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Abstract—Traditionally Genetic algorithms are thought of as 
brute force approaches, aimed to arrive at solutions to problems 
which do not have a specific answer. In problems where the data 
is not structured for the general implementation of a specific 
idea, genetic algorithms are most useful. This paper proposes to 
mitigate the above problem of brute force approaches through 
elucidation of procedures ranging from exploratory analysis, 
followed by pattern analysis and classification. This novel 
conceptualization of the scheme and design will help in arriving 
at solutions through reduced iterations. Research conducted 
involves dropping of poorly performing hypotheses, controlled 
mutation, thereby adding a dimension of intelligence to 
evolutionary algorithms. The following paper describes the 
methodology used to solve the problem of addition of numbers 
using evolutionary algorithms of Neural Networks, whilst 
building intelligence into the system. The specific problem of 
addition has been dealt with in the following paper, however the 
same design philosophy can be extended for a paraphernalia of 
problems. The end goal is to obtain a generation of adroit and 
capable hypotheses to solve the problem in reduced number of 
iterations. The solution provided is generic and can be reused, it 
has been applied to a specific problem in the following paper. 

I. INTRODUCTION 
Genetic algorithms are considered to be brute force 

algorithms that involve the application of concepts originating 
from biology(crossover and mutation)[1] to solve problems and 
arrive at good solutions. These algorithms are strongly 
influenced by the process of natural selection depending on 
processes such as selection, crossover, and mutation. They 
were developed by John Holland at the University of Michigan. 
GAs are more suitable for data where analytics is not easy and 
modeling is difficult. GAs are also suitable for parallelization 
and when the search space is large. 

A lot of parallels can be drawn between genetic algorithms 
and reproduction[2](the origin of the idea of evolutionary 
algorithms). There are two ways in which reproduction takes 
place, mitosis and meiosis. In the mitosis process of 
reproduction, the cell multiplies into two, that is, a cell copies 
itself into duplicates. In meiosis the cell generates four different 
cells through crossover mechanisms, the idea being adapted 
into GAs. During copying, there may be small changes to the 
chromosome. This is called gene mutation. In each passing 
generation, the chromosomes are selected based on their fitness 
values and undergo mutation and crossover to produce two 
chromosomes for the new generation. 

In GA terminology the generation or population is a 
collection of chromosomes which are basically hypotheses or 

models that are candidate solutions. The constraint is that each 
hypothesis must be of the same type, that is, a population can 
consist only of neural networks or SVMs or any other model 
for that matter. The hypotheses or chromosomes consist of 
genes, which are analogous to the hyperparameters of the 
model. All the possible values that these hyperparameters can 
take are analogous to alleles of the genes. The fitness function 
in the following implementation is a manual observation of 
accuracy scores of the candidate solutions. The following 
process of mimicking natural selection gives rise to good as 
well as bad hypotheses. These bad hypotheses lead to an 
increase in the number of iterations required to solve a 
problem. This paper aims to find these bad hypotheses and 
eliminate them, their progeny to prevent increased iterations. 
The same idea can be extrapolated to various problems using a 
different set of models/hypotheses that constitute the 
population of the GAs. The neural networks or hypotheses are 
trying to predict the 4th column in Fig1 taking the first 3 
columns as input to the model. The file is divided into train, 
validation and test and fed to each of the hypotheses, their 
accuracy scores are monitored whilst collecting their 
representations. The hyperparameters shown in Fig2 constitute 
the representation of Neural Networks(hypotheses) that belong 
to the population of the GA in that particular iteration along 
with their accuracy scores. These are fed as data points to 
classifiers to distinguish between good and bad hypotheses 
keeping the final accuracy column as the target based on the 
threshold which is explained in further sections.  
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Fig. 1. Dataset for hypotheses(NNs) trying to predict 4th column. The first three 
columns(A, B and C) are the inputs to the neural network whose sum is equal to 
the last column(D) 

 

 
Fig. 2. Hyperparameters of hypotheses that represent NN representations 

Genetic algorithms take an iterative approach to arrive at a 
solution as shown in Fig 3. The first step is to initialize the 
population, the set of chromosomes, randomly or using 
heuristics. In the next step, fitness values are calculated for 
each chromosome. Based on these fitness values, chromosomes 
are pushed to the future generations or they are dropped off. 
These chromosomes later undergo crossover to produce new 
offspring chromosomes. Hence, giving rise to a new population 
of the same size as the initial population. The process is 
repeated until a termination condition is reached. 

 

Fig. 3. Iterative process of GAs 

Normally, through execution of GAs of Neural Networks to 
solve the problem of addition of numbers, fitness scores are 
generated. The good hypotheses(models that have high 
accuracy for trying to predict the actual sum) are sent to the 
next generation and the poorly(models with lower accuracy, the 
threshold is set at 70%) performing hypotheses are dropped off. 

To regenerate a population of a similar number of 
chromosomes, new hypotheses are included by crossover. 
From this pool of models, randomly chosen hypotheses are 
mutated(hyperparameters are tweaked) and the next generation 
resumes execution. This process continues until the number of 
generations is reached or a generation of adroit hypotheses are 
found(convergence). The novelty of this article is discussed in 
the implementation phase. 

