects of reconstructions, that look 
like noise. 

First step of smoothness assessment is intensity 
normalization for the image according to statement (1), where 
l and u are minimal and maximal intensities in the central part 
of the slice. We assume, standard deviation for uniform area of 
mineral matrix can be used for noise level estimation. 
Smoothness is inverse value for noise level. Variance filter 
(see statements (2) and (3)) serves for calculation of local 
standard deviations and means. Estimation should be done 
only in local windows, for which majority of pixels for 
corresponding window in MSK equals to one. We calculate 
two arrays, STD and MN, as follows: 

1 var 1 1, , , ,W MSKSTD t I r c MN t I r c p S
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where p1 is allowable percentage of masked pixels inside 
current local window, where percentage of masked pixels SMSK 
is calculated as: 

1 1

2
0 0

1 , ,
2 2

W W

MSK
i j

W WS MSK r i c j
W

where r = [W / 2] ... N - [W / 2] - 1, c = [W / 2] ... M - [W / 2] -
 1 and W is a size of the local window. 

We wish to do assessment for lighter areas of mineral, not 
darker areas of voids. For this purpose, we drop p2 percent of 
darker blocks: 

2 1 2 1 1, ,MMSTD t STD t MN t MN t T MN t

where t2 is sequential index, TMM is p2 percentile for array  
MN. 

Noise level  is estimated as mean value among p3 
percent of the least standard deviations in the array STD. We 
calculate smoothness Qn as: 

2
min ,

1 max 0, ,n
NL LNL HNL LNL

Q
HNL LNL

where LNL is the biggest standard deviation, which we 
consider corresponding to low noise level; HNL the smallest 
standard deviation, which we consider corresponding to 
ultimately high noise level, when processing of such image is 
meaningless. 

E. Contrast evaluation 
Contrast can be estimated as “width of histogram” that is 

the difference between the lightest and the darkest areas 
masked by MSK. To exclude bias due to presence of various 
artifacts, for example bright rays from HD regions, it is 
preferable to estimate contrast as difference between 95 and 5 
percentiles of intensities of those pixels that corresponds to 
one in mask MSK. However, width of histogram depends on 
noise level. Higher noise leads to spreading of histogram that 
leads to contrast overestimation. Because adding of noise leads 
to histogram extending, we assumed, that inverse operation 
that is noise suppression will lead to histogram narrowing. 
Indeed, it takes place. Box filter is the fastest one for noise 
suppression. We suggest setting up size of convolution kernel 
of box filter depending on noise level. So, the filtering allows 
to make contrast assessment almost irrespectively to noise 
level. Noise filtering is performed by Box filter and consists in 
convolution of the slice with square kernel: 

,bI K I

where symbol * denotes convolution. 

Quality measure of contrast Qc is calculated as: 

95 05max ,
,b b

c
I I HC

Q
HC

where Ib05 and Ib95 are 5 and 95 percentiles accordingly of 
intensities of those pixels from Ib that corresponds to one in 
mask MSK, HC is the least difference between 95 and 5 
percentiles, which is estimated by the expert as good enough 
for further processing. 

F. Sharpness assessment 
There is no commonly accepted blurriness or sharpness 

measure. Existing approaches can make robust estimation for 
images affected by isotropic Gaussian blur only [10]. In the 
case of micro-CT images, we have much more complex model 
of blurring. Moreover, blurring almost always is accompanied 
by noise. It is well-known a human estimates noisy image as a 
sharper. Our intention is estimation of sharpness 
independently from other factors of quality. Thus, beforehand 
we should suppress noise. However, box-filter is inapplicable 
in this case, because it leads to blurring of edges; it is 
preferable to apply edge-preserving filter, for example 
bilateral filter [23]. 

First step of sharpness assessment is intensity normalization 
for the slice according to statement (1) where l and u are 
minimal and maximal intensities of central part of the slice. 
After intensity normalization we apply bilateral filter several 
times depending on noise level. The bilateral filter is defined 
as: 

/2 /2

/2 /2
/2 /2

/2 /2

,

, , , ,

,
, , ,

f

S S

i S j S
S S

i S j S

I r c

I r i c j v i j w I r i c j I r c

v i j w I r i c j I r c

2 2

2, exp ,
2 D

i jv i j

2

2exp ,
2 R

xw x

where D and R are smoothing parameters, S is a filter  
size. 

Sharpness quality metrics Qb is calculated based on Crete' 
blurriness metrics [10]. The main assumption of the metrics is 
the following: there is small difference between blurred image 
and its re-blurred copy. Estimation is performed in masked by 
MSK regions. We compare responses of high-pass filter of 
initial image I and its re-blurred copy B. To be able to detect 
blurring by motion blur we consider re-blurring in vertical and 
horizontal directions separately: 

,

,
v l f

T
h l f

B K I

B K I
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where Kl is convolution kernel 1 by n of low-pass filter, for 
instance Kl = [1 1 1 1 1 1 1 1 1]/9. The next step is an 
obtaining of gradients by high-pass filtering and getting of 
absolute values for image I and its re-blurred copies. The step 
is performed separately in vertical and horizontal directions 
too. 

