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Abstract—We study a single-server retrial queueing model with
N classes of customers following independent Poisson inputs. A
class-i customer, which meets server busy, joins a type-i orbit.
Then orbital customers try to occupy the server using a modified
constant retrial policy called coupled orbit queues policy. Namely,
the orbit i retransmits a class-i customer to server after an
exponentially distributed time with a rate which depends in
general on the binary states (busy or not) of other orbits j �= i.
The service times have general class-dependent distribution and
the model is described by a non-Markov regenerative process.
This model is motivated by increase the impact of wireless
interference. We apply regenerative approach and local balance
equations to obtain necessary stability conditions and some
bounds on the important performance measures of the model.
Moreover, we suggest also a sufficient stability condition and
verify our results numerically by simulation experiments.

I. INTRODUCTION

We describe and study a multiclass single-server retrial

queueing model which is fed by independent Poisson inputs of

customers. A class-i customer which meets server busy joins
an infinite capacity i-orbit queue, i = 1, . . . , N . The orbital
customer attempts to capture the server according to a modified
constant retrial policy called coupled orbits, see [9]. More
exactly, as described in [9], the orbit i retransmits a customer
after an exponentially distributed time with rate μi, if there
exists at least one other non-empty orbit. Otherwise, that is
when all other orbits are empty, orbit i switches retransmission
rate to μ∗

i , i = 1, . . . , N . Note that in a classic constant retrial
rate system the retransmission rate remains unchanged and, in

particular, does not depend on the state of given (and other)

orbits. (A detailed description of the classic constant retrial

rate system can be found in [4], [6], while the modified retrial

model is described in [9], [16], [15], [17].)

This work extends the analysis developed in [9] to a more

general retrial policy. More exactly, the retransmission rate of

orbit i in general may depend on the current configuration
of busy and empty (other) orbits, respectively. To the best
of our knowledge, this general model is completely new and

it is the main contribution of this research. Furthermore, we

prove necessary stability condition and obtain some stationary

performance measures and the corresponding bounds. Besides,

by analogy with [9], we formulate and verify by simulation

a sufficient stability condition. Following [9], we apply the

regenerative approach to analyze more general system with

coupled orbits.

The retrial queues have been extensively studied in the

literature, see the books [13], [3], and the survey papers [2],

[18]. The stability analysis of a single-server, multi-class retrial

queue with constant retrial rates based on the regenerative

approach has been developed in [5], [7]. We mention the

recent work [8] on stability analysis of the multiclass system

with classic retrial rate policy, where regenerative analysis has

been applied as well. The retrial systems with coupled orbits

[15], [16], [17], have potential applications in the modelling of

wireless multiple access systems, in particular, relay-assisted

cognitive cooperative wireless systems [22]. In such a system

users transmit packets to a common destination node, and

the orbit queues play a role of relay nodes to retransmit

blocked packets, see for instance, [22]. In this regard we

recall that there is need for developing the cognitive radio

communication, to solve a spectrum underutilization problem

[20], [22]. In the modern cognitive radio [20] a wireless

node is capable to obtain the status operational environment,

and it opens a possibility to dynamically adjusts operational

parameters (say, retransmission rates) to achieve full spectrum

utilization [10], [12], [15].

As another example we mention that in cellular networks,

the available transmission rate (in a particular cell) decreases

as the number of users in the neighboring cells increase [10].

A similar effect arises in the processor sharing models, see

[11], [19].

This paper is organized as follows. In Section 2 we describe

our model and present some preliminary results. In Section 3,

we develop the regenerative stability analysis of the stationary

retrial system with coupled orbits. As a result, we obtain also

the necessary stability conditions of this system. An important

ingredient of this research is contained in Section IV, where

we formulate and discuss sufficient stability condition of this

model. In section V, we demonstrate simulation results to

support our theoretical results. In particular, we verify by

simulation both necessary and sufficient stability conditions

for N = 3 classes of customers.
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II. DESCRIPTION OF THE MODEL

