
VOSYSmonitor, a TrustZone-based Hypervisor for
ISO 26262 Mixed-critical System

Pierre Lucas, Kevin Chappuis, Benjamin Boutin, Julian Vetter, Daniel Raho 
Virtual Open Systems
Grenoble, France

p.lucas, k.chappuis, b.boutin, j.vetter, and s.raho@virtualopensystems.com

Abstract—With the emergence of multicore embedded System
on Chip (SoC), the integration of several applications with
different levels of criticality on the same platform is becoming
increasingly popular. These platforms, known as mixed-criticality
systems, need to meet numerous requirements (e.g. real-time
constraints, multiple Operating Systems (OS) scheduling, pro-
viding temporal and spatial isolation). In this context Virtual
Open Systems has developed VOSYSmonitor, a thin software
layer, which allows the co-execution of a safety-critical and non-
critical applications on a single ARM-based multi-core SoC. This
software element has been developed according to the ISO 26262
standard. One of the key aspects of this standard is the control
of random and systematic failures, including the ones induced by
faulty or aging hardware. In the case of a software component,
the means to detect anomalies on the hardware are limited and
depend on choices of the manufacturer (i.e. implementation of
Dual redundant Core Lock step (DCLS)). However, the software
is able to check a part of these failures. It can be by either reading
the configuration registers of a peripheral, or checking the sanity
of a memory region. The purpose of this paper is to showcase how
a safety-related software element (e.g. VOSYSmonitor) can detect
and recover from failures, while ensuring that the safety-related
goals are still reached.

I. INTRODUCTION

In mixed-criticality domains, the term “functional safety”
has become a topic of high importance. Indeed, “functional
safety” generally means that malfunctions of the operating
system, which contain mission-critical tasks, that lead to any
kind of threat or even accident have to be avoided or mitigated.
Therefore, it is fundamental in the field of functional safety
to identify and understand potential risks and failure causes
of a system. If ideally all potential failure causes are known
and the consequences understood it is possible to define coun-
termeasures. Thus, failures are detected before a hazardous
event occurs and the safe state is initiated with the needed of
functional safety reaction.

The safe states can importantly vary according to the final
application as well as the injuries which might be led by the
system failure without countermeasures. As every application
is different and has its own particularities and thus potential
failure causes and related safe states, the functional safety
analysis is very interesting challenges.

In this context, many functional safety standards have been
established to define the main requirements to fulfill during
the development of critical systems in order to ensure a high
level of reliability in the critical systems. The main functional
safety standard is the IEC/EN 61508 that defines the basis for

functional safety developments for E/E/EP (electronics, elec-
tronic or programmable electronic) applications. In addition,
the IEC/EN 61508 is expanded by additional industry sector
specific standards, such as the ISO 26262 – Road vehicles
– Functional Safety which has been specially defined for the
automotive domain (see section II-A).

Indeed, the automotive industry is rapidly evolving towards
the connected autonomous vehicle which will considerably
increase the hardware/software complexity, while functional
safety will be a topic of high importance since critical features
will be controlled by electronics components (e.g., autonomous
driving, etc.). Thus, the ISO 26262 defines a functional safety
lifecycle for each automotive product development phase,
ranging from the hazard analysis and risk assessment to de-
sign, implementation, integration, verification, validation and
production release.

In this context, Virtual Open Systems has developed
VOSYSmonitor, a hypervisor based on ARM R© TrustZone R©
that enables the consolidation of mixed-critical Operating
Systems (e.g., Linux-KVM along with a RTOS) on a single
ARM-based platform with special attention to safety and
security. This software technology has been developed as a
Safety Element out of Context (SEooC) in compliance with the
ASIL-C requirements of the ISO 26262 standard and it ensures
freedom from interferences for the safety critical partition.

As a mater of fact, VOSYSmonitor is a perfect solution
to support a modern generation of car virtual cockpit where
the In-Vehicle Infotainment (IVI) system and the Instrument
Digital Cluster are consolidated and interact on a single
platform. Indeed, traditional gauges and lamps are replaced
by digital screens offering opportunities for new functions and
interactivity. Vehicle information, entertainment, navigation,
camera/video and device connectivity are being combined into
displays. However, this different information does not have
the same level of criticality and the consolidation of mixed-
critical applications represent a real challenge that must respect
the stringent requirements of the ISO 26262 functional safety
standard.