, ,

, ,

T
v h f h h f

T
v h v h h h

dI K I dI K I

dB K B dB K B

where Kh is convolution kernel 1 by m of high-pass filter, for 
instance Kh = [1 -1]. 

We take into account pixels of interest by multiplication of 
corresponding pixels of gradient images and MSK: 

, , , ,

, , , ,

, , , ,

, , , .

v v

h h

v v

h h

dI r c dI r c MSK r c

dI r c dI r c MSK r c

dB r c dB r c MSK r c

dB r c dB r c MSK r c

Differences between gradients of image If and re-blurred 
copies are calculated as following: 

, max 0, , , ,

, max 0, , , .

v v v

h h h

dV r c dI r c dB r c

dV r c dI r c dB r c

Then we calculate the sums of vertical and horizontal 
gradients as well as the sums of differences between gradients: 

, , , ,

, , , .

v v h h
r c r c

v v h h
r c r c

sI dI r c sI dI r c

sV dV r c sV dV r c

Sharpness Qb for the slice is calculated as: 

1 2min 1, max 0,1 max , ,v v h h
b

v h

sI sV sI sV
Q c c

sI sI

where c1 and c2 are constants. 

G. Detection of ring artifacts 
There are several electronic defects in micro-CT 

deteriorating the image and, in most cases, destroying it. The 
most famous such defect is the failure of a detector pixels, 
which results in prominent ring artifacts [3]. As the X-ray 
source and the detector array are tightly joined at the sampling 
unit, the failure of an individual detector element or the 
corresponding processing channel respectively becomes 
specifically visible. During the filtered shadow projections, the 
virtual lines connecting the corresponding corrupted detector 
element and the X-ray source, which sometimes are called 
defective beams, form the tangents of a circle. This means that 
all values outside the circle are seriously concerned by this 

artifact. Inconsistencies with the measured values of the 
corresponding other projection directions in fact arise for each 
point of each line. Several approaches for mitigation of ring 
artifacts were developed by manufacturers of micro-CT 
systems, for example: random movement between acquisitions 
of adjacent shadow projections, post-processing of shadow 
projections before reconstructions. Combination of these 
approaches allows to suppress majority of ring artifacts. 
Nevertheless, part of ring artifacts remains and deteriorates 
reconstructed image significantly. 

Fig. 4. Example (in inverted colors) of image fragment deteriorated by ring 
artifacts 

Fig. 4 shows example of strong ring artifacts. First step of 
ring artifacts detection is intensity normalization for the image 
according to statement (1). Then we transform the slice to 
polar coordinate system, where origin is in the center of initial 
slice (see Fig. 5a). In polar coordinate system rings around the 
center of the slice are transformed to the vertical lines. 
Application of matched filter allows to emphasize such lines. 
We use matched filter with convolution kernel having the 
following identical 31 rows:  

1 1 1 1 2 2 2 2 1 1 1 1 .

Fig. 5b also shows outcome of matched. Thresholding of 
the outcome of matched filter selects pixels of rings. To 
consider ROI, the result of thresholding is multiplied by image 
ROI. Then morphological dilation with vertically-oriented 
structure element is used to merge neighboring regions. 
Finally, we make labelling of connected regions and eliminate 
regions, which have bounding box sizes that are not satisfied 
to predefined rules. Quality measure Qa characterizing of 
absence of ring artifacts is calculated as: 

100
min 1 ,0 .rings

a
ROI

S
Q

S

where area Srings is sum of pixels of all survived regions 
satisfying to predefined rules. 
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(a) (b) 

Fig. 5. Cropped slice with ring artifact in polar coordinates (a) and outcome 
of matched filter with founded artifact (b) 

IV. RESULTS

A. Outcomes for synthetic image 
Our intention is development of quality metrics which are 

capable to estimate several quality factors independently from 
each other. We propose synthetic image (see Fig. 6a) that 
allows controlling of blurriness, noise level and contrast 
independently from each other. Our algorithms for calculation 
of quality metrics for smoothness, contrast and sharpness 
provide expected reasonable outcomes (see Fig. 6b for 
smoothness, Fig. 6c for sharpness and Fig. 6d for contrast): 
each partial quality measure falls down with growing of power 
of corresponding defect almost irrespectively to other defects. 