We consider a bufferless single-server, multiclass retrial

queueing model with N classes of primary customers. The

class-i customers follow Poisson input with rate λi, i =
1, . . . , N . It is assumed that all inputs are independent, and
it means that we can consider instead the summary Poisson

input with the rate

λ :=

N∑
i=1

λi,

in which case an arbitrary arrival is class-i customer with the
probability pi =: λi/λ, i = 1, . . . , N. Denote {tn} the arrival
instants of the merged input (Poisson) stream with rate λ, and
introduce interarrival times τn = tn+1 − tn, n ≥ 1. Then it
follows that {τn} are independent identically distributed (iid)
exponential variables with expectation Eτ = 1/λ ∈ (0,∞). To
denote a generic element of an iid sequence we will omit the

corresponding serial index. Also we consider the iid service

times of class-i customers, {S
(i)
n , n ≥ 1}, with service rate

γi =:
1

ES(i)
∈ (0, ∞), i = 1, . . . , N.

The key feature of this model is that the retrial rates are state-
dependent because the (top) customer from orbit i makes a
retrial attempt after an exponentially distributed time with

a rate depending on the current status of other orbits: busy
or empty. More exactly, we consider N -dimensional vectors
J(i) = {j1, . . . , jN}, where the ith component ji = 1 and
each component jk �= ji belongs to the binary set {0, 1},
that is J(i) ⊂ {0, 1}N . It is assumed that if jk = 1, then
the k-th orbit is busy, otherwise, if jk = 0, then orbit k is

empty. We call J(i) a binary configuration of the orbits, or
configuration in short. Because, in each configuration J(i),
orbit i is always busy, we actually will consider (N − 1)-
dimensional configuration J(i), omitting position ji = 1.
Define the set G(i) = {J(i)} of all possible configurations
J(i) (in which orbit i is busy). It is assumed that if, at some
instant t, the configuration is J(i), then the retransmission rate
from orbit i is a given constant μJ(i). In general, different con-

figurations have different retransmission rates. It is convenient

to introduce Mi = {μJ(i) : J(i) ∈ G(i)}, the set of possible
rates for all configurations in which orbit i is busy.

Thus, in the current setting, the retransmission rate of a

given orbit may depend on any possible configurations and

it makes this setting much more general than that in [9].

(Recall the model from [9]: orbit i has rate μi if at least one

(other) orbit is busy, otherwise, the rate is μ∗
i , i = 1, . . . , N .)

In summary, this work demonstrates new possibilities of the

analysis method developed in [9] for a less general model.

Now we introduce basic notation. Denote S(t) the remain-
ing service time of a customer at instant t− (we put S(t) = 0,
if the server is free). Then

I(t) =
∫ t
0
1(S(u) = 0)du,

is the summary idle time of the server in interval [0, t], where
1 denotes indicator function. Denote by Ai(t) the number of
class-i arrivals in interval of time [0, t]. Then the summary
work which class-i customers bring in the system in interval

[0, t] is

Vi(t) :=

Ai(t)∑
n=1

S(i)n , (1)

and then the summary work arrived in [0, t] equals

V (t) :=

N∑
i=1

Vi(t) =
N∑
i=1

Ai(t)∑
n=1

S(i)n , t ≥ 0. (2)

Denote by Ni(t) the number of class-i orbital customers
and by Wi(t) the remaining work (workload) in orbit i, at
instant t−, i = 1, . . . , N . We will consider the basic (one-
dimensional) process X(t) := N(t) + Q(t), t ≥ 0, where
Q(t) ∈ {0, 1} is the number of customers in the server at
instant t−, and N(t) :=

∑
i Ni(t) is the sum of orbit sizes at

instant t−. In order to study the process X := {X(t), t ≥ 0}
we show that it is a regenerative process. Indeed, denote

X(tn) = Xn, and let T0 := 0. Now we define the following

instants:

Tn+1 = inf
(

tk > Tn : Xk = 0
)

, n ≥ 0.
In other words, at each instant Tn a customer arrives in an

empty system. Then it is easy to see that the random elements

Gn := {X(t) : Tn ≤ t < Tn+1}, n ≥ 0,
are iid and the distribution of Gn is independent of n. It
means that the instants {Tn} are classical regenerations of
the basic process X [23]. Then {Gn} are called regeneration
cycles of the process X and Tn+1 − Tn are iid regeneration
periods. We denote T the generic period. The process X is

called positive recurrent if the first regeneration period is finite,
that is T1 < ∞ with probability 1 (w.p.1), and the mean

generic period is finite, that is ET < ∞ [1]. It is worth

mentioning that the positive recurrence is the key step to

prove the existence the stationary regime of the system by

the regenerative method, see [1], [21]. Thus we treat positive

recurrence as the stationarity of the basic process (and our

retrial system).

