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Abstract—Active development of modern cities requires not
only efficient monitoring systems but furthermore forecasting
systems that can predict future state of the urban area with
high accuracy. In this work we present a method for urban area
prediction based on geospatial activity of users in social network.
One of the most popular social networks, Instagram, was taken
as a source for spatial data and two large cities with different
peculiarities of online activity – New York City, USA, and Saint
Petersburg, Russia – were taken as target cities. We propose
three different deep learning architectures that are able to solve
a target problem and show that convolutional neural network
based on three-dimensional convolution layers provides the best
results with accuracy of 99%.

I. INTRODUCTION

Active progression and widespread acceptance of a Smart
City concept leads to the need for development of systems
capable of accurately forecasting a future state of the urban
environment [1]. However, such decision support systems are
usually limited by the domain and aimed at analyzing a par-
ticular type of events, for example, floods [2], evacuation [3],
or transportation of hazardous substances [4]. Such systems in
the most cases are incapable of observing the whole picture
or sharing information with other systems. Thus there is the
need for development of a general purpose forecasting system.
Complex forecasting of the urban area state requires usage
of various data sources, which may be incomplete [5]. This
problem can be solved by using a wide range of new data
sources, such as mobile phone records, social network data, or
streaming cameras [6], or by adding more sensors of various
kinds to the system [7] that in turn would result in a cost
growth. Significant part of research based on a data from social
networks and news is devoted to detection of critical situations,
such as fires, hurricanes, and terrorist attacks [8]. Moreover,
usage of social networks also makes it possible to identify and
predict cultural events [9], such as a football match [10] or a
concert [11]. By this means, there is no surprise that data from
social networks and news media became one of the valuable
additions to input data of modern decision support systems
[12].

An active user of a social network can act as an anomaly
sensor by increasing his or her activity in case of an unusual
situation [13]. Having data about residents activity in an urban
area, researchers would be able to extract information about
current situation and detect potential events as anomalies in
users behavior. The most convenient way to determine an event
is to observe for the set of predefined keywords or hashtags
[14], [15]. Within a scope of social networks, a sharp rise in

interest for a particular topic would be a sign of an event of
some sort. Nevertheless, this approach limits monitoring and
forecasting systems to expected events only. That is why it is
essential to develop methods, which can determine the next
state of the city independently from a specified context.

One way to exclude the context of messages is to use other
available data, like geographic coordinates, text sentiment and
photos. Knowledge of a general state of activity in the city at
any moment can help in various tasks from city planning to
effective emergency monitoring. In this work, we aim to fore-
cast an urban area state using historical data of users activity
in social networks. To achieve that, we studied performance
of three different convolutional neural network architectures
for two large cities – Saint Petersburg, Russia, and New York
City, USA.

The main contributions of the article are as follows:

1) We propose three deep neural network architectures
designed to perform prediction of the urban area state
using a set of previous states.

2) We perform an extensive experimental comparison
of the described convolutional neural networks using
two large datasets of geo-located posts from Insta-
gram.

3) We tune parameters of the best performed model,
which is based on three-dimensional convolutional
layers, to achieve an accuracy of 99% compared to
the ground truth data.

II. RELATED WORKS

Spatial analysis methods have been successfully used for
city analysis in decision support systems that utilized data
from mobile phones [16] and social networks [17], [18]. Yao
et al. [19] proposed the DeepSense framework for mobile
sensing, which combines convolutional and recurrent neural
networks for a tracking system. In this paper convolutional
layers were successively used to extract patterns of frequency
and interactions among sensors. Zhou et al. [20] used check-in
data from social network WeChat in a framework for cultural
planning in Beijing. The solution was based on a temporal
latent Dirichlet allocation used for identification of cultural
patterns and OPTICS - ordering points algorithm to select
essential clusters.

Short-term predictions can be successfully implemented
using an autoregressive model [21], however, for a more global
and long-term predictions of the city state, neural networks are
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actively used nowadays [22], [23]. In [24] it was demonstrated
that logistic models and neural network show comparable
results, but the neural network achieves better accuracy (up
to 85%) compared to the logistic regression (up to 74.9%) for
forest fires forecasting in Portugal. As of today, machine learn-
ing techniques are widely used for various predictive tasks. For
example, gradient boosting decision trees were used for water
break predictions in a three years perspective [25]. In [26]
Adams et al. proposed a framework based on artificial neural
network models for air pollution risk forecasting. Authors
constructed three-layer perceptron network and achieved root
mean squared error - 3.5 μg

m3 for particulate matter and 18.8
μg
m3 for nitrogen dioxide.