(a) 
(b) 

(c) (d) 

Fig. 6. Synthetic image (a); smoothness (b), sharpness (c) and contrast (d) 
depending on defect power for synthetic image 

B. Micro-CT images with different exposure 
We scanned the same sample 6 times with different 

exposure time and number of frames for averaging. A longer 
exposure time and a greater number of frames for averaging 
allow to obtain high-quality image. A shorter exposure time 
and absence of averaging corresponds to noisy image (see 
example of two images in Fig. 7). Actually, smoothness 
metrics goes down with increasing of noise level with our 
method (see Table I) and other quality measures are 
approximately the same, as we expected. 

(a) (b) 

Fig. 7. Example of images different exposure: (a) Exp. Time 1 s, 11 frames; 
(b) Exp. Time 0.7 s, 1 frame 

TABLE I.  SMOOTHNESS ASSESSMENT 

Image Exp. time, s 1 1 1 0.7 0.3 0.1 
Frames num. 11 3 1 1 1 1 

Smoothness, Qn 1.0 0.97 0.87 0.83 0.65 0.0 

C. Comparison with experts' scores 
Based on pairwise comparison method [24] we converted 

experts' judgments about quality of 10 images to continuous 
scale and compare with assessments produced by our 
algorithm. We asked three experts to compare 10 slices of the 
same sample scanned by various micro-CT systems in 
different modes. The experts compared sharpness, smoothness, 
and total quality for pairs of images. Fig. 8 shows two images 
from our test set. Plots in Fig. 9, Fig. 10 and Fig. 11 
demonstrates high correlation between assessments by our 
algorithm and experts. Table II contains Mean Absolute 
Difference (MAD) for Qn (smoothness), Qb (sharpness), and Q 
(total quality) between assessments by our algorithm and 
experts. MAD is quite small.  

(a) (b) 
Fig. 8. Examples of two images from test set: (a) 2nd image; (b) 5th image 
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Fig. 9. Comparison of assessments of total quality by our method and 
experts' 

Fig. 10. Comparison of assessments of smoothness by our method and experts' 

Table III contains MAD for image quality between 
assessments by the experts and our algorithm, as well as the 
existing blind quality metrics. Some of existing metrics (in 
particular BIQI and IL-NIQE) have good correlation with 
experts' opinion. However, those measures cannot estimate 
presence of specific micro-CT artifacts such as HD regions 
and rings. For assessment of micro-CT images our solution 
outperforms existing blind image quality metrics. 

Fig. 11. Comparison of assessments of sharpness by our method and experts' 

TABLE II.  MAD BETWEEN ASSESSMENTS BY OUR METHOD AND 
EXPERTS' 

Measure MAD 
Qn 0.09 
Qb 0.10 

Q 0.12 

TABLE III. MAD BETWEEN ASSESSMENTS BY METHODS AND EXPERTS' 

Method MAD 
Our method 0.12 
BIQI [12] 0.16 

BRISQUE [13] 0.24 
NIQE [19] 0.30 

IL-NIQE [20] 0.16 
OG-IQA [18] 0.21 

We implemented our algorithm in multi-platform 
application on C++ programming language. Processing time of 
one slice with size 4000 by 4000 pixels is about 3 s on PC 
with CPU Intel Core I7-5600 2.6 GHz. We expect to achieve 
total processing time of whole 3D micro-CT image about 10-
15 minutes thanks to concurrency. 

V. CONCLUSION 
We proposed no-reference metrics for assessment of 

quality of a slice of micro-CT image. It was done based on 
rigorous analysis of factors influenced on visual quality of 
microtomographic images. The metrics is calculated as 
product of the following partial quality measures: smoothness, 
sharpness, contrast, absence of high-density regions, and 
absence of ring artifacts. Proposed partial measures and total 
quality metrics have high correlation with scores given by 
experts in experiment based on pairwise comparison. Also, our 
algorithm outperforms several well-known blind quality 
metrics. Implemented in C++, the processing is fast and takes 
about 3 s for one microtomographic slice. An application of 
developed method to all slices allows to obtain quality 
assessment for 3D micro-CT image. 

REFERENCES 
[1] C.F. Berg, O. Lopez, and H. Berland, “Industrial applications of 

digital rock technology”, Journal of Petroleum Science and 
Engineering, vol. 157, 2017, pp. 131-147. 

[2] D.A. Koroteev, O. Dinariev, N. Evseev, D.V. Klemin, S. Safonov, 
O.M. Gurpinar, S. Berg, C. van Kruijsdijk, M. Myers, L.A. Hathon, 
H. de Jong, and R. Armstrong, “Application of digital rock 
technology for chemical EOR screening”, in Proc. SPE Enhanced Oil 
Recovery Conf., Jul. 2013, pp. 1-12. 

[3] T.M. Buzug, Computed tomography: from photon statistics to 
modern cone-beam CT. New York: Springer Science & Business 
Media, 2008. 