III. ANALYSIS OF STATIONARY REGIME

In this section, we consider stationary system and obtain

the necessary stability conditions. Recall that stationarity

(stability) means that the basic regenerative process X is

positive recurrent, ET < ∞. Using the so-called local balance
equations and Strong Law of Large Numbers (SLLN) for the

renewal processes, we obtain some important performance

measures and bounds describing stationary regime of the

model. Because the input is Poisson, the interarrival time

is exponential (and hence, non-lattice), then there exist all
limits in distribution we consider below [1]. In particular,

P(S(t) = 0) → P0 = 1 − Pb, where Pb is the stationary
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busy probability of the server and P0 is the stationary idle
probability. Denote the traffic intensity for each class,

ρi = λi/γi, i = 1, . . . , N.

Let B(t) be the busy time of the server in interval [0, t], so
B(t) = t − I(t).

We obtain the following balance equation connecting, for

each instant t, the arrived work, the departed work and the
remaining work, respectively,

V (t) =

N∑
i=1

Wi(t) + S(t) + t − I(t), t ≥ 0, (3)

where Wi(t) is the remaining work in the system at instant

t related to class-i customers. By the positive recurrence, it
follows from theory of regenerative processes (see [23]) that

with probability 1 (w.p.1)

N∑
i=1

Wi(t) + S(t) = o(t), t → ∞.

By the SLLN, w.p.1, see (1),

lim
t→∞

Vi(t)

t
= lim

t→∞

∑Ai(t)
n=1 S

(i)
n

Ai(t)
= ES(i), i = 1, . . . , N. (4)

It immediately gives

lim
t→∞

N∑
i=1

∑Ai(t)
n=1 S

(i)
n

Ai(t)
=

N∑
i=1

ES(i) =
N∑
i=1

1

γi
. (5)

By the SLLN,

lim
t→∞

Ai(t)

t
= λi,

and we obtain, by (2) the following limit expression:

lim
t→∞

V (t)

t
= lim

t→∞

N∑
i=1

∑Ai(t)
n=1 S

(i)
n

Ai(t)

Ai(t)

t
=

N∑
i=1

ρi. (6)

We observe that the busy time B(t) is a cumulative process
with the positive recurrent process of regenerations {Tn}.
Then the stationary busy probability Pb can be obtained as

the (w.p.1) limit [23]:

lim
t→∞

B(t)

t
= Pb. (7)

As a result, we obtain from (3), (6), (7) the following important

relation

Pb =

N∑
i=1

ρi =: ρ ≤ 1. (8)

Denote Bi(t) the busy time the server is occupied by class-i
customers, in interval [0, t]. Then it follows from the balance

equations

Vi(t) = Wi(t) +Bi(t), i = 1, . . . , N. (9)

Because Wi(t) = o(t), t → ∞, and the limit

lim
t→∞

Bi(t)

t
= P(i)b (10)

is the stationary probability the server is occupied by class-i
customer, then we obtain from (9) in the limit that

P(i)b = ρi, i = 1, . . . , N. (11)

Now we prove that inequality (8) is indeed strict.

Theorem 1. If the multiclass retrial system with coupled orbits
is positive recurrent, then

Pb = ρ < 1. (12)

Proof. For this setting, the proof from [9] remains unchanged

but we outline it for easy reading. Denote by I0 the duration of
an empty period within a regeneration cycle. Let also B be a

generic busy period, i.e., the time the server is busy within

a regeneration cycle. Then, the regeneration period can be

expressed as T =st B + I0. It then easy to show as in [9]

that EI0 > 0. (To prove EI0 > 0, we denote maxi S(i) = ζ
and show that EI0 ≥ δP(τ > ζ + δ) > 0 for some δ > 0. For
more details see [9].) Denote I(t) = t−B(t) the idle time of
server in interval [0, t]. Then w.p.1,

lim
t→∞

I(t)

t
=
EI0
ET

= P0 = 1− Pb > 0, (13)

and strong inequality (12) follows. �
Introduce the maximal possible rate from orbit i:

μ̂i = max
J(i)∈G(i)

μJ(i).