Since VOSYSmonitor is only a software component, the
paper will detail the definition of safety functionalities by
applying the ISO 26262-6 Product development at the software
level. After a summary of the ISO 26262 standard and the
different technologies involved in the Section II, we present
related work and emphasize the advantages and drawbacks
of existing solutions compared to our design in Section III.
Then, a more-detailed presentation of the safety features of

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



VOSYSmonitor is presented in Section IV. These features are
divided into two parts: detection and recovery mechanisms.
The performances of these mechanisms is evaluated in Section
V, by measuring the latency between a fault detection and the
entry to the mitigation state. Finally, Section VI summarizes
this work findings and directions for future works.

II. BACKGROUND

In the following sections, a brief overview of ARM R©
TrustZone R©, ARM R© Virtualization Extensions (VE) as well
as the different types of hypervisors is provided. Then, the ISO
26262 standard is introduced. Finally, this section is concluded
with a concise introduction of VOSYSmonitor, the underlying
firmware layer which ensures freedom from interferences for
the safety critical system when it is consolidated with other
non-critical applications.

A. ISO 26262 standard

ISO 26262 is a relatively recent (First version published
in 2012) functional safety standard tailored for the electronic
components in the automotive domain. Derived from the in-
dustry standard IEC 61508, similar concepts are found in both,
albeit named differently, such as Automotive Safety Integrity
Level (ASIL - ISO 26262) and Safety Integrity Level (SIL -
IEC 61508).

The ASIL is decomposed in four levels from ASIL A (the
lowest hazard risk level) to ASIL D (the highest hazard risk
level). Indeed, the ASIL definition of an electronic element
is tied to the risk incurred by the use of this component: an
higher ASIL means a risk has an higher occurrence and/or
more severe consequences, thus more stringent verifications
are required. The ASIL is determined during the product
development called the safety life cycle.

A product development respecting ISO 26262 is made
following the V-Cycle model, the first half starting from
the definition of safety requirements and the corresponding
specifications to the implementation. The second half is the
verification and validation, which ensures that all defined
requirements are met, from low-to-high (see Fig. 1).

Fig. 1. V-Cycle ISO 26262 Road vehicles Functional Safety

B. ISO 26262 Faults classification

During the ISO 26262 safety life cycle, all kind of possibles
faults that lead to a failure according to the safety concept have

to be considered. The ISO 26262 standard distinguishes two
groups:

• Random fault occurs unpredictably during the life-
time of an electronic element but follows a probabil-
ity distribution. Hardware failures (e.g. short-circuit,
memory corruption, bit flip) are random faults, in the
sense that the risk of occurrence cannot be suppressed
but failure rates can be predicted with reasonable
accuracy.

• Systematic fault is manifested in a deterministic way.
Software failures (e.g. stack overflow, non-aligned
memory access) are systematic failures. Indeed, while
the causes of a software failure are sometimes hard to
define or recreate, it will always trigger when a set of
conditions is met.

For the sake of simplification, it is assumed here that a
random failure is always triggered by a single random fault,
and likewise for a software failure. Latents faults are not in
the scope of this paper.

In case the product developed is a software-only element
(such as VOSYSmonitor), the random faults cannot be ignored.
Indeed, these faults must be always detected in a reasonable
delay and an appropriate mechanism must exist to handle the
situation.

As said above, the software is limited to detect such
faults. Furthermore, in case of a SEooC, since the software
component is not developed for a specific hardware platform.
In this context, these faults are difficult to control without
knowledge of the hardware.

On the other hand, software failures can be mitigated
with verification & validation activities by following a strict
coding standard (such as MISRA-C [8]) and by performing
code coverage analysis. These points are addressed in the ISO
26262-6 Product development at the software level, sections
5.4.7 and 9.4.5. However, these solutions are performed during
the safety life cycle and as such, if a software failure still
occurs during the product runtime, other mechanisms need to
be implemented.

Section IV, will detail how the issue was tackled with
VOSYSmonitor, by adding self-tests to identify the failure and
safe states to recover and preserve the execution of safety-
related tasks.

C. ARM TrustZone

ARM R© TrustZone R© is a hardware security extension,
which provides a system-wide security approach by integrating
protective measures into ARM processors, bus and system
peripherals [6]. The security of the system is achieved by par-
titioning the hardware and software resources in two compart-
ments: the Secure and the Normal worlds. The Secure world is
usually used during the boot process in order to enforce a chain
of trust. Indeed, starting with an implicitly trusted component,
every other runtime binaries can be authenticated before their
execution.