Usually, CNNs are used for image classifying or feature
prediction such as object attributes (color, type of clothes),
gender [27], age [28], and even more complex task like human
actions [29] or depth maps [30]. In [31], Kang et al. used CNN
to extract features from images to predict crime occurrence.
The method achieved 84.25% accuracy with precision of
74.35% and recall of 80.55%. In [32] Zhang et al. used
convolutional layers to extract spatiotemporal features as part
of the deep neural network for citizens flow prediction. Despite
the fact the deep neural network DeepST proposed by authors
outperformed state-of-the-art models, it was also shown that
CNN itself provides sufficient results on a bike rent data.
Authors continued their work in [33] and presented a new deep
learning based approach ST-ResNet. This approach considers
additional factors in the model and performs at least 6% better
than the closest competitors. In [34], authors combined CNN
and Long Short-Term Memory (LSTM) networks to forecast
two types of crowd flow: outcome and income. Outcome and
income were interpreted as two channels of an image, and
a two-dimensional convolution was used to extract spatial
features. Authors compared their model with several baseline
approaches such as ARIMA, LSTM and one-dimensional con-
volution Conv1DNet. The proposed model showed the lowest
root mean squared error (31.57) and outperformed follow-up
approaches Conv1DNet (33.76), ARIMA (35.47), and LSTM
(43.65). In [35], a pure CNN was used to predict anomalies in
a crowd flow. It was shown that larger dataset provides better
and more stable results during the training and in prediction
quality.

However, it was shown that CNN itself can predict se-
quences as efficient as a more popular approach - recurrent
neural network (RNN) [36]. The proposed solution genCNN
beats the closest competitor LSTM with over 25 points margin.
In [37] deep convolutional neural networks were used to
evaluate next move in Go game. The system provides an
accurate prediction of the expert move for 55% of positions.
In [38], RNN and CNN architectures were compared for Atari
game next state prediction. Results showed that both models
provide comparable results where CNN predicted states of
the Ms Pacman game with less mean squared error but RNN
was more accurate for Space Invaders. Another comparison
between LSTM and CNN were performed for protein sequence
prediction [39]. It was shown that CNN Q8 accuracy was
higher than others: 0.684 compared to 0.674 for LSTM.

Xu et al. [40] used CNN for event detection in video. This
approach allowed to increase mean average precision by 10 %
to 36.8%. This idea was later expanded to the real-time event

detection and prediction in [41]. Dependence of accuracy on
the percentage of video observed was studied; the proposed
approach shows satisfactory results on two datasets and usage
of optical flow resulted in 5% quality improvement. In [42],
authors presented a neural network architecture for Twitter
users location prediction using texts, network topology and
time zone information. The developed method achieved up to
69% accuracy for labelling the state and approximately 62%
for 100-mile zone detection. However, this approach requires
a lot of various incoming data and resources for preprocessing.
Moreover, @161 metrics (100-mile zone ∼ 161 km) used for
method estimation indicates the general user location (e.g. city)
and cannot be used on a smaller scale.

Farajidavar et al. [43] proposed CNN for event detection in
the city using Twitter stream. The authors used dataset labeled
by experts into seven categories related to crime, cultural, food,
social, sport, environment, and transport events. The averaged
accuracy of event extraction is 81%. Despite the authors claim
that almost 50% of the traffic comments appears approximately
five hours before the official reports, this approach is limited
to monitoring systems, and it is not able to forecast a state of
the city.

As it can be seen, CNNs is a widely used approach
for dealing with social networks data and various types of
predictions. Since aggregated data from social networks can
be interpreted as a frequency map of user activity, we decided
to use CNN architecture as the most natural approach for social
network state prediction. Moreover, we use three-dimensional
convolution layers to take into account temporal trends.

III. PROPOSED APPROACH

An urban area state in our work is represented by users
posts in the social network Instagram within a specified
period of time. Instagram is a fast-growing social network
with more than 1 billion users all over the world according
to the Verge (https://www.theverge.com/2018/6/20/17484420/
instagram-users-one-billion-count). Due to its high popularity
and data of various kinds (photos, texts, likes, geolocation),
Instagram recently has drawn attention of researchers from
different areas of urban studies [44].

A core schema of the proposed solution for the urban area
state prediction is presented in Figure 1. On the first step, we
collect a considerable amount of data in a target geographical
area. On the second step we generate a set of aggregated city
states from the data gathered. And after that we train a deep
neural network model to predict a state of the city using a
number of previous states (in this work we used 5 previous
states) on a subset of the aggregated data, while validating the
training process using another subset of the aggregated data.

