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Abstract—The paper deals with the analysis of the manipulator
actuation mode on the manipulator stiffness behavior. The main
scientific contribution of the paper related to advancement of Ma-
trix Structural Analysis (MSA) technique for the case of complex
open-loop and closed-loop manipulators. The proposed approach
presents the manipulator stiffness model as a homogeneous set of
matrix equations describing the link properties that are comple-
mented by a set of constraints describing connections between
links that are presented in a similar way as link models. The pro-
posed approach straightforwardly aggregates the stiffness model
equations avoiding merging of columns and rows usually used in
conventional MSA approach. The efficiency of this approach is
illustrated by comparison analysis of NaVaRo manipulator for
different actuation modes.

I. INTRODUCTION

The manipulator stiffness analysis is one of the most im-
portant issues in design of robot mechanics for many industrial
applications where the manipulators are subject to essential ex-
ternal loadings [1]. It allows designer to achieve required bal-
ance between the robot dynamics and positioning accuracy and
to compensate relevant compliance errors using on-line or off-
line error compensation technique [2-4]. For the stiffness mod-
eling, there exist three main techniques [5], which are the Finite
Element Analysis (FEA) [6-8], the Matrix Structural Analysis
(MSA) [9-11] and the Virtual Joint Modeling (VIM) [12-15].
The most accurate but computationally expansive is the FEA
[6], while the MSA is considered as a compromise technique,
which operates with rather large elements such as flexible links
connected by the actuated and passive joints in the overall ma-
nipulator structure. This obviously leads to the reduction of the
computational expenses, but it requires some non-trivial actions
for the MSA-based stiffness model generation that are proposed
below.

Some reviews of existing works on manipulator stiffness
analysis can be found in [16], [17], that cover results starting
from the early works of Salisbury and Gosselin [18], [19] till
recent years. Among latest contributions devoted to the MSA it
worth mentioning the work of Cammarata [20], who introduced
the notion of the Condensed Stiffness Matrix. Another useful
extension of the MSA for the case of non-linear links/joints
stiffness properties was proposed in [21] where a passive revo-
lute joint was described by a rank-deficient force-dependent
stiffness matrix. There are several works that deal with the
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MSA application to the stiffness analysis of particular manipu-
lators. In [22] the MSA method was applied to EAST articulat-
ed maintenance arm with 11 degrees of freedoms, which is used
for remote inspection of inner components inside the vacuum
vessel. In [23] the MSA technique was employed to obtain a
dynamic model of the industrial machining robot ABB IRB
6660 in order to predict vibration instability in machining. In
[24] the MSA was applied to derive the static stiffness model of
9-dof redundant reconfigurable 3xPPPRS parallel manipulator
for meso-Milling Machine Tool.

To our knowledge, the most essential contribution to the ro-
bot-oriented modification of the MSA was done by Deblase et.
all [11] who proposed a general technique for taking into ac-
count passive joints and rigid connections. Nevertheless, some
manual procedures of merging matrix components were not
avoided, as well as preloadings and elastic connections were
not treated. For this reason, this paper focuses on some en-
hancement of the MSA technique and its application to the
stiffness analysis of the parallel manipulator NaVaRo [25].
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Fig. 1. NaVaRo robot and its kinematics

II. MANIPULATOR ARCHITECTURE

The NaVaRo robot (Fig 1) is a three-degree-of-freedom
planar parallel manipulator with variable actuation schemes. It
is composed of three identical legs and a moving platform
formed of three segments rigidly linked at the central point.
Each leg consists of four non-rigid links connected by five rev-
olute joints to create a parallelogram linkage. Among them,
there are four passive joints and one actuated joint connected to
the motor via a double-clutching mechanism allowing to actu-
ate one of two links adjacent to the motor axis. The latter de-
termines the main particularity of the NaVARo robot that has
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eight actuation modes that are switched to avoid kinematic sin-
gularities.

