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Abstract—Gesture recognition is often used in various fields
like sign language recognition, entertainment, virtual and aug-
mented reality applications and many others. Vision based
approaches with such devices like Leap Motion controllers and
Kinect are often used in such systems and allow to achieve
high performance in terms of recognition accuracy. This paper
shows how one can overcome the most common problem of such
systems — self-occlusion. In this paper we propose the method
for the hand gesture recognition which requires 3 Leap Motion
controller devices. This work shows that increasing the number
of cameras can leads to better recognition accuracy.. In addition
we provide the methods of creating camera setup.

I. INTRODUCTION

Human-computer interaction becomes more and more intu-
itive with the use of such technologies as voice, text, gesture
recognition, speech generation, touch devices and so on. In
this article we focus on the gesture recognition. The most
common application for the gesture recognition systems are
sign language recognition application and different types of
entertaining systems: gaming consoles, virtual and augmented
reality applications and other. As the study [1] shows there are
several significant challenges related to technical and usability
aspect, which prevent rapid spread of this technology into
other possible areas such as health environments, assistive
technologies, crisis management and human-robot interaction.
High recognition accuracy, intuitiveness, usability and low
response time are among these challenges. The research in the

Fig. 1. Leap Motion Sensor Inside

gesture recognition field includes multiple works. Two basic
approaches are vision and non-vision.

Non-vision approaches require wearable devices like bend-
ing gloves to track fingers and hand. Gloves consist of the tac-
tical or sensory units, that are attached to the fingers or joints

of the glove, with the wired interface [2]. The first systems of
such type appeared in the late 1970s. The advantages include
no requirement for pre-processing thus allowing to use these
systems with computers with limited processing power. The
disadvantages prevent this technology from spreading widely.
Glove-based system are still used mostly by researchers, in
virtual reality applications, realtime motion capture and so on
due to it’s high price. Also it’s not very comfortable to wear
such a device because of the wires.

Vision approaches are mostly based on the use of depth
cameras. These systems have several advantages over the
non-vision approach. The whole recognition process is non-
intrusive and doesn’t require user to wear any additional
devices. The hardware used in such system is widespread and
is available at low cost. As long as our work is based on the
data from Leap Motion devices, we focus on vision methods.

A. Related Work

The work [3] proposes a hybrid method based on gradient
and stochastic optimization methods to detect fingers and hand.
The system presented by Qian et al. works in real time at 25
FPS. They made their own dataset from a 400-frame videos
with the Intels Creative Interactive Gesture Camera.

Some works use Leap Motion and Kinect controllers and
combination of them [4], [5], [8], [9], [10]. The Leap Motion
controller device is smaller, has smaller working area, but
higher resolution compared to Kinect. Such systems use Kinect
as a body-tracking devices and precise it’s data with the data
acquired from the Leap Motion controller.

The work [4] proposes a hand gesture dataset containing
10 gestures and obtained with a single Leap Motion device.
People who were involved in making the dataset were told to
perform gestures within Leap Motion controller valid visual
range. The authors improve the recognition accuracy with the
use of 2 new features: Fingertips Tip distance and HOG feature
of Leap Motion controller sensor images.

The work [5] proposes a hierarchical regression model to
analyze single depth images. The method is verified on two
real-world datasets: ICLV [6] and MSRA [7]. The main result
of this work is good real-time performance without GPU’s.

The work [8] considers the use of the Leap Motion
Controller for Indian Sign Language gesture recognition. The
authors propose a dataset of 45 gestures and achieve maximum
recognition accuracy of 90%.
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The work [9] propose a hand gesture recognition system
based on combination of the Leap Motion Controller and
Kinect data. The hand gesture recognition scheme here is
clearly focused on Leap Motion data. An ad-hoc feature set
based on the positions and orientation of the fingertips is
computed and fed into a multi-class SVM classifier in order
to recognize the performed gestures. The authors prepared the
dataset of 10 different gestures on the subset of the Ameri-
can Manual Alphabet. Authors achieved 91.28% accuracy by
combining data from the two sensors.

The work [10] proposes the Arabic sign language recogni-
tion system based on two Leap motion controller devices. The
authors used LDA classifier and achieved 97.7% accuracy. The
most misclassified signs were classified to the similar ones.
Their method includes data acquisition, preprocessing stage,
feature extraction and classification. Unfortunately there are
not many details about the cameras setup in this work. It was
only mentioned that they were placed at the right angle.

