
An Ontology-Based Context Model for Managing
Security Knowledge in Software Development

Shao-Fang Wen, Basel Katt
Norwegian University of Science and Technology

Gjøvik, Norway
shao-fang.wen, basel.katt @ntnu.no

Abstract Software security has been the focus of the security
community and practitioners over the past decades. Much security
information is widely available in books, open literature or on the
internet. We argue that the generated huge mass of information
has resulted in a form of information overload to software
engineers who usually finish reading it without being able to apply
those principles clearly to their own application context. Our
research tackles software security issues from a knowledge
management perspective. In this paper, we present an ontology
approach to model the knowledge of software security in a context-
sensitive manner, supporting software engineers and learners to
enable the correlation process between security domain knowledge
and their working context. We also propose a web-based
application for security knowledge sharing and learning where the
ontology is adopted as the central knowledge repository.

I. INTRODUCTION

Software security has been the subject of plethora studies
for at least 40 years, and a steady stream of innovations has

develop secure software
and to protect applications. Improving software security
requires that software engineers have the knowledge and skills
to secure software development lifecycle (SDLC) such that they
can resist attacks and handle security errors appropriately [1].
There are security committees or groups of experts that identify
vulnerability patterns (e.g., CVE and CWE maintained by the
MITRE Cooperation) and standards and guidelines generally
applicable to secure software development (e.g., SEI CERT and
OWASP) in order to leverage the experience and knowledge of
many software development organizations.

Although much security information is widely available in
the form of checklists, standards, and best practices in books,
open literature or on the Internet
software engineers to extract relevant pieces of knowledge to
apply to their application-specific decision-making situations
during SDLC. We argue that the huge mass of information has
resulted in a form of information overload to software engineers
who usually finish studying it without being able to apply those
principles clearly to their own working context. Even if
educated in software security knowledge before joining
software development, these software workers still fail to
associate the general security knowledge with their developing
applications and fix vulnerabilities in the code when given a
chance. It especially relates to what is known as a knowledge
gap between knowledge available and knowledge required to
build secure systems in the context of the application
development.

Software development not only requires knowledge about
its own domain but also about the domain for which software is
being developed [2]. Each software product and process is
different in terms of goals and contexts. To develop software
for Mars landing is not the same as to develop software for a
mobile phone. Software developers are often exposed to this
diversity, which makes the software discipline inherently
experimental [3, 4]. To mitigate this knowledge gap, we suggest
that there is a need to manage security knowledge in a coherent
way of describing it in a universal way and incorporating
enough details to make the description more useful. Context is
a way of giving knowledge focus and meaning [5].

Our motivation in this paper is to enhance software security
knowledge management by modeling the knowledge in a
context-sensitive manner where the software security
knowledge can be retrieved taking the context of the application
in hand into consideration. Ontologies make it possible to give
this kind of purpose [6]. The ontological representation not only
supports the integration of knowledge resources at various
abstraction and semantic levels, but it can also be used by
knowledge sharing services such as knowledge integration and
interoperability, advanced knowledge search, knowledge
visualization and therefore support the sharing and learning
process about software security. In this paper, we proposed an
ontology-based context-sensitive model to unify the concepts
and terminology of security knowledge that can be adapted to
the various context of the software development.

The rest of the paper is structured as follows: In section 2,
we introduce the basic concepts needed in this paper. Section 3
presents the related works on ontology approaches in the
software security domain. Our design of the ontology-based
context model is explained in section 4. Section 5 describes the
implementation of the ontology model and the evaluation result.
Section 6 presents our proposed web application adopting the
ontology. Lastly, conclusions and future works are presented in
section 7.

II. BACKGROUND

A. Security Knowledge Management in Software Development
Software security is more than just security features.

Security features, such as password encryption and SSL (Secure
Socket Layer) between the web server and a browser, are
functions of an application to prevent malicious attacks.
Security is an emergent, system-wide property of a software
system, which means that one cannot presume to achieve a high

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

level of security by simply introducing security-related
features into the software [7 , 8]. This is because most
security problems arise from bugs and flaws during the
development process [9- 11]. Software security aims to avoid
security errors in software by considering security aspects
throughout the software development lifecycle. To train
software engineers on critical software security issues,
security knowledge should be spread in an effective manner.