Actuation mode #1

2

Actuation mode #2

2

9

Aectuation mode #3

Fig. 2. MSA-based representation of the NaVaRo leg

Fig. 3.  MSA-based representation of the NaVaRo platform

To apply the MSA technique, let us split the mechanism in-
to four parts: three kinematically identical legs and a mobile
platform. For convenience, let us divide the longest link of the
leg into two rigidly connected parts. This allows us to present
each leg (Fig. 2) as a set of five flexible links (1,2), (3,4), (5,6),
(7,8), (9,e) with passive connections of the nodes <2,3>, <4,5>,
<6,7> and rigid connection of the nodes <6,9>. Depending on
the actuation mode, the motor/clutch mechanics is specified as
the passive connection of the nodes <0,8> and elastic connec-
tion of the nodes <0,1>, elastic connection of the nodes <0,8>
and passive connection of the nodes <0,1> or passive connec-
tion of the nodes <0,1> and elastic connection of the nodes
<1,8>. Besides, the moving platform can be presented as a me-
chanical structure composed of three flexible links (Fig. 3),
which are rigidly connected to the end-effector on the right-
hand side and to the manipulator's legs via a passive joint on the
left-hand side.
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III. MANIPULATOR STIFFNESS PARAMETERS

There exist several methods to obtain the stiffness matrix of
a manipulator link. The most common and easier of them ap-
proximates the link by a simple beam, for which the stiffness
matrix can be computed analytically using beam link, cross-
section and material properties. The more accurate approach
deals with multi-beam approximation where each link is pre-
sented via a serial chain of rigid bodies of regular shapes sepa-
rated by several virtual springs. In this case, the link stiffness
matrix can be obtained using a common procedure used in
stiffness modelling of serial robots. However, even the second
approach can be hardly applied to manipulator links with non-
homogeneous structure and of complex shape with non-
constant cross-section. It was shown before that for some com-
plex-shape links four-beam approximation may give some
components of the stiffness matrix twice differ from the real
ones [26]. To achieve high accuracy of stiffness matrix compo-
nents, the FEA-based identification procedure that was previ-
ously introduced in [8], [26]. The corresponding algorithm is
schematically presented in Fig. 4.

Material
Real Ihape properties
CAD model
Joints Couplings between

particularities | translational\rotational

deflections

FEA-based
virtual experiments

Deflections field

Stiffness matrix
identification

Stiffness matrix

Fig. 4. Algorithm for stiffness matrix identification procedure

To achieve sophisticated model the stiffness parameters of
the NaVaRo manipulator links were estimated using CAD-
based technique and relevant data processing tools presented in
details in [8]. To find them, the virtual forces/torques were ap-
plied to all links separately and corresponding deflections were
obtained via the FEA modeling. These data were used for the
identification of the link compliance coefficients. The obtained
values are given in Table I, where the CJ corresponds to the
inverse of the stiffness matrix K’ . The stiffness coefficient of
the actuator was estimated as 1.00-10* Nm / rad .

The above presented identification technique allows us to
obtain stiffness matrices of size 6 x 6. These matrices describe
the link stiffness behavior that is evaluated assuming that one
of the link ends is fixed and the loading is applied to the se-
cond one (Fig. 5a). However, the MSA-modeling operates
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TABLE 1. COMPLIANCE MATRICES OF THE NAVARO MANIPULATOR LINKS
Link Compliance matrix C(ZZ)

Link (1,2) 1.16-10% 0 0 0 0 0
0 921-10° 0 0 0 8.66-107

0 0 232-10° 0 -1.90-10° 0

0 0 0 8.67-10™* 0 0

0 0 -190-10° 0 2.00-10°* 0

0 8.66-10° 0 0 0 9.90-10™*

Link (3.4) [1.10-10° 0 0 0 0 0
- 0 168107 0 0 0 1.30-10*

0 0 3.20-10°° 0 -240-10° 0

0 0 0 1.10-10° 0 0

& 0 0 -2.40-10°7° 0 228107 0

| 0 130-10° 0 0 0 1.24-10°
Link (5,6) [1.00-10% 0 0 0 0 0o
0 1.78-10° 0 0 0 1.18-10

0 0 2.85-10° 0 -220-10° 0

0 0 0 9.93.10™ 0 0

0 0 -220-10° 0 2.10-10°* 0
| 0 118107 0 0 0 1.13-10° |
Link (7.8) [1.01:10% 0 0 0 0 0 ]
0 1.09:10° 0 0 0 9.61-10°°

0 0 2.65-10° 0 -2.12-10° 0

0 0 0 8.99-107 0 0

0 0 -2.12:10° 0 2.10-10°* 0
| 0 961107 0 0 0 1.01-107 |
Link (9,¢) [1.05-10% 0 0 0 0 0o
0 1.68:10° 0 0 0 12910

0 0 321-10° 0 -239-10° 0

0 0 0 1.05-10° 0 0

0 0 -239-10° 0 220-10° 0
| 0 1.29:10" 0 0 0 1.18-107 |

Link (i.e) 766-10° 0 0 0 0 0
0 136-10° 0 0 0 8.42:10°

0 0 1.12:10° 0 -84810° 0

0 0 0 6.58-10° 0 0

0 0 -848:10° 0 8.51-10™ 0

0  842.10° 0 0 0 7.09-10°

Fig. 5.