Dataset description. Users of Instagram can share their
location by selecting a place from the predefined list with
names and addresses. Thus, geolocated data from the Insta-
gram represents a sequence of posts related to a discrete set
of places. The data for our research was obtained using a
web crawler built upon Instagram GraphQL API. The dataset
contains posts with location marks within two areas: Saint
Petersburg, Russia, and New York City, USA. The area of Saint
Petersburg dataset covers city center and consists of geotagged
posts in the area [30.20, 59.87, 30.40, 59.98] for the period
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Fig. 1. Schema of urban area state prediction

from 1 January 2016 to 21 July 2017. The second dataset
contains posts from New York City within coordinates [-74.06,
40.63, -73.857, 40.83] starting from 1 January 2017 till 13 May
2018. We kept only timestamp and location of each post. The
data for every hour of collection periods was aggregated and
placed on a geospatial grid with spacing 0.001’. The value
of each cell corresponds to the number of posts in a given
geographic area during a particular hour. Thus, we obtained
24 grids for every day of each dataset. We then converted
each grid into a sparse matrix since the vast majority of cells
contains zero posts.

We used the first 12 months for model training and the
rest of the data (four and a half months for Saint Petersburg
and approximately seven months for New York) were used
for validation. Usage of full-year interval allows correcting
seasonality. Because validation performs on the following year,
we can make assumptions about model behavior with constant
increasing of the number of Instagram users.

IV. CONVOLUTION NEURAL NETWORKS

As it was previously discussed, convolutional neural net-
works are successfully used in various tasks from pattern
recognition and image classification to event detection in video
and social networks. Since our task is directly connected with
the recognition of spatiotemporal patterns, we selected CNN
as a target approach for a urban area state prediction. To obtain
the best architecture for our task, we decided to compare three
different methods and evaluate their performance. We started
from the most common approach – usage of two-dimensional
convolutional layers for frequency map analysis. The second
approach takes into consideration temporal features of the data
– we used three-dimensional convolutional layers that convolve
input data not only by width and height, but also by depth that
in our case represents time. The third approach utilizes 3D-
convolutional and transposed 3D-convolutional layers in order
to perform data compression and decompression with regard
to all three dimensions.

We refer to each network based on the distinguished layer
in its architecture. Thus we have three CNN named Conv2D-
Net, Conv3D-Net, and TransposedConv3D-Net, respectively.
Each neural network contains six convolutional layers with
ELU as activation function, architectures of these networks is
presented in Figure 2.

The first CNN architecture (Conv2D-Net, Figure 2a) con-
tains only two-dimensional convolutional layers with kernel

Fig. 2. Architecture of proposed CNNs: a - architecture based on two-
dimensional convolutional layers, b - architecture based on three-dimensional
convolutional layers, and c - architecture based on combination of three-
dimensional convolutional and transposed convolutional layers.

size equal to 3. The idea behind this approach lays on the fact
that spatial grids could be interpreted as images where longi-
tude and latitude are equivalent of width and height and hours
performs as channels. Stride and padding for convolutional
layers were selected to preserve original size of the grid. The
number of filters was defined as 5 ·K where 5 is a number of
previous hours and K = 2 is an integer. The last layer reduces
the number of filters to 1 as the size of the target map.

In the Conv3D-Net, we replaced two-dimensional layers
with three-dimensional convolutional layers to reveal the ac-
tivity patterns between hours (Figure 2b). To meet the final
grid resolution, after two convolutions we changed the kernel
size to k = (1, 3, 3), the stride was equal to 1 and the value of
padding was set as p = (0, 1, 1) to prevent a size change along
the x and y axes. The use of three-dimensional convolutional
layers is a common approach for the analysis of temporal data.
Since a three-dimensional convolution operates all dimensions,
we added the fourth dimension to our data to define the filters.
In this case number of filters will be multiplied to 1 that is
why we decided to set the number of output filters for the
first convolutional layer to 10. Thus, the number of filters for
the first and second approach is the same. On the last step,
we squeeze all empty dimensions to obtain a two-dimensional
map.

In the third architecture, TransposeConv3D-Net, we used
transposed convolutional layers instead of last three convolu-
tional layers (Figure 2c). In this approach, a pair of convo-
lutional and transposed convolutional layers ensures that the
output size of prediction will be the same as the input. That
is why we kept the default value of padding, which is equal
to 0. Since transposed convolutional layers used for map size
restoration, kernel sizes were equal to k = (1, 3, 3) for every
transposed layer. The stride was kept to its default values.