The high (around 90%) accuracy achieved in the most
works mentioned before can be explained by the good ad-
justment of machine learning features and the fact, that
gestures were facing the camera when recording. One can
rarely see self-occluded gestures in these datasets. We want
to specifically focus on this problem in our work so we expect
the recognition accuracy from a single device to be lower
compared to the results of other authors.

B. Relevance

Human-computer interaction in virtual reality applications
can be significantly improved with the use of the gesture
recognition technology. Moreover, virtual reality devices are
used in many areas lately. The impressive results of using
virtual reality systems have been achieved in such fields like
surgery [11], prosthetics [12], transplantology [13]. A method
proposed in [14] accelerates the training rate in the man-
agement of upper limb prostheses. The paper [15] proposes
a system for observing data obtained by digital holographic
microscopy in virtual reality environment. The leap motion
device is used to manipulate 3d models of micro-objects in
this work. The works [16], [17] examine the role of the visual
perception of various parameters according to the results of
testing skiers on a virtual environment simulator.

The task of providing a natural and convenient interface
for managing virtual objects is important for many systems
from this list. In order to solve this problem the object in the
virtual scene needs to be positioned precisely. This problem
can be solved by tracking and recognition systems. Recently,
the market for optical systems has grown significantly, and the
number of implementations of related algorithms for gesture
recognition and tracking the position of various items has
increased. Cameras and depth sensors are of particular interest,
since they are highly accurate and do not affect the degree
of perception of the virtual environment due to the lack
of physical contact. The development of the human-machine
interface with the possibility of carrying out experimental
measurements of the degree of perception of the virtual reality
is crucial.

In the work [18] a classification and a brief overview of the
tracking systems and the principles of their work are given. For

the purposes of tracking fine motor skills, Leap Motion is one
of the best choices. In addition, the Leap Motion SDK allows
to receive raw data directly from the camera (raw data), which
allows to develop custom methods and algorithms if necessary.
We have previously worked with the Leap motion device. In
the [21] we used the gesture recognition system based on a
Leap Motion device to make navigation in the augmented real-
ity application and the automatic operator actions graduation.
And in [20] we used several devices to construct models in
virtual reality.

C. Leap Motion device

The Leap Motion sensor includes several infrared LEDs
that illuminate working area with the patternless IR light, and
two cameras for image acquisition (Fig. 1 1). Leap Motion
Controller device provides an API that allows to get the
characteristics of the position of the fingers, palms and wrists
of the user’s hands and recognize some gestures. The Leap
Motion can recognize 4 types of gestures by default [19]. All
of them are dynamic.

• Circle. A single finger tracing a circle.

• Swipe. A long linear movement of a single finger.

• Key Tap. A tapping movement by a single finger on
an imaginary horizontal surface.

• Screen Tap. A tapping movement by a single finger
on an imaginary vertical surface.

D. Contribution

In this paper we want to contribute the following.

• Two hand gesture datasets: one with 5419 samples
of 3 gestures and the other with 1278 samples of
7 gestures. The gestures were performed without the
respect to the visual range of a single device and thus
are close to the real situations.

• Several machine learning algorithms comparison and
a machine learning model that will use data from
multiple cameras.

• High recognition accuracy with the proposed model.
The solution for the problem of self-occlusion.

E. Work structure

The paper is organized in the following way: Section 2
describes the general architecture of the recognition system.
Section 3 describes the Leap Motion device and data we get
from it. Section 4 describes the hand gesture dataset. Section
5 describes the setup of the Leap Motion cameras. Section
6 describes the machine learning model. Section 7 has the
experimental results. Section 8 has the conclusions and future
work.

II. ARCHITECTURE OF THE RECOGNITION SYSTEM

The key element of the recognition system is the Leap
motion controller device [22]. Our system consists of 3 such
devices. The Fig. 1 2 shows the recognition model we de-
signed.
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Fig. 2. System architecture

Each of the 3 devices is processed by an independent client
program. These programmes are united by a local network.
This program updates the data in memory (tracking data and
sensor image) for each new frame arriving from Leap Motion.
The server has the ability to give the command to the client
to save the data. When such a command is received, the client
saves the latest updated data from the memory. Each iteration
of the saved data from 3 devices will be assigned a unique
identifier. The dataset consists of the stored tracking data from
these iterations. Leap Motion API 4.0 allows to receive the
tracking data that we use. For example, the transformation
matrix of the palm is represented as xBasis, yBasis, zBasis,
which are the vectors specifying rotation and scale factors for
the corresponding axes and origin vector specifying translation
factors on all three axes. We also use the coordinates of the
position and rotation of the bones. In the model provided by the
leap motion controller all fingers contain 4 bones that makes
up the anatomy of the finger.