In this context, some security specific configuration as well
as sensitive data and peripherals can be only accessible from

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 232 ----------------------------------------------------------------------------



the Secure world. On the other hand, the Non Secure World
is intended to host a rich operating system (e.g., Android or
Linux). Security sensitive operations, such as the access to a
private key or the interaction with a real time task, are provided
to the non-secure application running in this compartment by
the services run in the Secure World. Moreover, TrustZone
enables a single core to safely and efficiently execute code
from both worlds, allowing to save silicon area and power
since a dedicated security processor is not needed.

Fig.

 

2.

 

ARM

 

architecture

 

overview

D. ARM Virtualization Extensions

ARM R© added full virtualization support as an optional
feature in ARMv7 [10]. Systems with these extensions have
an additional execution mode called hypervisor mode (hyp).
This mode is located in the new privilege level EL2, placed
below EL0 and EL1. In addition software executing in EL2
is provided with additional control registers for reconfiguring
execution in EL0 and EL1 by trapping certain instructions in
order to have full access to all system control. ARM R© VE
also introduced a nested paging mechanism. This additional
stage of translation gives the hypervisor full control over the
address space of systems executing in EL1.

It is worth noting that all EL2-controllable traps and the
additional address translation only pertain to execution in the
non-secure world (i.e., EL2 exists only in the non-secure
world and its power does not extend beyond). However, the
opposite holds: the monitor mode in a processor incorporating
TrustZone R© is able to access all non-secure EL2 controls.

E. Hypervisors

In general, hypervisors can be classified into two types: The
Type-I hypervisor, also called bare-metal hypervisor, directly
runs on the hardware without relying on a host operating
system. Such hypervisor has to bring its own set of device
drivers and low-level system mechanisms (e.g., virtual memory
management). Famous examples for such a hypervisor are Xen
[2] or Hyper-V [4].

Type-II hypervisors on the other hand rely on a host
operating system to run on. They leverage the operating
system facilities, which are already in place and run as a
normal process. However, the host operating system has to
corporate with the hypervisor process and reflect specific types
of exceptions back to this process. Famous examples for such
a hypervisor are VirtualBox [1] or Parallels[12].

Kernel-based Virtual Machine (KVM) [13] is one of a few
exception that do not allow a clear classification into one of

the two types. In it’s design it is a Type-I hypervisor, because
it runs in a privileged mode (unlike a Type-II hypervisor), but
as a Type-II hypervisor relies on a host operating system, in
this case Linux.

F. VOSYSmonitor

VOSYSmonitor [9] is a low level certified software layer
developed on the ARM R© architecture, which runs in the Se-
cure Monitor mode of ARM R© Cortex-A processors. It enables
the native concurrent execution of a safety critical Real-Time
Operating System (or another type of critical application)
along with a non-critical General Purpose Operating System
(GPOS) with the option to use virtualization extensions, such
as Linux/KVM, in order to instantiate a variety of different
Virtual Machines (VM). This software layer isolates the RTOS
from the virtualized instances and provides, at the same time,
functions to enable a safe and secure communication between
them.

This software architecture, while being applicable to a wide
range of mixed-criticality use-cases, particularly targets the
automotive industry. As specified in the abstract, it has thus
been developed with respect to the ISO 26262 standard.

One must note, however, that in cases where VOSYSmon-
itor is used in other domains than automotive, the applying
certification process is facilitated as the product is already
certified for ISO 26262. For instance, for a medical use-
case requiring an IEC 60601 certification or a railway use-
case requiring an EN 50128 certification, a gap analysis can
be performed by a certification company, thus avoiding a
certification process from scratch.

VOSYSmonitor is based on ARM TrustZone technology,
which enforces among others, memory, CPU and interrupt
isolation between the RTOS and the GPOS. The design goal
of VOSYSmonitor is to give the full priority to the safety
critical domain in order to meet real-time constraints, while
being compliant with the ASIL-C requirements of the ISO
26262 standard.