Knowledge m
by which communities capture the knowledge that is critical to
their success, constantly improve it, and make it available in the

[12]. Managing
knowledge in software development is crucial to allow
developers to capture, locate and share knowledge of code and
methods throughout the project to maintain a competitive
advantage. In order to increase the development s security
knowledge, software project management needs to employ
knowledge management mechanisms in encapsulating and
spreading the emerging security discipline more efficiently in
the software development process. As the software lifecycle
unfolds, security-related knowledge could be directly applied to
a knowledge-intensive best practice that can support software
engineers to prevent, spot and mitigate these security errors.

B. Context and Knowledge Management
According to Brézillon [13]

used to characterize a situation in which human and
computational agents i
provide a major meaning to knowledge, promoting a more
effective comprehension about a determined situation in the
collaborative work [14]. Contextual information is a crucial
component of fully understanding knowledge [15-17]. Without
proper contextual information, knowledge can be isolated from
other relevant knowledge resulting in limited or
distorted understanding [18 , 19]. In knowledge management,
the context has been considered as a relevant concept. Any
architecture of knowledge management should include
the design of knowledge items as well as the design of the
overall contextual elements of the knowledge and what is the
relationship among them [20].

Subsequently, researchers of psychology and
education indicate that when knowledge is learned in a
context similar to that in which the skills will actually be
needed, the application of learning to the new context may be
more likely [21 , 22]. In software development, studying
from a context and then abstracting the knowledge
gained to be able to use it in a new context is a common
way of learning programming that has been observed
extensively in both new and experienced programmers
[23 , 24]. In order to capture and use knowledge
appropriately, it is necessary to specify which
context information is to be handled in the organization,
and then represent this in a format that is understandable and
acceptable to the individuals. In this situation, knowledge
tools should be equipped with context-carrying functions
so that it can effectively disseminate information to
spread the application domain and other specific knowledge
more evenly across the organization [25].

In the setting of software development, knowledge can be
both dynamic and situation specific, and the complexity of
knowledge usually exceeds the capacity of individuals to solve
problems by themselves [26]. With the growth of complexity in
the development of software projects, it is hard for software
developers to master the expertise required to cope with the
variety of concepts, frameworks, and libraries that are involved
with software projects. Proper context helps identify
appropriate levels of security, improves the precision of security
decisions and makes security information more meaningful for
the software development. When developers deal with the
security errors within the context they are already familiar with,

e
understood with a strong and personal effect, which become
more real and less theoretical.

C. Ontology
According to Gruber [27]

description of the relevant concepts and relationships in an area
of interest, simplifying and abstracting the view of the world for
some purpose [28]. Ontology facilitates capture and
construction of domain knowledge and enables representation
of skeletal knowledge to facilitate the integration of knowledge
bases irrespective of the heterogeneity of knowledge sources
[29]. Ontologies are now central to many applications such as

information management, and
integration systems, electronic commerce and web services.
The main areas, in which ontological modeling is applied,
include communication and knowledge sharing, logic inference
and reasoning, and knowledge base.

With analyzing and extending several types of research [27,
30-33], we can identify and summarize the reasons for and
benefits of developing and using ontologies in knowledge
modeling.

Ontologies share a common understanding of the structured
information among people or software agents.
Ontologies make domain knowledge reusable.
Ontologies enable the interoperability among models or
specific domain vocabularies.
Ontologies allow and simplify the communication among
humans, computational systems, and between humans and
systems.
Ontologies have the expressive power for acquiring context
from diverse and heterogeneous source.
It is possible to apply reasoning and inference mechanisms by
means of explicit representation of semantics.