The 3 cameras setup is shown in the Fig. 1 4.

III. HAND GESTURE DATASET

In order to evaluate the effect of the new feature, we
propose a new dataset. The dataset contains in total of 7
gestures (Fig. 1 3). We chose such gestures because it was
convenient for us to work with them. Probably such gestures
are used in China to show numbers. However, we perceived
such gestures as random. Each gesture is repeated at least 200
times for one camera position. The cameras have 6 positions
and the data set contains more than 6697 samples in total.
However, the data is divided into 2 datasets. The first is used

to tracking gestures for a static position of devices (1297
smaples). The second one was recorded for a static position
of gestures and various positions of devices (5400 smaples).
While collecting data in the static position of the leap motion
devices, the distance between devices No. 2 and No. 3 was
0.19 meters, and the distance between device No. 1 and the
XY plane (Fig. 1 4) was also 0.19 meters. In this case, gestures
corresponding to numbers 1-4, 6, 7 from the Fig. 1 3 were
used. Sensor positions for recordings with different camera
positions are given in the Table I. The distance between the
device 3 and the XY plane did not change and was 0.32 meters.
For each iteration with different positions of devices, 3 gestures
corresponding to the numbers 4, 5, 7 from the Fig. 1 3 were
recorded. The values of the Recorded gestures column in the
table indicate the total number of 3 gestures for this static
iteration of the data recording process.

Below in the section Classification of gestures, describing
the studies for the static position of the cameras, we present
different tables with the results of data analysis for single (one)
camera, two cameras and three cameras. We used device 1 for
the setup with a single camera, devices 2 and 3 for the setup
with two cameras.

TABLE I. DATA ENTRY PARAMETERS FOR VARIOUS DEVICE POSITIONS

No. Distance between devices No. 2 and No. 3 Recorded gestures

1 0.10 m. 845
2 0.16 m. 923
3 0.22 m. 914
4 0.28 m. 876
5 0.34 m. 911
6 0.40 m. 931

The person performing gestures was required to do it in
the visual range of any of 3 Leap Motion Controller devices.
The person could move and rotate the arm in any direction
while collecting the data.

Fig. 3. Gestures in dataset

IV. LEAP MOTION DATA

To work with the data, we used the Leap Motion 4.4.0
SDK in the Unity3D environment. The Leap Motion data
model relies on a Frame parent object, which represents a
frame that contains a set of already selected API interfaces.
The objects of the Frame class are created this way in the
Update () method, data corresponding to the hands can be
obtained in each frame as a list List <Hand> hands =
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frame.Hands. The Hand class provides access to attributes
describing the position, orientation, and movement of a hand
detected by Leap Motion. Each Finger object contains an
identifier that identifies which physical finger of the API leap
motion associates with, and the following vectors showing the
position, speed and acceleration of the fingers that entering
joint (but not the metacarpophalangeal joints of the hand). The
fingers are constantly connected with the hand, that means
that the angular order of finger identifiers will be invariant.
As the fingers move in and out, the previously obtained
finger identifier could be is incorrect. Consequently, it may
be necessary to take a fingers identifier exchange. All tracked
properties, such as speed, will remain contiguous in the API.
However, the values obtained from the API output data (for
example, the history of positions) will be intermittent if they
do not have an appropriate exchange of identifiers. In addition,
the Finger objects may be invalid, which means that they
do not contain reliable tracking data (they do not correspond
to a physical finger). Also, invalid objects Finger can be
the result of a query of an Finger object that uses an
identifier from an earlier frame, if there are no Finger

objects with this identifier in the current frame. The object
Finger created from the Finger constructor is also invalid.
The check of functioning is performed using the Finger ::

isValid() function.

V. CAMERAS SETUP

To accomplish the task, we collected data from 3 leap
motion devices Since the recognition of gestures occurs in the
near zone within a hemispherical volume from 0.2 to 1 meter,
we proposed the following model for the sensors setup (Fig.
1 4).

Fig. 4. Diagram of the principal location of devices (leap motion devices)

Before creating the dataset each device could be moved
along the respective axis. However the devices are fixed on
the corresponding axis of the structure while collecting the
data. Thus we have the opportunity to adjust the position of
each device before conducting an independent experiment for
each position. The accuracy of each device position is 0.01
meters. The Fig. 1 5 shows the exposed sensors at the time

of the experiment. The distance between the boundaries of the
device No. 2 and No. 3 is 0.40 meters. The distance from the
border of the device No. 1 to the XY plane (see Fig. 1 4) is
0.32 meters. This setup is quite flexible and it is very easy
to change the distance between cameras. Also this setup is
scalable and one can add more cameras if needed.