Physical models of cantilever beam (a) and “free-free” beam (b)

with 12x12 stiffness matrices, which does not assume that
any of the link ends is fixed. In contrast, it is assumed here
that the links are subject to double-side loading and deflec-
tions are defined for both of this sides (Fig 5b). For such ar-
rangement, the stiffness matrix should have size 12x12 be-
cause it defines the linear relations between two deflection
vectors (of size 6 each) and two vectors of loading (of size 6
each). From a physical point of view, it is clear that both
stiffness matrices (of size 6x6 and 12x12) describe the

same properties of the link, while the smaller one contains

. exhaustive information on the stiffness. Hence, it is useful to

obtain expressions that allow us to transform a 6x 6 stiff-
ness matrix into a 12x12 one, which is required for the
MSA-modeling technique [27].

To derive desired expressions, let us denote the above de-
scribed stiffness matrices as K, and K, ,. Let us also
assume that the link geometry and its spatial location are de-
fined by the vector L =(/,,/, [, )" connecting correspond-
ing nodes. Besides considering that both of the matrices are
symmetrical, it is convenient to present them in the block
form as

K K
K6><6 :|:K” K:i| K :KbT (1)
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@)
K. = Kij“ Kifb K. =K T
ij KI]L Kijd jje — Trijb
where i =1,2 and j=1,2.
Let us consider simultaneously two static equilibriums
F _ Ka Kb . §p (3)
M| K, K,||do
|:“]l:|:|:Kll K12:||:5t1:| (4)
WZ K21 K22 é‘tZ

where the first one corresponds to the single-side loading
(cantilever beam) and the second equation corresponds to the
double-side loading. Here, for the single-side loading case,
F and M are the force and torque applied to the non-fixed
link end, Op and 6@ are translational and rotational deflec-
tions caused by external loading. Similarly, for the double-
side loading case, W, =(F,, M,)" and W, =(F,, M,)"
are the wrenches applied to the link ends, Jt, and Jt, are
the deflections of corresponding link ends under the loadings
W, and W, . It is obvious that in both cases the model vari-
ables should satisfy the static equilibrium conditions, which
eliminate some redundancy in notations for the second case.

To obtain desired matrices, let us assume first that for the
double-side model St, =0. This allows us straightforwardly
apply equation (3) and static equilibrium constrain that yield

F | w _[F]. [t
Wl Wl i) o

that leads to the following presentation of equation (4)

-F 0
-M+FxL _[KH Ku] 0 ©
F K, K,]|dp
M 0Q
which leads to
K22 = K6><6 (7

Further, considering that FxL = —(L ><)'F and using
symmetrical properties of stiffness matrix,

K _ _Ka _Kb .
27K, -[Lx]K, -K,-[Lx]K, |
-K, -K,+ Ka~[L><]}

®)
KT _ a
K. ‘KIZ‘[ K, +K_[Lx]

-K

c

where [Lx]denotes the 3x3
rived from the vector L

skew-symmetric matrix de-

Similarly, assuming that Jt, =0, the model (4) can be
re-written using expressions
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F] ~ —F , [t
WIZ[M} WZ‘[—M+FxL} 5‘:'_‘:5(& ©)

and presented in the form

F op,

M _ Kn K|2 . 5‘[’1

—F - |:K21 Kzz 0 (10
-M+FxL 0

that after substitution of K,,, K,,, K,, and relevant trans-
formations gives the following expression

Ka Kb - Ka ’ [LX]
K, - K, [Lx]+[Lx]K, -
~[Lx] K, [Lx]

K, = (11)

K, +[Lx]K,

Therefore, the stiffness matrix identification technique pre-
sented before can also produce 12 x12 matrices required for
the manipulator stiffness modeling using the MSA-approach.