III. RELATED WORK

There have been a number of papers published in the area of
ontology modeling and applying semantic technologies to
software security. Some effort focused on building security
ontology to model the security requirements. Salini and
Kanmani [34] present an ontology of security requirements for
web applications, including concepts of asset, vulnerabilities,
threats, and stakeholders. Their work aims at enabling the reuse
of knowledge about security requirements in the development

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 417 --

of different web applications. Buch and Wirsing [35] present
the SecWAO ontology with a focus on a secure web application,
which aims to support web developers when specifying security
requirements or making design decisions. It distinguishes
concepts (classes) between methods, notations, tools,
categories, assets, security properties, vulnerabilities, and
threats.

Some research works present their ontology to support
security design and risk assessment. Gyrard et al. [36] present
the STACK ontology (Security Toolbox: Attacks &
Countermeasures) to aid developers in the design of secure
applications. STACK defines security concepts such as attacks,
countermeasures, security properties, and their relationships.
Countermeasures can be cryptographic concepts (encryption
algorithm, key management, digital signature, and hash
function), security tools, or security protocols. Kang and Liang
[37] present a security ontology with the Model Driven
Architecture (MDA) approach for the use in the software
development process. The proposed ontology shows that the
proposed security ontology can be used in modeling and
designing security issues and concepts in each phase of the
development process with MDA. Marques and Ralha [38]
propose an ontology, which is related to the risk management
aspect of web-based system development. The model is mainly
employed in the design phase of the system development.

Finally, there are some papers focusing on using an ontology
to model vulnerabilities and security attacks. Guo and Wang
[39] present an ontology-based approach to model security
vulnerabilities listed in Common Vulnerabilities and Exposures
(CVE). The authors captured important concepts for describing
vulnerabilities in the context of software security, providing
machine-understandable CVE vulnerability knowledge and
reusable security vulnerabilities interoperability. Khairkar et al.
[40] present an ontology to detect attacks on web systems. The
authors use semantic web concepts and ontologies to analyze
security logs to identify potential security issues. This work
aims to extract semantic relationships between attacks and
intrusions in an Intrusion Detection System (IDS). Razzaq et al.
[41] propose an ontology of attacks and an ontology of
communication protocols, which provide a construct to improve
the detection capability of application-level attacks in web
application security. The authors employ the use of semantics
in application layer security contrary to tradition signature-
based approaches.

Our approach differentiates from the previous work in the
following two aspects: a) Our ontology mainly focuses on the
problem domain of security errors and the relevant security
practice along secure software development lifecycle; and b)
our ontology is context-based, which allows security domain
knowledge to be described in the situation of the software
project.

IV. AN ONTOLOGY-BASED CONTEXT MODEL

A. Design Consideration
The basic concept of our ontology design is to provide a

vocabulary for representing knowledge about the software
security domain and for providing linkages with specific

situations in the application context. In order to effectively
regulate the operation of security knowledge and be an essential
part of the project knowledge, security knowledge must
incorporate additional features. First, there is the requirement of
a security domain model, which identifies fundamental entity
types and relationships between them. With this model, all
concepts of security domain knowledge are described at a level
of abstraction, which enables cohesively treating entitles falling
under the same conceptualization. Second and most important,
knowledge, therefore security practices, must contain norms
regarding how to apply them in different applications. In that
respect, security knowledge must incorporate context, that is, to
be modeled with certain characteristics of applications, such as
software paradigms, programming languages and used
technologies. The contextual information acts as a filter that
defines, in a given context, what security knowledge pieces
must be taken into account.

The main advantage of this ontology model is to share a
common understanding of the structure of security knowledge
along different SDLC activities and among different software
development context to enable semantic interoperability. It also
enables the reuse of domain knowledge, i.e. building a common
security knowledge base integrated with contextual
information, which describes portions of the domain
knowledge. With this design, software engineers are allowed to
find solutions to exceptional situations by searching for similar
context. For example, a PHP web application designer can refer

(subject area) and software technologies. Fig. 1 depicts the
conceptual design of the context model for software security
knowledge.