Fig. 5. The photo at the moment of experiment. The distance between devices
No. 2 and No. 3 is 0.40 meters. The distance between the plane and the device
No. 1 is 0.32 meters

VI. GESTURE CLASSIFICATION

We tested logistic Regression, SVC and XGBClassifier.
We used python 3 and scikit-learn machine learning library
implementations of logistic Regression and SVC [23], [24]. We
used python 3 and skikit-learn wrapper interface for XGBoost
for XGBClassifier [25].

A. Feature extraction

Feature extraction is an important step in the gesture
recognition and we use automatic methods of feature selection.
We used the Recursive Feature Elimination(RFE) algorithm
from scikit-learn [26]. Logistic regression model is used as
an estimator in RFE. We select top 10 features for the dataset
using the coefficients of the regression model by training model
on the initial set of features and removing 1 feature at each
iteration.

We use randomized search on hyper parameters imple-
mented in RandomizedSearchCV [27]. It takes a fixed number
of parameter setting sampled from the specified distributions.
The 5-fold cross-validation is preformed for each algorithm.

For the logistic regression we search tolerance from 10−4
to 10−2, C from 0.7 to 1.2, maximum iterations from 80 to
200.

For the SVC algorithm we search C from 0.7 to 1.2, coef0
from -0.5 to 0.5, tolerance from 10−4 to 10−2, maximum
iterations from 80 to 200.

For the XGBClassifier we search max depth from 2 to 5,
learning rate from 0.05 to 0.2, number of estimators from 75 to
125, minimum loss reduction from 0 to 0.01, minimum child
weight from 0 to 2, maximum tree weight estimation delta

______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 166 ----------------------------------------------------------------------------



step from 0 to 1, subsample ratio for the training instance,
subsample ratio of columns when constructing each tree and
subsample ratio of columns for each split, in each level from
0.5 to 1, L1 regularization term on weights from 0 to 1, L2
regularization term on weights from 0.5 to 1, scale positive
weights from 0.5 to 1.

B. Logistic regression

Logistic regression is one of the basic classification algo-
rithms. It’s quite similar to linear regression, but uses sigmoid
function (eq. 1).

σ(t) =
1

1 + e−t
(1)

If t is considered a linear function, the equation for logistic
regression becomes eq. 2.

p(x) =
1

1 + e−(β0+β1x)
(2)

The hyper parameter table for 1, 2 and 3 cameras for
logistic regression is presented in Table II.

TABLE II. LOGISTIC REGRESSION HYPER PARAMETERS

1 camera 2 cameras 3 cameras
Tolerance 10

−
2 10

−
2 10

−
2

C 1.2 1.2 1.2

maximum iterations 200 200 200

C. SVC

C-Support Vector Classification algorithm is implemented
in the scikit-learn Support Vector Machines module. Support
Vector Machines use the concept of decision planes to separate
sets of objects that belong to different classes. The libsvm
implementation of the algorithm is used which can be found
in [28].

The hyper parameter table for 1, 2 and 3 cameras for SVC
is presented in Table III.

TABLE III. SVC HYPER PARAMETERS

1 camera 2 cameras 3 cameras
C 0.7 1.0 1.0

coef0 -0.5 0.5 0.5

Tolerance 10
−
4 10

−
2 10

−
2

maximum iterations 150 200 200

D. XGBClassifier

XGBClassifier is the XGBoost classification model that
uses gradient boosting technique. Like other boosting methods,
gradient boosting combines weak ”learners” into a single
strong learner in an iterative fashion. The easiest way to explain
it is the least-squares regression setting, where the goal is to
“teach” a model F to predict values of the form ŷ = F (x) by
minimizing the mean squared error 1

n

∑n
i=1

(ŷi −yi)2, where
i indexes over some training set of size n of actual values of
the output variable y.

The hyper parameter table for 1, 2 and 3 cameras for
XGBClassifier is presented in Table IV.

TABLE IV. XGBCLASSIFIER HYPER PARAMETERS

1 camera 2 cameras 3 cameras
max depth 4 4 4

learning rate 0.2 0.1 0.2

n estimators 100 100 150

gamma 10
−
2 0 0.05

min child weight 0 0 2

max delta step 1 0 1

subsample 0.5 1 0.5

colsample bytree 1 0.5 0.5

colsample bylevel 0.5 0.5 1

reg alpha 0 0 1

reg lambda 0.5 0.5 1

scale pos weight 1 0.5 1

VII. EXPERIMENTAL RESULTS

The recognition results for the best found classifiers are
presented in tables V to VII.