The following statement contains the necessary stability
condition and is a generalization of the corresponding result
obtained in [9] for a less general model.

Theorem 2. Assume that the N -class retrial system with

coupled orbits is positive recurrent. Then,

Pb =
N∑
i=1

ρi = ρ ≤ min
1≤i≤N

[ μ̂i

λi + μ̂i

]
< 1. (14)

Proof. Denote indicator 1J(i)(t) = 1, if, at instant t, the
orbits have a (fixed) configuration J(i) and server is free, and
1J(i)(t) = 0, otherwise. Then

TJ(i)(t) =:

∫ t

0

1J(i)(u)du.

is the summary time, in interval [0, t] when the system has

configuration J(i) and server is idle. Then

T
(i)
0
(t) :=

∑
J(i)∈G(i)

TJ(i)(t)

is the summary time, in interval [0, t], when server is idle and
orbit i is busy, allowing successful retrials from orbit i.

To proceed with our analysis, we introduce indicator I
(i)
k =

1, if the kth class-i customer joins orbit i, and I
(i)
k = 0,
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otherwise. Then the number of class-i customers, A
(0)

i (t),
joining orbit i in interval [0, t], equals

A
(0)

i (t) =

Ai(t)∑
k=1

I
(i)
k .

By the SLLN for the renewal process, Ai(t)/t → λi, and it

then follows by positive recurrence that, as t → ∞,
A
(0)

i (t)

t
=

Ai(t)

t

1

Ai(t)

Ai(t)∑
k=1

I
(i)
k → λiPb, (15)

where the limit

lim
t→∞

1

Ai(t)

Ai(t)∑
k=1

I
(i)
k = Pb (16)

exists (by the positive recurrence) and is the stationary busy

probability of server. We note that indicators in (15) are

dependent in general. The r.h.s. of (16) is independent of i by
the property PASTA [1]. This property means that the limiting

fraction of (Poisson) class-i customers, which see server busy
(and join orbit), equals the limiting fraction of busy time of

server. Because the latter fraction is independent of class of

customers, the limit in (16) is independent of i as well.

Now we establish a balance relation between the number of

customers A
(0)

i (t) joining orbit i and the number of customers
Di(t) leaving this orbit, in interval [0, t].

Denote by D̂J(i)(t) the Poisson process of retrials from orbit
i provided, in interval [0, t], server is free and 1J(i)(u) = 1
for all u ∈ [0, t]. Note that this process has rate μJ(i). By the
property of Poisson process, we obtain the following stochastic
relations for i = 1, . . . , N :

A
(0)

i (t) = Ni(t) +Di(t)

= stNi(t) +
∑

J(i)∈G(i)
D̂i(TJ(i)(t)). (17)

Note that TJ(i)(t) → ∞ as t → ∞, i = 1, . . . , N . By the
renewal theory, for each configuration J(i),

D̂i(TJ(i)(t))

TJ(i)(t)
→ μJ(i), t → ∞. (18)

Notice that the limit

lim
t→∞

TJ(i)(t)

t
=: PJ(i)

0
(19)

also exists and is the stationary probability that the system has

configuration J(i) (so orbit i is busy) and server is free. An
important observation is that

∑
J(i)∈G(i)

PJ(i)
0

= lim
t→∞

T
(i)
0
(t)

t
=: P(i)

0
(20)

is the stationary probability that server is free and orbit i is
busy. By the positive recurrence, Ni(t) = o(t), t → ∞, and,
by (17)-(19), we obtain the following equations

λiPb =
∑

J(i)∈G(i)
PJ(i)
0

μJ(i), i = 1, . . . , N. (21)

It is easy to verify that each orbit can be occupied with a

positive probability while server remains free, implying strict

inequality P(i)
0

< P0. Now we obtain from (21)

λiPb ≤ μ̂i

∑
J(i)∈G(i)

PJ(i)
0

= μ̂iP
(i)
0

< μ̂iP0
= μ̂i(1− Pb), i = 1, . . . , N. (22)

To obtain the upper bound as tight as possible, it remains to

take min over i in (22), to obtain (14). �

Because of (20) we obtain from (21) the following two-

sided inequalities which, unlike (12), are not uniform in i.