Fig. 1. The conceptual design of a context model for software security
knowledge

B. Software Security Domain Model
The design of our security domain model is centralized in

sideration, we first
reviewed security knowledge resources, including CWE,
OWASP and SEI CERT coding guideline, etc. to identify
knowledge catalogs that are important to describe the concepts
related to security errors. We then associated security
knowledge with the main stages throughout the entire SDLC
and considered which terms are critical in explaining software
security knowledge without overlap between concepts they

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 418 --

represent, meanwhile, to ease the information overloads for
software engineers. Fig. 2 shows a graphical description of our
domain ontological model for software security. We explain the
major terms used in our ontology in the following:

1)Security Requirement

A software security requirement can be defined as a
software requirement needed to avoid a specific software
security error during the development [42]. More specifically, a
software security requirement is a control or constraint which if
not implemented may lead to a vulnerability.

2)Construction Practice

Construction practices focus on proactive activities for an
organization to design and build secure software by default
[43]. This typically includes design practices and coding
practices.

Design Practice: It represents security practices adopted in
the system design time. By introducing the software design
practices with secure architectures and services, the overall
security risk from software development can be
dramatically reduced.
Coding Practice: It represents a set of rules that are adopted
at the code level.
Knowledge elements in both architecture and design

practices and coding practices are organized in three catalogs,
Strategy, Method and Mechanism.

3)Verification Practice

Software verification is to assure that the software fully
satisfies all the expected requirements [43], which typically
include the following two practices.

Code Review Practice: It is focused on the inspection of
software at the source code level in order to spot security
mistakes.
Testing Practice: It is focused on the inspection of software
while executed in order to find security problems.
Knowledge elements in both architecture and design

practices and coding practices are organized in two catalogs,
Technique and Approach.

4)Security Error
A software security error is a tangible manifestation of a

mistake in the software development artifacts of a piece of
software that causes a software weakness [42 , 44]. In
our ontology, a software security error can be one of the
following:

Design Flaw: An incorrect logical decision or oversight at
the design level.
Coding Error: A mistake (bug) occurs at the code level.

C. Application Context Model
The domain knowledge of software security needs to be put

in a context so that it can adapt itself to different situations of
software development. Our context ontologies are a collection
of characteristics, which describe the properties of an
application that the software project develops. Capturing the
context is important in the context ontology modeling process

where context representation depends on these characteristics
and relationships created between them. The characteristics are
listed in Table .

TABLE I. I

Class Definition Example

Software
paradigm

It represents the categories of
software applications that
share common development
characteristics.

Web application,
desktop application,
mobile application

Subject area It represents domains that an
application belongs.

Banking, health, Travel

Software
feature

It represents the essential
elements of software with
security concerns. The
software feature is associated
with the software paradigm
and the subject area of the
application.

User authentication,
credit card processing,
file upload.

Language It represents programming
language used to develop an
application.

C, C++, Java, JavaScript,
PHP

Technology It represents the combination
of frameworks or tools used
to create an application.
Technologies are built based
on programming languages.

Web framework
(Symfony for PHP,
Angular for JavaScript,
etc.) toolkit, SDK

System
structure

It represents the fundamental
structure to operate the
application.

Database management
system, runtime platform
(MS Windows, Android)

Security Tool It represents a concrete
solution to implement
construction mechanisms or
verification techniques.

HTML Purifier,
PHPUnit for PHP testing

Fig. 2 shows the completed ontology including the
interrelationships of the security domain model and the
application context model. We associate domain knowledge
elements of software security, security requirements, and
construction practices, with software features in the application
context model. The linkage ensures that project management
understands the security-relevant aspects of critical functional
requirements. For example, if the software handles dynamic
web page generation with user-supplied data, it is likely subject
to the output encoding requirements, and the architecture and
design can be verified they are prepared for this. Furthermore,
software development staff can be primed with the possible
security errors associated with the software feature.
Subsequently, construction practices (rules and mechanisms)
are set up by the used programming language, technologies and
relevant security tools of the application. Thus, software
engineers can get practical and concrete solutions according to