Fig. 3. VOSYSmonitor overview

On multi-core architectures, VOSYSmonitor is able to
dynamically share a core between both worlds by operating

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 233 ----------------------------------------------------------------------------



under the assumption that the Secure world tasks should be
prioritized over the Normal world execution. This means that
once a core is assigned to the safety critical domain, the
normal world applications can use it only if the safety critical
domain, isolated in the Secure world, has decided to release
the core resource; something that happens when there is no
real-time task to schedule. In this context, hardware exception
mechanisms, such as interrupts, are used in order to ensure
an efficient context switching between the two worlds. In
addition, both domains can voluntarily give up their execution
time by invoking the SMC instruction. VOSYSmonitor keeps
tight control over these exceptions in order to ensure a proper
operation of each domain.

VOSYSmonitor is a scalable component that can be ported
on any ARM platforms with TrustZone support. This firmware
enables the consolidation of a wide range of use-cases, from
bare-metal applications to rich OS in the Secure/Normal
worlds, assuming certain requirements are met. In order to
differentiate the different features, VOSYSmonitor is divided
in several functional blocks as depicted in Fig. 4. The next
part of the paper will focus on the top-right block, the Safety
features.

Fig.

 

4.

 

VOSYSmonitor

 

block

 

diagram

III. STATE OF THE ART

A. ARM Trusted Firmware and SafeG

ARM Trusted Firmware (ATF) is a software layer able to
host a Trusted Execution Environment (TEE) alongside a Non-
Trusted OS. Similar to VOSYSmonitor, this firmware relies
on the isolation properties of the TrustZone technology (see
section II-C) for ARMv8-A architecture.

The isolated Secure world TEE, running on top of ATF,
can provide cryptographic primitives to Non-Secure system
components to ensure confidentiality and integrity. However,
this monitor layer does not support any safety-related features.
If we consider the definition of safety as “safety is the absence
of unacceptable risk” [16] , those features are mandatory in
many different contexts, such as aeronautics and automotive,
where any software misbehavior can have disastrous conse-
quences. To circumvent such problems, a number of companies
created automotive oriented consortiums. One of them is called
Automotive Grade Linux (AGL) and tries to leverage on
virtualization for enhancing the next-generation automotive
vehicle architectures [3].

On the other hand, an other open source initiative called
SafeG [15] (i.e., short for Safety Gate) provides a thin
monitor software layer that leverages the isolation properties

of ARM TrustZone to execute two OSs concurrently on the
same hardware platform. Like VOSYSmonitor, the focus of
SafeG is to execute one RTOS and one GPOS but SafeG is
currently limited to ARMv7-A based processors. In addition,
it is important to notice that this solution does not provide any
safety-related features.

B. XEN hypervisor

The XEN project, originally developed at the University of
Cambridge, is now a Collaborative Project under the umbrella
of the Linux Foundation. Xen is a type-1 hypervisor that
enables flexible virtualization by executing multiple operating
systems concurrently on a single hardware platform.

Initially dedicated to servers, a revisited version of
the project emerged for ARM platforms, called Embed-
dedXEN [14]. The latter deals with peripherals and ARM cores
heterogeneity and runs on top of ATF with the latest SMCC
version and PSCI features. However, XEN does not integrate
yet any safety features but the Xen team already started to
develop an ISO 26262-ready version.

C. Proprietary solutions

A number of proprietary solutions exist on the market.
Among them, OpenSynergy’s COQOS Hypervisor [11],
Green Hills’ Integrity Multivisor [5], Mentor Graphics’
Mentor Embedded Hypervisor.

The COQOS Hypervisor allows to run several OS in
separate VMs. Moreover, the COQOS hypervisor provides
a pre-integrated AUTOSAR environment in a dedicated
VM. As for the COQOS hypervisor, some elements of the
instrument cluster are safety critical and have been developed
according to Automotive SPICE and ISO 26262 ASIL-B
practices. By placing the instrument cluster software and a
guard mechanism in two different VMs, they ensures that this
safety feature is protected from interference. In case of any
software failure in the VM running the instrument cluster,
the guard mechanism is still able to react and can activate
near-immediate recovery of the instrument cluster.

On the other hand, the Mentor Embedded Hypervisor is
a Type 1 hypervisor with a small memory footprint, which
runs on top of ATF. It takes advantage of ARM TrustZone
to support both GPOSs (e.g., Mentor embedded Linux) and
secure operations (Secure boot, key management, etc.).