Theorem 3. The following inequalities hold
λi

μ̂i
ρ ≤ P(i)

0
≤ λi

μ0i
ρ, i = 1, . . . , N. (23)

As in the paper [9], relation (12) can be extended to

the corresponding m-server retrial system with equivalent

servers. In this case, the r.h.s. in inequality (12) (and in (8))

is replaced by m, because the term t − I(t) on r.h.s. of (3) is
replaced by mt −∑m

k=1 Ik(t), where Ik(t) is the summary
idle time of server k in interval [0, t]. We formulate it as the
following statement.

Theorem 4. The necessary stability condition of m-server N -
class retrial system with coupled orbits is

N∑
i=1

ρi < m. (24)

Moreover, the stationary busy probability Pb of an arbitrary
server in this case equals

Pb =

∑N
i=1 ρi

m
. (25)

IV. SUFFICIENT STABILITY CONDITION

Now we formulate and discuss sufficient stability condi-

tions, and compare them with the necessary ones. In the

next section we verify by simulation the accuracy of these

conditions.

Denote, for each class i, the minimal retrial rate

μ0i = min
J(i)∈G(i)

μJ(i).

Following [9], we formulate the following sufficient stability
condition of the single-server retrial system with N coupled

orbits:

N∑
i=1

ρi + max
1≤i≤N

λ

μ0i + λ
< 1. (26)
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As in [9], this form of condition is motivated by the require-

ment to have negative drift of the workload process. The full

proof of condition (26) will be presented in a separate work.

We can rewrite (26) as

∑
i

ρi < 1− max
1≤i≤N

λ

μ0i + λ
= min

i

μ0i
λ+ μ0i

)
,

and thus the sufficient stability condition becomes

ρ =
∑
i

ρi < min
i

μ0i
λ+ μ0i

)
. (27)

Now we compare (27) with the necessary stability condition

(14). Observe that the function f(x) = x/(λ+x) is monotoni-
cally increases in x and maxi λi < λ. Then, because μ0i ≤ μ̂i,

we obtain

min
i

μ0i
λ+ μ0i

< min
i

μ0i
λi + μ0i

≤ min
i

μ̂i

λi + μ̂i
. (28)

These bounds allow us to calculate the gap between the

necessary and sufficient conditions,

Δ =: min
i

μ̂i

λi + μ̂i
−min

i

μ0i
λ+ μ0i

> 0. (29)

We note that dependence of Δ on parameters of the model

has been studied in [9] for two-orbit system.

It has been proved in [7], using a dominating loss system

with the saturated orbits, that (14) is stability criterion for
the symmetric model (when μ

(i)
0

≡ μ and λi ≡ λ/N ) with a
special class of service time distributions. At the same time,

in the symmetric case (31) becomes

Δ =
μ

λ/N + μ
− μ

λ+ μ
,

and Δ = 0 if and only if N = 1. It shows that we can not
achieve stability criterion by the approach given above.

Remark 1. Consider the non-coupled orbits, when μJ(i) = μi

for all configurations J(i). In other words, it is a conventional
retrial system in which each busy orbit i has a fixed retrial
rate μi. Then relations (21) and (23) become

λiPb = μiP
(i)
0

,

and we obtain the following explicit formula for the stationary

probability that orbit queue i is busy and server is idle:

P(i)
0
=

λi

μi

N∑
k=1

ρk, i = 1, . . . , N. (30)

In this setting the difference Δ becomes

Δ = min
i

μi

λi + μi
−min

i

μi

λ+ μi
. (31)

V. SIMULATION RESULTS

In this section we verify by simulation some obtained above

theoretical results for a 3-class system (with three orbits). We

will focus on the verification of the stability conditions. To

this end, we define the following variables,

Γ1 := mini
μ̂i

λi+μ̂i
− ρ,

Γ2 := mini
μ0

i

λ+μ0

i
− ρ.