V. IMPLEMENTATION AND EVALUATION OF THE
ONTOLOGY

In order to evaluate the ontology, all the above classes and
corresponding relationships are implemented using OWL (Web
Ontology Language), a markup language based on RDF/XML
(Resource Description Framework/Extensible Markup
Language), and we used the Protégé OWL tool [42] to create
the ontology. This web language has been developed by the
Web Ontology Group as a part of the W3C Semantic Web
Activity [43 44]. For presenting our ontology model, a

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 419 --

common security attack of web applications, Cross-Site
Scripting (XSS), was considered to demonstrate the knowledge
modeling process of software security domain. XSS is a kind of
injection that aims at adding malicious script code usually
JavaScript to a website so that the browser executes the code
[45] Top 10 Application Security
Risks 2017 [46]
vulnerability and the most widespread.

Fig. 3 shows a part of the implementation. On the left side,
the class hierarchy can be observed, and on the right side, the
axioms that define the individuals are listed. In this case, we
focused on modeling security errors on the code level (coding
errors) and the related security practices. We analyzed and
organized security knowledge related to XSS first, inserting

. 4 presents the graphical display of
the knowledge elements and their relationships built in the
domain ontology.

To put this domain knowledge in context, we assume that a
web application is developed with a software feature

user-supplied data

programming language, Symfony as the web framework and
MySQL as the database management system. Other application
characteristics, for example, operating system, web server or
platform, were omitted in this scenario. We filled the context
model with the application characteristics and assigned the
corresponding object properties with the individuals (Security
Requirement and Technique) in the domain model. Fig. 5 shows
the graphical representation of this application scenario,
combining context characteristics and security knowledge
content. The diagram was simplified in order to highlight the
critical relationships between the context model and the

consistent answers to real-world questions. The
following exemplary competency question is an example used
to reflect the above scenario:

What are the coding practices and relative technologies
under PHP/Symfony web framework that can be used to secure
the software feature “Generating dynamic web pages”?

Similarly, we modeled other common and critical security
errors using the ontology throughout the knowledge modeling
and the evaluation process, including SQL Injection, Command
Injection and Cross-Site Request Forgery (CSRF), etc., which
are all listed in OWASP Top 10. With increasing knowledge
content filling in the ontology, the presence of detailed
information can enable answering the various types of
competency questions, such as (1) What are the possible
security errors that developers might have while accessing
database with user-supplied data and how can we spot them
while doing a code review or system testing? (2) What PHP
technologies we can adapt to mitigate SQL injection in terms of
the parameterized query (technique)?

VI. APPLICATION OF THE ONTOLOGY

In previous sections, we have described the design,
development, and evaluation of the ontological context model.
In this section, we present a proposed application based on the
ontology, a web-based knowledge management system for
software security knowledge sharing and learning. The
objective of this application is to allows learners or software
project staff adaptively retrieve and present security knowledge
content according to their working context. The functional and
technical architecture along with the ontology are covered in
this section.

Fig. 2. The ontology-based context-sensitive model for software security knowledge

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 420 --

Fig. 3. Implementation of the ontology in Protégé

Fig. 4. The graphical display of the security domain model (a partial view)

Fig. 5. The graphical display of knowledge content in the application context and security domain model (a partial view)

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 421 --

A. Functional Architecture
The functional architecture describes the functionalities

supported in the application (Fig. 6), which are divided into two
categories: knowledge presentation modules and system
management modules. The knowledge representation module is
to provide learners with learning materials. By making better
use of the domain knowledge and contextual information, it is
planned that the optimal materials are provided. The system
management module is responsible for maintaining the
ontology repository and loading knowledge content for the
needs of the knowledge presentation. The functionalities of
each module are briefed in the following sections.

1)Query Module

Users can access the security knowledge through a query
interface passing requests to a search engine. The input criteria
can be constructed dynamically or use pre-configured question
patterns as our demonstrations in section 6.