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 270 ----------------------------------------------------------------------------



Fig. 3. Comparison of different architectures performance for New York

To evaluate performance of different models, we propose
the following function:

ev =
1

N

N∑

i,j

| yij − ŷij |
ŷij

· 100%, (1)

where yij - element of the prediction matrix and ŷij represents
the actual data. A result of this function can be interpreted as
an average deviation percentage of the predicted map, where
the lesser value represents better accuracy of prediction. This
function was designed to ensure that the neural network will
learn to correctly predict areas with a high activity as well as
areas with a low activity.

V. EXPERIMENTS

All experiments were implemented with using PyTorch
framework of version 0.4.1 [45]. Workstation was equipped
with NVIDIA Tesla P100.

A. Architecture comparison

For this experiment we trained models based on afore-
mentioned architectures twice separately for each city (Saint
Petersburg and New York City). For a clear comparison of
architectures we used the same optimizer - Adadelta algorithm
[46] with a starting learning rate lr = 1. All models were
trained for 100 epochs with the batch size equals to 1. And
L1 criterion was used during the training.

In Figure 3, results of the evaluation function are presented
for networks trained on the New York dataset. As it can be
seen from the plot, TransposeConv3D-Net demonstrates the
worst results from the very beginning with the highest starting
deviation. Despite a clear declining trend from the 18th epoch
until the 50th epoch, the network based on this architecture
showed the worst results during the whole training. Conv2D-
Net demonstrated a sharp drop in error after 20th epoch, but
the minimum achieved at 47th epoch was still slightly higher
than results of Conv3D-Net. In spite of the lesser changing
during the training period, the best results were achieved by
Conv3D-Net.

Figure 4 illustrates results obtained for training on the Saint
Petersburg dataset. In the beginning, the 3D-convolutional
network had a higher value of deviation and this tendency con-
tinues until the 65th epoch. Despite the mediocre beginning,
Conv3D-Net showed a sharp decline in average deviation from
the actual state and after 85th epoch scored the better results.

Fig. 4. Comparison of different architectures performance for Saint
Petersburg

It is clear from the chart that Conv2D-Net starts with the best
results, however, the average deviation just slightly changes
during the first half of training. After that, a deviation starts to
increase, and this tendency is lasting until the end of training.
TransposeConv3D-Net demonstrates the similar tendency: the
first deviation is close to the value of Conv2D-Net case and
deviation continuously grown until the 82nd epoch.

It is important to note that all models demonstrated worse
results in the Saint Petersburg dataset. This effect happened
due to fact Instagram users are less active in Russia than
in the USA, and raw data for Saint Petersburg contains
more empty cells with zeros, which complicates the modeling
process. Interesting fact is that architecture that uses transposed
convolutional layers performed worse than architecture based
on convolutional layers in both cases. Because we have only
five previous hours (depth = 5), first two convolutions reduce
input data depth to one and next process is an equivalent to
two-dimensional convolutions. Since in both cases Conv3D-
Net have demonstrated the best results, we selected Conv3D-
Net as our primary approach for further tuning and prediction.

B. Model tuning

During the first part of model tuning we examined several
popular loss functions L1 loss, Smooth L1 loss, and root
mean squared error (RMSE) [47], [26]. Results presented in
Figure 5 show that L1 provides better results for the New York
dataset. Despite the lesser decline in the average deviation,
model with Smooth L1 loss function performs better for the
Saint Petersburg dataset. It should be noted that change of
loss function allows to improve accuracy for Saint Petersburg
to almost 1% of an average deviation from ground truth data,
which is twice better than the best result for New York. Thus,
the further experiments were conducted with L1 loss and
Smooth L1 loss functions for New York and Saint Petersburg,
respectively.

In the next experiment, we varied the batch size in the
range [1, 4, 8, 16, 32]. As can be seen from Figure 6 with an
increment of batch size there is more clear declining trend in
deviation during the training. However, during training process
results achieved with different batch sizes become even. The
minimal batch size allows to obtain the best accuracy, but
in case of Saint Petersburg bigger batch ensures more stable
behavior during the training. The controversial tendency could
be observed for New York dataset where the largest batch size
leads to a significant overfitting. Besides all that, since the
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Fig. 5. Effect of different loss functions on CNN performance

Fig. 6. Effect of different batch size on CNN performance

minimal batch size provided the best results for both cases, we
decided to keep batch size equal to 1 for the next experiment.