It is clear that in general case when the link is arbitrary
oriented with respect to the global coordinate system, the
above equations should be slightly modified by simply rotat-
ing the local stiffness matrices

K Ki|_|QK, Q" QK,Q
K§1 ng Q'Kzl'QT Q'Kzz'QT

where Q =diag(R,R) is composed of two similar orthogo-
nal matrices R defining the orientation of the local coordi-
nate system of the link (if) relative to the global one and left
superscript “g” indicates that matrix is presented in the global
coordinate system that will for simplicity purpose will be
omitted further (since all matrices assumed to be computed in

a global coordinate system).

} (12)

IV. AGGREGATED STIFFNESS MODEL

The MSA equations for robotic manipulator are derived
from three main sources: (i) link models, (ii) joint models and
(iii) boundary conditions. The first of them describes the
force-displacement relations for all links. The second group
of equations ensures the displacement compatibility and
force/torque equilibrium for each internal connection. The
third group of equations is issued from the manipulator con-
nections to the environment.

In the general form, the aggregated stiffness model can be
presented as follows

Ay AYT o [0
AY AL || | ]ep

(At ()

where W, and At, are the wrench and displacement of the /"
node, while the matrices A\, A and the vectors b{’ are
defined below. Using notations adopted in [28, 29], the con-
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tribution of the links, joints and constraints can be expressed
in the following way,

V flexible links:
Wi _
[T} (KD ]-[{Atl}}—o (14)
V rigid links:
0 Df Lot | [ W] _[0
Lléxé,nzxz 0 M{Ati}Ho} ()
for flexible platform:
oot Koh [ | IWI|_| 0
] o
for rigid platform:
0 (oD | [(W) 0
{{Dw 0 M{Ati}} w0
V rigid joints:
0 {I6x6’_16x6} {VVI} _ 0
[{Iéxﬁ,léxﬁ} 0 }’[{Atf}H{WS}} 1o
V passive joints:
0 {AG.-AY) 0
(AL ALY 0 {{W}} (ALW | (19)
ij i {At,} i
(AL} 0 0
V elastic joints:
0 (AL —AL - 0
Too i) 0 ,EA{H: W |0)
AL KOAS L -KOALY ' (AL, W}
V rigid supports:
{W,}
[0 1,3]- [{At } 0 1)
V passive supports:
0 {A*t/} . {W} _ 0
LA*,,} 0 M{Ati}Ho} =
V elastic supports:
0 {AL} {W}} 0
LA*U} KA *,,}} {{Atl} {{ }} 3)
V external loadings:
w ext
[} 0]~[§Atﬂ={wi } (24)
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For computational convenience, the equations (14)-(24)
can be arranged in the aggregated linear matrix equation

|:Sagr Kagr } . {Wagr } — { bagr } (25)
Eﬂg)‘ Fagr Atdgf ng[
where the matrices S K E F b W are

agr agr > agr? agr agr ? ext

generated using relevant link/joint models or boundary condi-
tions, while the vectors W, and At contain all variables
describing the wrenches and displacements, respectively. To
find the desired Cartesian stiffness matrix, let us divide the
node displacement variables At into two groups At, and
At, corresponding to the manipulator internal nodes and the
end-effector node, where the external wrench W, is applied.

The latter allows us to rewrite the system (25) in the form

Sagr K”l lKe Wagr bagl
Em Fm CB Atﬂl = Wm (26)
E, F,|D At, W,
and further, present it as
AB|[p]_[b
e T B

where all internal variables are included in the vector
n=col(W,_, At ) and

Ct

Using the obtained system, the desired Cartesian stiffness
matrix can be computed as

agr?

S, K,
E, F,

K

e

C

b,
} Cc=[E, F]; b{w } (28)

m

K.=D-C-A"'B (29)

It is worth mentioning that A™" usually exists while the
aggregated matrix in (27) is rank deficient. Overall algorithm
for stiffness behavior estimation using the MSA method
summarized

Algorithm 1. Algorithm for stiffness behavior using MSA

Step #1. Define node points and type of connections between them.

Step #2. Identify stiffness model parameters using algorithm presented
in Fig. 4.

Step #3. Compute 12x12 stiffness matrices using eq. (7), (8) and (11).

Step #4. Define manipulator configuration by solving direct/inverse kin-
ematic problem.

Step #5. Compute rotation matrices R for all flexible links.

Step #6. Compute stiffness matrices for all flexible components in a
global coordinate system (12).

Step #7. Write equations for flexible and rigid links/platforms using
eq. (14)-(17).