2) Presentation scheme module

Regarding the knowledge presentation, two knowledge
representation schemes are suggested in order to provide a
navigation view and integrated information view of the
knowledge items: knowledge maps and tutorials. Knowledge
maps are the graphical representation of the knowledge items
and their relationship. Knowledge maps can be used as primary
sources for knowledge acquisition, adjunct aids to text
processing, communication tools for organizing ideas, or
retrieval cues [47]. Fig. 4 & 5 can be taken as examples to
demonstrate a knowledge map of Cross-Site Scripting security
errors. In tutorials, knowledge content is presented as a form of
static web pages, which allow users to browse the detailed
information and relevant resources, such as sample code or
hyperlinks.

3)Knowledge service module

Knowledge service module provides services to receive
requests from users, to interact with ontology management
functions, and to process and display the result set according to
the requested knowledge presentation format.

4)Ontology management module

Ontology management module is responsible for
maintaining and loading data from the ontology, including
specific individuals of classes, object properties, and the data
properties.

B. Technical Architecture
Fig. 7 provides an overview of our proposed architecture

implementing the main feature of the application outlined
above. The front-end has been designed as JSP pages and
through them, the users can access the various modules and
functions of the application. Clients can interact with the server
(Apache Tomcat) using an HTTP request to a Java Servlet. The
backend is implemented in Java and access to the ontology
repository is provided through the Jena API, a Java framework
for building semantic web applications. Jena provides extensive
Java libraries for helping developers develop code that handles
RDF, OWL, and SPARQL in line with published W3C
recommendations. Pellet is an open source OWL DL
(descriptive logic) for Java, which is used to infer relevant
knowledge from the ontology defined in the OWL. Pellet can
also be integrated with Jena or OWL API libraries.

VII. CONCLUSION AND FUTURE WORK

This paper presents a formal ontology-based context-sensitive
model for knowledge management in the software security
domain. The ontology has become a crucial role in enhancing
the value of knowledge management in the software
development, which facilitates reuse, sharing, and management
knowledge in an efficient and effective manner. Our
contributions in this paper are twofold. First, we develop an
ontology to model software security related knowledge through
combining domain knowledge of software security and the
contextual characteristics of the application development. This
proposal compared to the currently available knowledge models
introduces a new perspective to model domain knowledge of
software security. Second, we propose a knowledge
management system, using our ontology as the central
knowledge repository, where the functional architecture and the

Fig. 6. The functional architecture of the proposed application

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 422 --

system architecture are both presented. The ontology model can
facilitate knowledge sharing services such as knowledge
integration, advanced knowledge search, and knowledge
visualization. It also supports the sharing and learning process
about software security.

development projects. A major portion of research and practical
development in security software engineering is dedicated to
developing security knowledge repositories, patterns, security
taxonomies, and ontologies. However, these security practices
and knowledge still cannot be effectively adopted and spread in
software development. We argue that one of the prime reason

know or a coll [8]. Building secure applications
is a complex and demanding task that developers often face,
especially because the domain is rather context-specific, and the
real project situation is necessary to apply the security concepts
within the specific system. Since software engineers are not
experts on security in general, there is an ever-increasing need
to organize security knowledge in a fashion manner, helping
developers, project staff, and learners learn the necessary
security knowledge to fulfill the need of their work.

As the future work, we intend to implement the proposed
intelligent application and to evaluate its usability in
educational paradigms and software development projects. Our
ultimate goal is to provide the software development
community, e.g. open source software communities, a set of
advanced services for efficiently handling and disseminating
software security knowledge within the community.

REFERENCES

[1] Bishop, M. (2010), "A Clinic for" Secure" Programming". IEEE
Security & Privacy, volume 8, issue 2, pages.

[2] Rus, I. and M. Lindvall (2002), "Knowledge management in
software engineering". IEEE software, volume 19, issue 3, pages
26.