Finally, Green Hills provides a software layer called
INTEGRITY multivisor. This software layer allows to run
one or more guest operating systems alongside safety critical
functions. As the Mentor Embedded Hypervisor, it allows
devices and peripherals to be exclusively assigned or shared
between guest operating systems and critical functions. The
INTEGRITY multivisor is also ISO 26262 ASIL D certified
and Green Hills Software is part of the AGL consortium.

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 234 ----------------------------------------------------------------------------



IV. SAFETY FEATURES

In this section, the safety measures of VOSYSmonitor,
which enables the fault detection as well as to preserve the
correct execution of the safety critical domain, are detailed.

A. Supporting process

1) Core synchronization: In order to enable the synchro-
nization between the different cores, where VOSYSmonitor
is executing, a mechanism based on a mailbox has been
implemented in order to share messages between cores. Such a
solution provides the capacity to send a synchronization event
to a specific core without impacting the others. In addition,
a software interrupt is used to notify the receiving core of a
mailbox update. By setting this interrupt as a secure interrupt
(FIQ), this solution allows to preempt the core from the Normal
world without impacting the Secure world execution, if any.

B. Self-tests

Self-tests are periodically performed during the VOSYS-
monitor runtime, to detect any randoms faults that may impact
the execution of the safety critical domain. The self-test
execution period can be configured at compilation time.

1) Self-test core: A dedicated core is allocated to the self-
tests execution (called Self-test core). This core cannot be the
same core where the safety critical application is assigned
(called Safety core), since the hard real-time requirements of
the safety-critical tasks would not be guaranteed.

However, the Self-test core can be used by the Normal
world application when a power-up sequence has been re-
quested (through the PSCI convention) by the Normal world.
In this context, the co-execution between self-tests and non-
critical applications is similar to the Safety core. Indeed, the
core is scheduled for the Normal world when no self-tests are
executed, while the Secure Timer interrupt is configured as
secure in order to preempt the Normal world execution and
return in VOSYSmonitor for the self-tests execution.

Fig.

 
5.

 
Self-tests

 
execution

The self-tests executed are:

• Memory isolation: Verify the memory regions allo-
cated to VOSYSmonitor and the safety critical domain
are correctly configured as Secure (i.e. the Normal
world application cannot read or write in this memory
area).

• Peripherals isolation: Verify the drivers used by
VOSYSmonitor are correctly isolated as Secure.

• VOSYSmonitor code integrity: Verification of
VOSYSmonitor Read-Only code section by calculat-
ing and comparing a checksum. In this context, a
reference checksum is generated during the VOSYS-
monitor initialization. Then, the self-test re-calculates
the checksum and compares with the reference one to
detect any memory corruption.

• VOSYSmonitor execution speed: Check that the
clock frequency of the Safety core does not drop down
a certain threshold defined at compilation time. Due
to limitation of the software, the frequency cannot be
measured directly, therefore, the configuration regis-
ters generating the clock are read (PLL, divider, etc.),
meaning random faults cannot be prevented if there
are no hardware mechanism implemented.

2) Self-test performed on Safety core: Due to hardware
limitations, some faults can only be detected if the self-
test is performed on the Safety core. In order to mitigate
the impact on the safety critical applications, the self-tests
are executed only during a context switch to reschedule the
core for the Normal world application through VOSYSmonitor
(i.e., when the safety critical domain has no real-time tasks
pending). Unlike the self-tests performed on the Self-test core,
the execution of the Normal/Secure worlds applications are not
preempted for the execution of these specific self-tests since
the safety critical tasks have the highest priority.

Fig.
 
6.

 
Self-tests

 
execution

 
on

 
Safety

 
core

The self-tests executed are:

• TrustZone configuration: Ascertain the configuration
of the Secure Monitor mode registers configured by
VOSYSmonitor.

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 235 ----------------------------------------------------------------------------



• Interrupt controller configuration: Ascertain the
correct Interrupt controller configuration to ensure the
scheduling policy. Special care is taken to the interrupt
used for the Secure world scheduling.

C. Safe state

If one of the self-tests failed, VOSYSmonitor is able to
select an appropriate safe state procedure, depending on the
failure severity, in order to preserve the execution of the safety-
related system running in the Secure world. VOSYSmonitor
supports three different safe state modes:

1) Safety application only: VOSYSmonitor stops the co-
execution in order to run the safety critical system in stan-
dalone mode on the Safety core by preventing SMC call at
EL1/PL1 and above. In addition, a sync event is generated to
all secondary cores, which are executing the Normal world
applications, in order to reboot the Normal world only on the
cores, which are not assigned to the safety critical domain.