(32)

which describe the proximity of the state of the system to the

boundary of stability region. In particular, Γi > 0, i = 1, 2,
means that both stability conditions (14) and (27) are satisfied,

and a stable dynamics of the obits are expected in this case.

Conversely, if Γi < 0, i = 1, 2, then we expect instability
of the orbits. Below these observations are supported by

simulation.

Fig. 1. Exponential service time. Conditions (14) and (27) hold: Γ1 > 0,
Γ2 > 0; all orbits are stable

Now we present numerical results obtained by simulation,

to illustrate stability/instability of the orbits depending on

whether both necessary and sufficient conditions, (14), (27),

are met, or not. This is verified for exponential and Pareto

service time distribution. In all figures, the black, grey and

(grey) dotted curve corresponds to the 1st, 2nd and 3rd orbit,

respectively.

We show the dynamics of orbits as time t increases. (More
exactly, the axis t shows the used number of discrete ”events”
in the applied discrete-event simulation algorithm: arrivals,

departures, attempts.)

Recall that ik = 1 (0) means that orbit k is busy (empty).
Moreover it is assumed that, in each configuration J(i), the
remaining two orbits are considered in an increasing order.

Because we consider three orbits, then the capacity of each

set Mi and set G(i)} equals 4. Indeed, for the two remaining
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orbits j < k with k, j �= i the following four configurations
J(i) are possible:

G(i) = (ij = 0, ik = 0), (ij = 1, ik = 0),

(ij = 0, ik = 1), (ij = 1, ik = 1)
}

. (33)

In the 1st experiment, see Fig. 1, we use the following values
of the input and service rates:

λ1 = 5, λ2 = 3, λ3 = 2, (34)

γ1 = 30, γ2 = 10, γ3 = 20, (35)

and in all experiments we use the following retrial rates:

M1 =
{

μ1
00
= 20, μ1

10
= 20, μ1

01
= 25, μ1

11
= 25
}

,

M2 =
{

μ2
00
= 30, μ2

10
= 40, μ2

01
= 35, μ2

11
= 42
}

,

M3 = μ3
00
= 10, μ3

10
= 15, μ3

01
= 20, μ3

11
= 25
}

,

(36)

where, in notation μi, the status of concrete configuration

is reflected. For instance, μ1
01
= 25 is the retrial rate of

configuration J(1) = (i2 = 0, i3 = 1), while μ3
10
= 15 is

the retrial rate of configuration J(3) = (i1 = 1, i2 = 0).

One can calculate that in the 1st experiment, ρ = 0.56
and, as a result, Γ1 = 0.27,Γ2 = 0.1. Therefore, both
necessary and sufficient conditions, (14), (27), are satisfied,

and as we see on Fig. 1, all three orbits are stable, as expected.

Fig. 2. Pareto service time. Conditions (14) and (27) hold: Γ1 > 0, Γ2 > 0;
all orbits are stable

Fig.2 shows the dynamics of orbits when service time S(i)

of class-i customer has Pareto distribution:

Fi(x) = 1− (x
i
0

x
)α, x ≥ xi

0
(Fi(x) = 0, x ≤ xi

0
), xi

0
> 0,

with expectation

ES(i) =
α xi

0

α − 1 , α > 1, i = 1, 2, 3. (37)

We select α = 2 and the following values of the shape
parameter xi

0
for orbit i = 1, 2, 3, respectively:

xi
0
=
1

60
,
1

20
,
1

40
. (38)

Because γ = 1/ES, then this choice gives the same service
rates as in the 1st experiment (see (35)):

γ1 = 30, γ2 = 10, γ3 = 20. (39)

In this case ρ = 0.56 and moreover, Γ1 = 0.27,Γ2 = 0.1. It
again implies stability of all orbits, see Fig.2.

Fig. 3. Exponential service time. Condition (14) holds, Γ1 > 0; condition
(27) is violated, Γ2 < 0; all orbits are stable

Fig. 3 shows the dynamics of orbits for the input rates

λ1 = 5, λ2 = 3, λ3 = 2,

and exponential service rates

γ1 = 20, γ2 = 10, γ3 = 20.