[3] Basili, V.R. and H.D. Rombach (1991), "Support for
comprehensive reuse". Software engineering journal, volume 6,
issue 5, pages 303-316.

[4] Lindvall, M. and I. Rus (2000), "Process diversity in software
development". IEEE software, volume 17, issue 4, pages 14-18.

[5] De Araujo, R.M., et al. (2004), "Context Models for managing
collaborative software development knowledge". in Workshop
on Modeling and Retrieval of Context (MRC).

[6] Davies, J., D. Fensel, and F. Van Harmelen (2003), "Towards the
semantic web: ontology-driven knowledge management".
volume: John Wiley & Sons.

[7] Mead, N.R., et al. (2004), "Software security engineering: a
guide for project managers". volume: Addison-Wesley
Professional.

[8] McGraw, G. (2006), "Software security: building security in".
volume 1. Addison-Wesley Professional.

[9] Viega, J. and G.R. McGraw (2001), "Building secure software:
how to avoid security problems the right way". volume: Pearson
Education.

[10] Xie, J., H.R. Lipford, and B. Chu (2011), "Why do programmers
make security errors?". in Visual Languages and Human-Centric
Computing (VL/HCC), 2011 IEEE Symposium on. IEEE.

[11] Graff, M. and K.R. Van Wyk (2003), "Secure coding: principles
and practices". volume: " O'Reilly Media, Inc.".

[12] Birkenkrahe, M. (2002), "How large multi-nationals manage
their knowledge". Business Review, volume 4, issue 2, pages 2-
12.

[13] Brézillon, P. (2003), "Making context explicit in communicating
objects". Communicating with Smart Objects: Developing
Technology for Usable Pervasive Computing Systems, Kogan
Page, London, volume, issue, pages.

[14] Brézillon, P. and R. Araujo (2005), "Reinforcing shared context
to improve collaboration". Revue des Sciences et Technologies
de l'Information-Série RIA: Revue d'Intelligence Artificielle,
volume 19, issue 3, pages 537-556.

[15] Klemke, R. (2000), "Context Framework-an Open Approach to
Enhance Organisational Memory Systems with Context
Modelling Techniques". in PAKM.

[16] Brézillon, P. (2002), "Modeling and using context: Past, present
and future", Rapport de recherche interne LIP6: Paris. pages.

[17] Jafari, M., et al. (2008), "Exploring the contextual dimensions of
organization from knowledge management perspective". VINE,
volume 38, issue 1, pages 53-71.

[18] Brézillon, P. and J.-C. Pomerol (1999), "Contextual knowledge
sharing and cooperation in intelligent assistant systems". Le
Travail Humain, volume, issue, pages 223-246.

[19] Goldkuhl, G. and E. Braf (2001), "Contextual knowledge
analysis-understanding knowledge and its relations to action and
communication". in Second European Conference on
Knowledge Management Proceedings.

[20] Rosa, M.G., M.R. Borges, and F.M. Santoro (2003), "A
conceptual framework for analyzing the use of context in
groupware", in Groupware: Design, Implementation, and Use,
Springer. pages 300-313.

[21] Perin, D. (2011), "Facilitating student learning through
contextualization: A review of evidence". Community College
Review, volume 39, issue 3, pages 268-295.

[22]
challenges for educational practice and research". Medical
education, volume 39, issue 7, pages 732-741.

[23] Ko, A.J. and B.A. Myers (2008), "Debugging reinvented: asking
and answering why and why not questions about program
behavior". in Proceedings of the 30th international conference on
Software engineering. ACM.

[24] Apvrille, A. and M. Pourzandi (2005), "Secure software
development by example". IEEE Security & Privacy, volume 3,
issue 4, pages 10-17.

Fig. 7. The proposed architecture for the ontology application

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 423 --

[25] Curtis, B., H. Krasner, and N. Iscoe (1988), "A field study of the
software design process for large systems". Communications of
the ACM, volume 31, issue 11, pages 1268-1287.