Fig.
 
7.

 
Safety

 
critical

 
OS

 
preservation

2) Normal world powered off: VOSYSmonitor stops the
co-execution in order to run the safety critical system in
standalone mode on the Safety core by preventing SMC call
at EL1/PL1 and above. In addition, a sync event is generated
to all secondary cores, which are executing the Normal world
applications, to shut them down in order to ensure that the
safety critical domain, running in the Secure world, will not
be corrupted in case of spatial and/or temporal isolation failure.

3) Safety application migration: VOSYSmonitor migrates
the execution of the safety critical from the Safety core to
another core, which is not located into the same cluster. Once
the new core has been identified, VOSYSmonitor populates
the context of the previous Safety core to the selected core,
then it updates the ”Execution state” structure with this new
information. In addition, all secure interrupts (FIQ), which
targeted the previous Safety core, are migrated to the new core.
It is important to notice that VOSYSmonitor is able to power
on the core identified for the migration if it is not already
up and running. Finally, the previous Safety core is either
redirected to the Normal world execution or shut down if the
Normal world did not power-up previously.

Fig.

 
8.

 
Safety

 
critical

 
OS

 
migration

V. EVALUATION

This section aims to highlight the execution process upon
detection of a failure. Three metrics in particular are evaluated:

• Self-test Execution Time (ST): Time required for
VOSYSmonitor to run the corresponding self-tests
sequence on the Self-test core and the Safety core.

• Fault Detection Time (FDT): Time required for
VOSYSmonitor to detect a failure.

• Recovery Time (RT): Time required for VOSYSmon-
itor to update the world scheduling in order to preserve
the mission-critical tasks running in the Secure world
when a failure is detected.

Fig. 9 depicts the execution process when a failure is
detected during the self-tests execution. The process might
slightly differs for the self-test execution on the Safety core
since they might be impacted by the scheduling of the safety
critical application but the concept remains the same. For the
evaluation purpose, we will assume that the safety critical
application is scheduling in order to not impact the self-test
execution on the Safety core.

The evaluation uses the ARMv8 Performance Monitoring
Unit (PMU) [7], which counts the number of CPU clock cycles
consumed. The tests have been performed on the Renesas R-
Car M3 Salvator-X board, which includes a Cortex A-57 (1.5
GHz) and a Cortex A-53 (1.3 GHz) cluster. As results may
vary depending on the core where VOSYSmonitor is operating,
all tests have been executed on both A-53 and on A-57. In
addition, the number of CPU clock cycles are listed in the
results in order to provide an estimate of the self-tests latency
if another board with a different core frequency is used. Finally,
the tests are realized in the best performance conditions since
only VOSYSmonitor is using the CPU caches (i.e., A57 - L1
cache of 48KB, L2 cache of 1MB; A53 - L1 cache of 32KB;
L2 cache of 512KB). As such, the number of cache misses
might differ compared to a real use-case where the applications
running in the Normal/Secure worlds might flush the caches

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 236 ----------------------------------------------------------------------------



Fig.

 
9.

 
Safety

 
features

 
execution

 
overview

lines used by VOSYSmonitor and the performance might be
affected.

A. Self-test execution time

The goal of this section is to evaluate the Self-test Execu-
tion Time (ST in Fig. 9). As said in Section IV-B, self-tests are
executed on two distinct cores: the Self-test core and the Safety
core. The evaluation consists in measuring the execution of all
self-tests in the worst case (i.e. taking the more clock cycles).

1) Self-test core: The worst case for the self-tests execution
is when the self-test core is currently scheduled by the Normal
world. Indeed, in this case, the Normal world context has to
be saved before starting the self-tests execution.

The table below lists the time consumed for the self-test
execution, starting from the preemption of the Normal world
execution by the Secure Timer interrupt (see Fig. 5), to the
end of the self-test sequence.