In this case,

ρ = 0.68, Γ1 = 0.18, Γ2 = −0.02, (40)

that is condition (14) holds, while condition (27) is violated.
As we see, all orbits are still stable, however the stability is

reached at a higher level (at least for orbit 1). Thus, simulation

confirms that i) the sufficient stability condition for our three-

orbit system remains the same as condition found for two-orbit

system in [9]; and that ii) a violation of the sufficient condition

not always leads to instability. (This is an expected result

because sufficient and necessary conditions are different.)

Fig. 4 shows the dynamics of the orbits in the exponential

model with the rates

λ1 = 5, λ2 = 3, λ3 = 2,

γ1 = 10, γ2 = 10, γ3 = 20.

Then ρ = 0.9 and Γ1 = −0.07,Γ2 = −0.17, that is both
condition (14) and (27) are violated. It is interesting that in
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Fig. 4. Exponential service times. Γ1 < 0, Γ2 < 0, conditions (14) and (27)
are violated; the 1st orbit is unstable

Fig. 5. Exponential service time. Both conditions (14) and (27) are violated:
Γ1 < 0, Γ2 < 0; all orbits are unstable

this case only the 1st orbit is unstable. We suggest that it is

because the 1st orbit has the maximal traffic intensity ρ1.

Fig.5 illustrates the behavior of orbits in the exponential

model with the rates

λ1 = 3, λ2 = 3, λ3 = 4;

γ1 = 10, γ2 = 7, γ3 = 20.

Then ρ = 0.92, implying Γ1 = −0.09,Γ2 = −0.26, that is
again both condition (14) and (27) are violated. However, un-

like Fig. 4, all three orbits become unstable in this experiment.
We suggest that it is because the chosen parameters make the

model closer to the symmetric model.

Fig. 6 demonstrates the correctness of theoretical result (27)

for the non-coupled orbits and Pareto service time with α = 2
and shape parameters (38). Then service rates are (see (39)):

γ1 = 30, γ2 = 10, γ3 = 20,

Fig. 6. Pareto service time. Estimation the probability P(1)
0 = P(busy orbit

1, idle server) for non-coupled orbits

while the input rates are taken as in previous experiment:

λ1 = 3, λ2 = 3, λ3 = 4.

Moreover, the following retrial rates are used:

μ1 = 20, μ2 = 30, μ3 = 10.

One can check that in this case ρ = 0.6, Γ1 = 0.11, Γ2 =
−0.1. This is very close to parameters in experiment 3, see
(40), and the system must be stable (although condition (27)

is violated). Indeed, as Fig 6 shows, the model remains stable
since the sample mean estimate converges to theoretical value

of the stationary probability

P(1)
0
= P(busy orbit 1, idle server) = 0.09,

given by equality (30). We notice that this experiment confirms

the convergence of the estimates of the corresponding proba-

bilities for two other orbits as well. (Because of similarity, we

omit the corresponding numerical illustration.)

In summary, it is worth mentioning that our experiments

confirm stability conditions (14), (27) for the multi-obit system

with non-exponential service time.

VI. CONCLUSION

We consider a multi-class (multi-orbit) bufferless retrial

system with N classes of retrial customers following inde-

pendent Poisson inputs and the so-called coupled orbits. A

class-i customer meeting busy server joins an infinite capacity
orbit i = 1, 2, ..., N . The head customer in orbit i attempts to
occupy server after an exponentially distributed time with rate

μJ(i) where J(i) = (j1, . . . , jN ) is a fixed configuration of the
binary states of all other orbits, jk ∈ {0, 1} (empty or busy),
provided that ji = 1. It means that, in each configuration
J(i), orbit i is always busy. This setting is a considerable
generalization of that has been studied in [9], where only the

following possibilities have been considered: i) all orbits j �= i
are idle, ii) at least one orbit j �= i is not idle. We apply
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regenerative approach to derive necessary stability condition.

Also sufficient stability condition is formulated. We verify

by simulation some stationary performance measures and the

accuracy of the found stability conditions.
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