[26] Henninger, S. (1997), "Case-based knowledge management
tools for software development". Automated Software
Engineering, volume 4, issue 3, pages 319-340.

[27] Gruber, T.R. (1993), "A translation approach to portable
ontology specifications". Knowledge acquisition, volume 5,
issue 2, pages 199-220.

[28] Wand, Y., V.C. Storey, and R. Weber (1999), "An ontological
analysis of the relationship construct in conceptual modeling".
ACM Transactions on Database Systems (TODS), volume 24,
issue 4, pages 494-528.

[29] Gruber, T.R. (1995), "Toward principles for the design of
ontologies used for knowledge sharing?". International journal
of human-computer studies, volume 43, issue 5-6, pages 907-
928.

[30] Uschold, M. and M. Gruninger (1996), "Ontologies: Principles,
methods and applications". The knowledge engineering review,
volume 11, issue 2, pages 93-136.

[31] Noy, N.F. and D.L. McGuinness (2001), "Ontology development
101: A guide to creating your first ontology", Stanford
knowledge systems laboratory technical report KSL-01-05 and
Stanford medical informatics technical report SMI-2001-0880,
Stanford, CA. pages.

[32] Wang, X., et al. (2004), "Semantic space: An infrastructure for
smart spaces". IEEE Pervasive computing, volume 3, issue 3,
pages 32-39.

[33] Gruninger, M. (2002), "Ontology: applications and design".
Commun. ACM, volume 45, issue 2, pages.

[34] Salini, P. and S. Kanmani (2013), "Ontology-based
representation of reusable security requirements for developing
secure web applications". International Journal of Internet
Technology and Secured Transactions, volume 5, issue 1, pages
63-83.

[35] Busch, M. and M. Wirsing (2015), "An Ontology for Secure Web
Applications". Int. J. Software and Informatics, volume 9, issue
2, pages 233-258.

[36] Gyrard, A., C. Bonnet, and K. Boudaoud (2013), "The stac

(security toolbox: attacks & countermeasures) ontology". in
Proceedings of the 22nd International Conference on World
Wide Web. ACM.

[37] Kang, W. and Y. Liang (2013), "A security ontology with MDA
for software development". in Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), 2013
International Conference on. IEEE.

[38] Marques, M. and C.G. Ralha (2014), "An ontological approach
to mitigate risk in web applications". the Proceedings of SBSeg,
volume, issue, pages.

[39] Guo, M. and J.A. Wang (2009), "An ontology-based approach to
model common vulnerabilities and exposures in information
security". in ASEE Southest Section Conference.

[40] Khairkar, A.D., D.D. Kshirsagar, and S. Kumar (2013),
"Ontology for detection of web attacks". in Communication
Systems and Network Technologies (CSNT), 2013 International
Conference on. IEEE.

[41] Razzaq, A., et al. (2014), "Ontology for attack detection: An
intelligent approach to web application security". computers &
security, volume 45, issue, pages 124-146.

[42] Tudorache, T., et al. (2013), "WebProtégé: A collaborative
ontology editor and knowledge acquisition tool for the web".
Semantic web, volume 4, issue 1, pages 89-99.

[43] Welty, C., D.L. McGuinness, and M.K. Smith (2004), "Owl web
ontology language guide". W3C recommendation, W3C
(February 2004) http://www. w3. org/TR/2004/REC-owl-guide-
20040210, volume, issue, pages.

[44] Powers, S. (2003), "Practical RDF: solving problems with the
resource description framework". volume: " O'Reilly Media,
Inc.".

[45] Shema, M. (2012), "Hacking web apps: detecting and preventing
web application security problems". volume: Newnes.

[46] OWASP, "OWASP Top 10 Application Security Risks - 2017";
Available from: https://www.owasp.org/index.php/Top_10-
2017_Top_10.

[47] O'donnell, A.M., D.F. Dansereau, and R.H. Hall (2002),
"Knowledge maps as scaffolds for cognitive processing".
Educational psychology review, volume 14, issue 1, pages 71-
86.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 424 --