[4] I. Safonov, I. Yakimchuk, and V. Abashkin, “Algorithms for 3D 
Particles Characterization Using X-Ray Microtomography in 
Proppant Crush Test”, Journal of Imaging, vol. 4(11), 2018, pp. 134. 

[5] Y. Ding, Visual Quality Assessment for Natural and Medical Image. 
Springer Berlin Heidelberg, 2018. 

[6] J.F. Barrett, and N. Keat, “Artifacts in CT: recognition and 
avoidance”, Radiographics, vol. 24(6), 2004, pp. 1679-1691. 

[7] M. Jenadeleh, M.M. Masaeli, and M.E. Moghaddam, “Blind image 
quality assessment based on aesthetic and statistical quality-aware 
features”, Journal of Electronic Imaging, vol. 26(4), 2017, 
pp. 043018. 

[8] S. Pyatykh, J. Hesser, and L. Zheng, “Image noise level estimation by 
principal component analysis”, IEEE transactions on image 
processing, vol. 22(2), 2013, pp. 687-699. 

[9] I.V. Safonov, M.N. Rychagov, K. Kang, and S.H. Kim, “Adaptive 
sharpening of photos”, Color Imaging XIII: Processing, Hardcopy, 
and Applications. International Society for Optics and Photonics, 
vol. 6807, 2008, pp. 68070U. 

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 177 ----------------------------------------------------------------------------



 

 

[10] F. Crete, T. Dolmiere, P. Ladret, and M. Nicolas, “The blur effect: 
perception and estimation with a new no-reference perceptual blur 
metric”, Human vision and electronic imaging, vol. 6492, 2007, 
pp. 64920l. 

[11] I.V. Safonov, I.V. Kurilin, M.N. Rychagov, and E.V. Tolstaya, 
Adaptive Image Processing Algorithms for Printing. Springer 
Singapore, 2018. 

[12] A.K. Moorthy, and A.C. Bovik, “A two-step framework for 
constructing blind image quality indices”, IEEE Signal processing 
letters, vol. 17(5), 2010, pp. 513-516. 

[13] A. Mittal, A.K. Moorthy, and A.C. Bovik, “No-reference image 
quality assessment in the spatial domain”, IEEE Transactions on 
Image Processing, vol. 21(12), 2012, pp. 4695-4708. 

[14] H.R. Sheikh, M.F. Sabir, and A.C. Bovik, “A statistical evaluation of 
recent full reference image quality assessment algorithms”, IEEE 
Transactions on Image Processing, vol. 15(11), 2006,  
pp. 3440-3451. 

[15] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, 
and F. Battisti, “TID2008-a database for evaluation of full-reference 
visual quality assessment metrics”, Advances of Modern 
Radioelectronics, vol. 10(4), 2009, pp. 30-45. 

[16] A. Srivastava, A.B. Lee, E.P. Simoncelli, and S.C. Zhu, “On 
advances in statistical modeling of natural images”, Journal of 
mathematical imaging and vision, vol. 18(1), 2003,  
pp. 17-33. 

[17] D.L. Ruderman, and W. Bialek, “Statistics of natural images: Scaling 
in the woods”, Advances in neural information processing systems, 
1994, pp. 551-558. 

[18] L. Liu, Y. Hua, Q. Zhao, H. Huang, and A.C. Bovik, “Blind image 
quality assessment by relative gradient statistics and adaboosting 
neural network”, Signal Processing: Image Communication, vol. 40, 
2016, pp. 1-15. 

[19] A. Mittal, R. Soundararajan, and A.C. Bovik, “Making a “completely 
blind” image quality analyser”, IEEE Signal Processing Letters, 
vol. 20(3), 2013, pp. 209-212. 

[20] L. Zhang, L. Zhang, and A.C. Bovik, “A feature-enriched completely 
blind image quality evaluator”, IEEE Transactions on Image 
Processing, vol 24(8), 2015, pp. 2579-2591. 

[21] A. Fabija ska, “Variance filter for edge detection and edge-based 
image segmentation”, in Proc. IEEE Conference on Perspective 
Technologies and Methods in MEMS Design (MEMSTECH), 2011, 
pp. 151-154. 

[22] P. Soille, Morphological image analysis: principles and applications. 
New York: Springer Science & Business Media, 2013. 

[23] C. Tomasi, and R. Manduchi, “Bilateral filtering for gray and color 
images”, Sixth International Conference on Computer Vision, 
Jan.1998, pp. 839-846. 

[24] R.K. Mantiuk, A. Tomaszewska, and R. Mantiuk, “Comparison of 
four subjective methods for image quality assessment”, Computer 
Graphics Forum, vol. 31(8), 2012, pp. 2478-2491. 

 

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 178 ----------------------------------------------------------------------------