In the last experiment we trained our model using different
initial learning rates. Since the optimization strategy used in
our research – Adadelta – dynamically changes learning rate,
our task was to select an appropriate initial value. Figure 7
illustrates results obtained with initial learning rates lr = 1,
lr = 0.7, lr = 0.5. For both cities, smaller value of learning
rate produced better results with higher accuracy.

Thus, after the tuning process, we identified the following
parameters for the best results for both cities.

Fig. 7. Effect of different initial learning rate on CNN performance

1) New York (the best average deviation – 1.825%): L1
loss function, batch = 1, lr = 0.5;

2) Saint Petersburg (0.946%): Smooth L1 loss function,
batch = 1, lr = 0.7.

C. Results

Figure 8 illustrates examples of results for both cities. As
it can be seen from the maps, convolution neural networks
reproduce areas with zero and high activity correctly. It can be
noticed that for Saint Petersburg high activity areas concentrate
in the city center and there are only few such clusters. Active
areas are placed near very popular places like the main street
or subway stations, which are highlighted even during the late
hours. Despite some divergence in activity level for areas with
medium activity level, the final accuracy equals to 99% for
Saint Petersburg.

New York dataset contains one cell with very high value
of activity, which required more time for training and resulted
in a lower value of accuracy. One of such cell represents the
default point of New York City and references the whole city
itself. The light green areas that can be seen on the ground
truth data contains less than 5 posts in each cell. Thus, due to
the high variance in activity between the cells, more accurate
prediction in New York requires methods, which would be able
to ensure both high active areas and areas with zero activity.
Nevertheless, accuracy achieved by usage of three-dimensional
convolutional layers equals to 98%.

VI. CONCLUSION AND FUTURE WORKS

In this work, we proposed a new approach to forecast urban
area state by using CNN. The urban area state was defined as
activity level of users from the social network Instagram. We
took two cities with different Instagram activity – New York
and Saint Petersburg – for demonstration of applicability of
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Fig. 8. Examples of prediction for one hour

our method. Presented model takes into consideration users
activity for 5 previous hours and forecasts the next state. To
achieve the best results, we tested three different architec-
tures based on different types of convolutional layers – two-
dimensional convolution, three-dimensional convolution, and
three-dimensional transposed convolution. It was demonstrated
that three-dimensional convolution provides the best result for
both cities. After model tuning by variance of loss functions,
batch size and learning rate, the best model predicts the next
activity state with up to 1% of average deviation from the
ground truth data.

It should be noted that during this work we assumed that
five previous hours are enough for the next state prediction.
But the size of a retrospective window should be studied more
since using five-hour window may lead to noise caused by
daily patterns. On the other hand the shorter window size will
lead to errors triggered by event which took place in previous
hours. Five-hour windows was chosen due to the strong need
in balance between daily activity cycle and mass events. Thus,
the chosen window seems optimal to decrease influence of
noise caused by different reasons.

However, this approach has some limitations. First, the
high value of accuracy (99% for Saint Petersburg and 98%
for New York) is ensured by large number of cells with zero
activity in both cities. This effect occurs due to the way of
location representation in Instagram. Thus, the prediction of

activity state for datasets with precise coordinate, for example,
Twitter or Vkontakte, requires further studies. Nevertheless,
the sufficient results achieved for the New York dataset with
higher and more solid activity areas allow us to expect the
good performance in such cases.

Another peculiarity of these results is a low variance
between beginning and end of training with a lower bound
in 1%. This could be explained by limitation of convolutional
methods prediction ability. As it was discussed in the Related
Works section, CNN provides better results in some prediction
task when in another problems LSTM performs better. Since
the comparison of different approaches for prediction was out
of the scope of this study, comparison of different recurrent
neural networks architectures is one of possible directions of
future works.

Another way to improve this work is to use combination of
data from different sources. In this paper, we aimed to predict
activity state for one social network, but usage of various
datasets allow to study and forecast real behavior of citizens in
the city. Since our approach does not rely on specific features
of used data and based on a spatial grid, it can be easily
expanded to different social networks or even news media.
The open web cameras can be used to enhanced the input data
and to adjust actual activity rate in different city areas.

Despite all further improvements, the model proposed
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in this work showed solid performance for the city state
predictions in two cities with accuracy of 99%. Thus, it can
be concluded that three-dimensional convolutional networks
can be successfully used for spatial predictions based on
retrospective data.
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