Step #8. Write equations for rigid, passive and elastic joints using
eq. (18)-(20).

Step #9. Write boundary constraints using eq. (21)-(24).

Step #10. Collect all matrix equations in a single system of eq. (13).

Step #11. Extract reference point deflection and corresponding external
force using eq. (26).

Step #12. Compute Stiffness Matrix using eq. (29).

Step #13. Evaluate manipulator performance using desired metric.




PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

V. STIFFNESS MODEL OF NAVARO MANIPULATOR 0 ALA 010 010 000
Using the developed technique, after assembling all equa- 0 AZ/0 0{0 0i{0 0/0 O
tions describing the constraints and boundary conditions, the 0 0OIA” 010 010 0,0 0
aggregated stiffness model of a single manipulator leg is 0 0.0 AVA 00000
presented as follows . 0 0 0 A’ 0 0,000 0 .
Teoweo K @ 10 0,0 0iA? 0/0 0/0 0 (38)
00 A 0 0,0 0 0 A/Al 0/AL O
B, 0 {Wé’} —[0“4*1} (30) 0 0:0 0i0 A?/0 O0IA? O
agr 22%60 At “lw ¥ *
C. D, 8" Ji20x ¢ -20d 0 0/0 0i0 O0iA” 0/ 0 O
E Foso Jpam0 (A 0,0 0,0 00000
where K, aggregates all stiffness matrices of the flexible @ :[0 010 0[0 010 —A0 OJ (39)
links and is the same for all actuation modes since mechani- “ 1x60
cal properties remains the same. In contrast some other fog), :[O 010 0{0 0/0 K,A%}0 OJ (40)
blocks depend on the actuation mode. To distinguish matrices 2 e
for different actuation modes let us denote them by the super- E = [0 0{0 0{0 0j0 0{0 I]«xso : (41)
scripts “(1)’, “(2)’ or ‘(3)’. For the actuation mode (1) corre- Fg: =[0 0{0 0{0 0/0 0{0 0]6><60 (42)

sponding block matrices have the form
For the actuation mode (3) corresponding block matrices

0 Ali-AL 0/ 0 0/ 0 0i{00O0 have the form
0 0,0 AL-AL 0,0 0,00 - _
AV [ 000 000 AZAL 0000 g oo AT o T 000
w900 0,0 1,0 0-10 < A _
0010 00 00 Al00 A =| 220 210 A D009 43)
A0 0 0 0 0 0 000
L ~ e 0 0,0 0,0 0,0 A0O
0AIA 010 0]0 0100 A0 0 0 0 0 0 000
0A?/ 0 0,0 0,0 0/00 c L
00laz 0lo olo olo o 0 AZIA, 010 00 0/0 0
o xlo ole slons
gy |0 010 AT 0010 0100 (32) 0700 AAL 00000
“ =10 00 0/A” 0,0 000 o olo arlo 0lo oo o
0010 00 AJAL 0 A0 B =l 0 0lo 00a’ 00000 o (44)
00,0 0 0 A 0 0 A0 : :
0010 00 0la” 000 0 0 0 0 0,0 ALIAL 0 AL O
R R A v 0 0,0 0 0 A’ 0 0AZO
L 122460 0 0i0 0i0 O0iA20i0 O
Ci), =[-A: 0jo0foojoojoo] (33) (AZ7070 00 070000
DY) =[K.A¢ 00 0j0 0/0 0j0 0] (34 ¢ =[00/00f00j0 -Asj0 0] (45)
E" =[0 00 0/0 0{0 0j0 I] , . (3% DY) =[K.AZ 0j0 0/0 0j0 —K,AZj0 O] (46)
F,; =[0 00 0]0 0j0 0f0 0] (36) g% ~[0 010 0/0 00 0j0 1], . @7)
For the actuation mode (2) corresponding block matrices ~ F.,) =[0 0{0 0{0 0{0 0{0 0] oo (48)

have the form
This system can be also transformed to the form (25), where

0 Ali-A 0/ 0 00 0i0O0
0 0 0 Al-AZ 0/ 0 000 Iiunks —olﬁomo
0 00 O0;{0 Aii-A. 0{0 O K =| e . | e (49)
@ _ o : o
A =500 0000 (37) L) ¢ | Bu
0 0;0 O;{0 O0{iO0 A/{OO g J114x60 Coor 114x60
_A: 0f0 070 070 0400 Further, after separating the node variables {At,} in two

groups corresponding to the internal nodes At,, and to the end
effector node At, one can compute the desired stiffness ma-