TABLE I. SELF-TESTS LATENCY ON SELF-TESTS CORE

Processor Frequency Clock cycles Latency
(Ghz) (ns)

Cortex-A53 1.3 63508 48.9
Cortex-A57 1.5 61347 40.9

The results show that the Cortex-A57 has better per-
formance whether the CPU clock cycles or the latency is
considered. However, it is important to analyze the impact of
self-tests execution on the Normal world application since this
latter is preempted. The shortest self-test period, which might
be selected at the compilation time, is 1ms (any lower input
value is rejected). As a result, the worst case scenario (i.e., self-
test period of 1ms) on the self-test core consumed 4.4% of the
processing time for the self-test execution. Thus, the impact on
the Normal world application is considered minor, furthermore
in the case of a multi-processor application. Indeed, the self-
tests execution impact would be further attenuated as only one
core (i.e., the Self-test core) is concerned. However, in order
to prevent any excessive latency on the Normal world execu-
tion, especially during the initialization phase, VOSYSmonitor

cannot schedule the self-tests execution on the Primary core
(i.e. the core being powered up first during a reset).

2) Safety core: As previously mentioned, these self-tests
are only executed when the Safety critical OS has no pending
tasks and gives the control to the Normal world application. In
this context, only the self-tests execution is measured, meaning
the latency induced for preserving the world context is not
included below.

TABLE II. SELF-TESTS LATENCY ON SAFETY CORE

Processor Frequency Clock cycles Latency
(Ghz) (ns)

Cortex-A53 1.3 56 0.04
Cortex-A57 1.5 99 0.07

We can observe that the latency induced by the self-test
sequence on the Safety core is insignificant, especially if we
compared this value with the measurement of the self-test
sequence on the Self-test core. This result can be explained
by the self-tests sequence, which is minimalist on the Safety
core. In addition, a standard context switch is performed in
1.14 us on the Renesas R-Car M3 Salvator-X (Cortex-A57).
Therefore, when the self-test sequence is executed during the
context switch, an overhead of 6% is observed, which increases
the full context switch time to 1.21ns. Although this overhead
is minor, it is important to notice that the impact on the
safety critical application is none since the self-test sequence
is only performed during a switch from the Secure world to
the Normal world.

B. Fault Detection Time

It is not possible to estimate the FDT since it is dependent
from the error occurrence as well as the self-test period.
Indeed, as specified in Section IV-B, the self-test period can
be selected by the user at the compilation time. However, it is
possible to give an estimate of the worst-case FDT.

At the time of writing, the biggest self-test period config-
urable is 10s. In such a case, if the error occurs just after a
self-test sequence, it implies that the error will be detected on
the next self-test sequence, therefore, the FDT will be around
1Os in this worst scenario. On the other hand, the latency
induced by the self-test execution might be also considered.
Indeed, the error may occur during the self-tests execution,
and might be not detected if the self-test in charge has already
been executed. However, this latency is considered negligible
according to the result in table V-A1.

C. Recovery Time

As discussed in Section IV-C, three safe states are available
according to the error triggered. This section lists the different
latencies by measuring the delay between a safe state request
and its completion.

1) Safety application only: This safe state is the most
time-consuming, which is due to the Normal world reboot
that may vary depending on the application. In this test case,
Linux is running in the Normal world after being flashed
by U-boot. Therefore, it is needed to flash U-boot binary
during the reboot procedure, thus causing this relatively huge

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 237 ----------------------------------------------------------------------------



latency. This operation might be avoided (and the performance
improved) if the U-boot binary can be re-executed after a first
execution.

In case this delay is unacceptable for the use-case, it is
possible to use the safe state Normal world powered off (see
section IV-C2), which offers better latency.

TABLE III. SAFETY APPLICATION ONLY LATENCY

Processor Frequency Clock cycles Latency
(Ghz) (ns)

Cortex-A57 1.5 931740 621.2

2) Normal world powered off: This safe state requires
less time to perform its sequence but the counter-part is
that the Normal world application is completely powered off.
However, such implementation is needed since it allows the
preservation of the safety critical application in case of spatial
and/or temporal isolation failure. Most of the latency is due to
synchronization between cores. Indeed, the safe state will not
conclude until all secondary cores, not allocated to the safety
features (i.e., Self-test core and Safety core), are powered
down.