TABLE V. LOGISTIC REGRESSION 3 CAMERAS REPORT

Class Precision Recall F-score Support

0 0.93 0.9 0.91 69
1 0.9 0.9 0.9 70
2 0.79 0.78 0.79 69
3 0.67 0.64 0.65 53
4 0.67 0.81 0.73 42
5 0.93 0.91 0.92 57
6 0.9 0.79 0.84 24
avg 0.83 0.83 0.83 384

TABLE VI. SVC 3 CAMERAS REPORT

Class Precision Recall F-score Support

0 0.91 0.91 0.91 69
1 0.94 0.89 0.91 70
2 0.8 0.8 0.8 69
3 0.67 0.62 0.65 53
4 0.67 0.81 0.73 42
5 0.93 0.89 0.91 57
6 0.84 0.88 0.86 24
avg 0.83 0.83 0.83 384

TABLE VII. XGBCLASSIFIER 3 CAMERAS REPORT

Class Precision Recall F-score Support

0 0.95 1.0 0.97 69
1 0.94 0.96 0.95 70
2 0.79 0.88 0.84 69
3 0.88 0.68 0.77 53
4 0.8 0.88 0.84 42
5 0.95 0.91 0.93 57
6 1.0 0.88 0.93 24
avg 0.89 0.89 0.89 384

The overall accuracy can be found in Table VIII.

TABLE VIII. OVERALL ACCURACY COMPARISON

1 camera 2 cameras 3 cameras
Logistic regression 44.53% 61.46% 82.81%

SVC 44.53% 61.72% 83.07%

XGBClassifier 46.61% 68.23% 89.32%

The most important features are hand rotation matrix,
y-component of the fingers directions and distal phalanges
rotation quaternion. These features don’t depend on the size
of the person hand which makes the algorithm applicable for
anyone.
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The recognition results for one camera are quite bad (below
50%) for all algorithms. We focus on the self occlusion
problem while preparing the dataset, so we expected such a
result. As the table VIII shows, using more cameras does give
significant growth in the recognition accuracy. The growth is
about 20% when using two cameras instead of one and three
cameras instead of two. We got the best result (89.32% accu-
racy) with the XGBClassifier for the dataset with 7 gestures.

The next step to improve the recognition setup. We do it
by finding the best distances between devices No. 2 and No.
3 (Fig. 1 4). In order to that we prepared a new dataset with
3 gestures with the following distances between cameras No.
2 and No. 3: 10, 16, 22, 28, 34, 40 cm. After that we use
the method described above, but only use XGBClassifier and
information from 3 cameras. The results are shown on the Fig.
1 6

Fig. 6. Accuracy for distance between cameras No. 2 and No. 3

This experimental results indicate that the larger distance
between cameras helps recognizing gestures. The optimal
distance is about 35 cm, but the results for smaller distances
and the best differ by less than 2%. It means that one can
still achieve good recognition accuracy by making a smaller
system if needed.

VIII. CONCLUSION

In this paper we investigated the possibility of using track-
ing data from multiple Leap Motion devices (up to 3 devices)
in order to increase the recognition accuracy and overcome the
problem of the self occlusion. We proposed our own dataset
because there were no available datasets made in similar
hardware setup with the 3 Leap Motion Controller devices. We
focused on including gestures captured in different positions
and angles in it. We didn’t restrict the possible hand motion
while recording the data. We provided the method of choosing
the optimal distance between the cameras and choosing the
best algorithm for the recognition. Three algorithms were
compared: logistic regression, SVC and XGBClassifier. We
have shown that using multiple cameras does increase the
accuracy and can be used in systems if enough space for
the setup is provided. Our setup doesn’t require the user to
wear any additional hardware like in non-vision based systems

(e.g. glove-based control interfaces) while solving the problem
of self-occlusion that often occurs when using vision based
systems.

The future work includes expanding the list of possible
features on the basis of the raw data from Leap Motion sensors.
Also two handed gestures and dynamic gestures need to be
analyzed. This will noticeably increase the intuitiveness of the
system. Also we plan to use this method in augmented reality
training systems to automatically determine user’s gestures and
actions. The capabilities of our virtual reality application for
observing data obtained by the digital holographic microscopy
can be increased with this method by providing more types
of complex actions which can be performed with the model.
Also, testing the performance of the learning and predicting
is the possible future work. It is also possible to divide the
space available for the Leap Motion controller devices into
areas and test the accuracy of the hand gesture recognition in
every of these areas. It will also give usefull information about
the optimal cameras setup.
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