191




PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

trices for all manipulator legs that will be further denoted as AKY 0 0 0
O K® KO
K, KoL K D,.=| 0 AKZ 0 0
. . L 8 7¢E)
For the entire manipulator, which is composed of three 0 0 AKS O]
legs (with relevant actuation modes) and the moving plat- s
i i _| weto o 16 (ie)
form, the aggregated stiffness model o is presented as follows F, = {Kn K5 K5 Z K5, }
i=l 6x24
_IISXIS Kpla{f
B, 0., .{Wag,} _ {03&1] (50) For computational convenience, this system can be also
C. D, At |, o Jina converted into the form (25), where
0 F
6x18 agr 442
) Kpla{f _118x18
where Kagr = 03><24 > Sagr = Bagr (51)
C
(le) (le) & B36x24 agr I36x18
K” 0 0 K,
K,., =l 0 Ki? 0 K3 Further, after separating the node variables {At,} in two
0 0 K§? Ky groups corresponding internal nodes At,, and to the end ef-
18x24 . .
) fector At, one can get the linear systems allowing us to
AP 0 0 -A 0 0 compute the desired stiffness matrix for the entire manipula-
Bug,_ = 0 A 0 Cagr = 0 —-A. 0 tor. This matrix for different configuration and actuation
0 0 A’ 0 0 -A’ modes is analyzed in following section.
3x18 15%18
TABLE IL COMPLIANCE ERRORS FOR DIFFERENT ACTUATION MODES OF NAVARO MANIPULATOR
Actuation mode Translational errors Rotational errors
mm/100N deg/100Nm
300 300
S 200 200
Chain #3 ™8
ActMode %2 Chain #2
ActMode #2 100 100
0 0
-100 -100
-200 -200
-300 -300
-300 -200 - -300 -200 -100 O 100 200 300
300 300
g 200 200
ActModes =1 . Chain=2
ActMode#1 100 100
0 0
-100 =100
-200 -200
-300 -300
300 200 4100 O 100 200 300 300 -
300 300
=T 200 200
ActMode 3 Chain =2
ActMode #3, 100 100
0 0
=100 =100
200 -200
Chain =1
& -300 4300
o ActMode =3 300 200 100 0 100 200 300 300 200 -100 0 100 200 300
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VI. ANALYSIS OF STIFFNESS BEHAVIOR

To evaluate the manipulator resistance with respect to the
external wrench applied to the end-effector, let us estimate
the maximum compliance errors corresponding to the
force/torque of the limited magnitude [30]. It allows us to
use the singular value decomposition of relevant blocks of
the Cartesian compliance matrix K_'.

Computational results for different actuation modes are
presented in Table II, which shows distribution of the maxi-
mum translational [mm] and rotational [deg] deflections
within the manipulator workspace. It was assumed that the
end-effector is subject to the external loadings of the magni-
tude 100 N and 100 Nm respectively. As follows from the
obtained results, the second actuation mode ensures better
stiffness properties for almost all configurations (excluding
those close to the singular ones) comparing to the first actua-
tion mode. For instance, for the second actuation mode, the
translational compliance error within the circle of 200mm
diameter can reach 0.95 mm while for the first actuation
mode it is less than 0.65 mm. The third actuation mode pro-
vides the highest positioning accuracy in the middle of
workspace and achieves for the circle of 200mm diameter
accuracy about 0.51 mm. From another side its orientation
errors for the same circle about 1.75 deg while the second
actuation mode ensures accuracy about 0.40 deg for the
same applied external moment.

VII. CONCLUSIONS

The paper presents the stiffness analysis for the NaVaRo
robot, a three-degree-of-freedom planar parallel manipulator
with variable actuation schemes. It also contains new scien-
tific results dealing with extension of the classical MSA tech-
nique for the case of complex open-loop and closed-loop ma-
nipulators. The proposed approach produces the Cartesian
stiffness matrices and presents the manipulator stiffness mod-
el as a set of conventional equations describing the link elas-
ticities that are supplemented by a set of constraints describ-
ing connections between links. The main advantage is com-
putational simplicity that straightforwardly aggregates the
stiffness model equations avoiding traditional column/row
merging procedures of the conventional MSA.
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