TABLE IV. NORMAL WORLD POWERED OFF LATENCY

Processor Frequency Clock cycles Latency
(Ghz) (ns)

Cortex-A57 1.5 9010 6.0

3) Safety application migration: This safe state execution
is relatively short compared to the *Safety application only*
one since the Normal world application is not rebooted. Indeed,
during the context switch from the Normal to Secure world,
a new core is selected to migrate the Secure world context.
The latency is mainly due to the population operation of the
interrupt controller configuration. Indeed, all secure interrupts
routed to the previous Safety core must be redirected to the
new selected core. As such, all interrupts must be checked
to see if they are assigned to the Secure world, and the
resulting latency is proportionate to the number of interrupts
implemented (i.e., 511 on the Renesas R-Car M3 Salvator-X
for instance).

TABLE V. SAFETY APPLICATION MIGRATION LATENCY

Processor Frequency Clock cycles Latency
(Ghz) (ns)

Cortex-A57 1.5 28082 18.7

VI. CONCLUSION

The ISO 26262 safety standard allows for the certification
of a SEooC. This means the standard is applied on an element,
where the exact context and scope of the element is not known,
yet. VOSYSmonitor, a secure monitor layer, which is devel-
oped for a range of mixed-criticality applications constitutes
such an SEooC.
This paper, demonstrated the process of applying the ISO
26262 on VOSYSmonitor. In particular, the safety properties
that VOSYSmonitor provides have been laid out and it’s

performance numbers measured (e.g., latency of a self-test).
While the safety features presented, are primarily tailored
towards VOSYSmonitor, they still provide general insights on
how to design an ISO 26262 certified element which is not
developed in the context of a particular system or vehicle.
Further, it is important to mention, that the ISO 26262 standard
puts a particular focus on the safety manual. However, while
the SEooC provides generic safety features, the hazards for a
specific use-case cannot be listed and thus, no mitigation can
be proposed. In this case instead, the safety manual lists Safety
Related Application Conditions (SRAC). These requirements
then have to be fulfilled by the system integrator (i.e. the
person/company responsible for the item).

VII. ACKNOWLEDGMENT

This work was supported by the dReDBox project. This
project has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement No. 687632. This work reflects only the authors’
view and the European Commission is not responsible for any
use that may be made of the information it contains.

REFERENCES

[1] Virtualbox. http://www.virtualbox.com, March 2018.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. 37(5):164–177, 2003.

[3] The Liunx fondation. The automotive grade linux software defined
connected car architecture. Whitepaper, June 2018.

[4] Yutaka Haga, Kazuhide Imaeda, and Masayuki Jibu. Windows server
2008 r2 hyper-v server virtualization. Fujitsu Sci. Tech. J, 47(3):349–
355, 2011.

[5] Green Hill. Integrity multivisor. URl: http://www. ghs.
com/products/rtos/integrity\ virtualization. html, 2016.

[6] ARM Limited. Building a secure system using trustzone technology.
Whitepaper, Avril 2009.

[7] ARM Ltd. ARM Architecture Reference Manual, January 2016.
ARMv8, for ARMv8-A architecture profile.

[8] HORIBA MIRA Ltd. Misra - the motor industry software reliability
association. URL: https://www.misra.org.uk.

[9] Pierre Lucas, Kevin Chappuis, Michele Paolino, Nicolas Dagieu, and
Daniel Raho. Vosysmonitor, a low latency monitor layer for mixed-
criticality systems on armv8-a. In LIPIcs-Leibniz International Pro-
ceedings in Informatics, volume 76. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[10] Roberto Mijat and Andy Nightingale. Virtualization is coming to a
platform near you. Whitepaper, January 2011.

[11] OPENSYNERGY. Coqos hypervisor sdk. https://www.opensynergy.
com/coqos-hypervisor-sdk/.

[12] Parallels. Parallels workstation, parallels desktop. http://www.parallels.
com, March 2018.

[13] Qumranet. Kernel-based virtual machine for linux. http://qumranet.
com/kvm, March 2018.

[14] Daniel Rossier. Embeddedxen: A revisited architecture of the xen
hypervisor to support arm-based embedded virtualization. Whitepaper,
June 2012.

[15] Daniel Sangorrin, Shinya Honda, and Hiroaki Takada. Dual operating
system architecture for real-time embedded systems. In Proceedings
of the 6th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT), Brussels, Belgium, pages
6–15, 2010.

[16] Dr. Henrik Thane. Testing and safety standards. http:
//swell.weebly.com/uploads/1/4/3/4/1434953/swell safety and
verification 20111007d.pdf.

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 238 ----------------------------------------------------------------------------