In order to solve the addition of numbers problem, the 
authors have taken a population of 100 neural networks. In this 
scenario, each neural network is a chromosome, each 
hyperparameter of the neural network is a gene and the value of 
a hyperparameter is an allele. During each iteration, few of the 
best, models go to the next generation and the bad ones are 
dropped. The remaining chromosomes are pushed to the next 
generation using a roulette wheel selector. The chromosomes 
then go through controlled mutation and regeneration to keep 
the size of each generation constant. This process is repeated 
for the population for 10 iterations. 

II. LITERATURE SURVEY 
      Genetic algorithms have been used to solve or find 
approximate solutions to problems for a variety of problems 
such as the Travelling Salesman Problem, Sudoku and other 
NP-hard problems [6]. The aim of this paper is to reduce the 
number of iterations taken by GAs to arrive at a solution. The 
authors of [7] and [8] tried to solve the same problem by 
introducing an extended migration operator and an 
immigration operator respectively. These papers try to solve 
the problem in a specific fashion and a general extendable 
approach is not used. However, these papers were the initial 
stepping stones to solve this problem. The solution discussed 
in this paper extends the above two papers for a broader range 
of use cases by finding a pattern in the hypotheses generated 
so that the hypotheses converge faster and generate the 
solution. The immigration operator, along with other operators 
is used to see difference between actual GAs and Immigration 
Gas [17], however there is no concrete robust solution that was 
obtained. The number of generations also did not show any 
reduction, however the quality of the hypotheses obtained 
were noteworthy. [9] describes a method to solve the problem 
of brain connectivity using GAs by. This problem can be 
solved better by using the techniques the authors have 
described in the following paper as model brain connectivity is 
a critical problem to solve and includes a lot of data. This 
problem becomes harder to solve using ordinary 
GAs.  Methodology proposed in [10] is a new crossover 
operator to improve the performance of GAs to solve the 
Travelling Tournament problem. This paper is aiming to 
provide a specific solution to optimize GAs only for the 
travelling tournament problem. However, the approach used in 
the following paper ushered in the ideation of the novel 
scheme used in this paper. Alcohol addiction classification is 
discussed in [11]. The accuracy of the classifier can be 
increased by identifying a pattern and sifting the good 
hypotheses from the bad hypotheses. The problem can be 
solved in a less computationally intensive manner. [12] uses 
GAs in a way to tune the hyperparameters of the 
ELM(Extreme learning machine). This poses a problem as it 
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will be suitable to solve the problem pertaining to the ELM 
generalizing the same, will be hard as this requires a lot of 
manual intervention. Optimization is an important task as it 
saves cost and time. The research in [13] talks about the need 
for optimization and how it can be done with regard to GA. 
This paper stresses the need for pattern analysis in order to 
achieve better optimization. Route optimization is solved as a 
brute force using regular GAs, the same can be improved by 
adding intelligence to the existing system. [14] proposes a 
portfolio optimization algorithm based on genetic algorithms 
and affinity propagation. Pattern analysis can help in solving 

the problem described in [14] in a better fashion. The 
techniques described in this paper can mitigate the problems 
that may arise in [14]. The specifics of [18] deal with another 
interesting problem encountered with GAs and that is of 
premature convergence, interesting results were obtained 
regarding the same, which laid the foundation of the research 
carried out in the following paper. The immigration operator 
though deals with premature convergence, it randomly 
introduces new members to the GA’s successive population, 
this is a random heuristic solution, while the methodology 
posed in this paper aims to learn patterns and not rely on 
randomization to solve the problem. This may not eliminate 
premature convergence as randomization is not intelligence in 
the truest form, it is simply relying on the similar brute force 
strategy to solve the problem at hand [17]. The ideas discussed 
to use mechanisms to learn global and local patterns also 
ushered to further research. However the movement of 
hypotheses to subsequent populations used random selection 
using the selection operator [19]. 

III. IMPLEMENTATION

The myriad phases explained in this section highlights the 
implementation methodology for solving the problem of 
addition of numbers. The solution is depicted as a pool of 
neural networks(hypotheses), (to be precise, one thousand 
neural networks, in batches of one hundred neural networks for 
each generation) used to solve the problem using the concept of 
evolutionary algorithms. It involves pushing the capable 
hypotheses to the next generation/iteration and discarding the 
ones that are poor performers. Prior to performing the above-
mentioned function, an exploratory analysis was conducted to 
test if the following research could actually be feasible by 
noticing possible patterns in the good and bad hypotheses 
respectively.  The good hypotheses are ones that perform well 
and have a good accuracy score(setting the threshold at 70%) 
on the dataset of addition of numbers(checking if the sum of 
numbers in the columns equals the target column). The bad 
hypotheses are ones that perform poorly on the same dataset(in 
the same iteration) and have an accuracy score lower than 70%. 
After the exploratory analysis step, pattern analysis is done, and 
finally classification is done to distinguish between good and 
bad hypotheses, therefore help in dropping the bad hypotheses. 
To account for the dropped off hypotheses, controlled mutation 
is done and new offsprings are generated to maintain the length 
of each generation at 100 neural networks in the next iteration. 

Overview of Techniques Used: 

t-SNE: t-distributed stochastic neighbor embedding is a 
machine learning algorithm developed by Laurens van der 

Maaten and Geoffrey Hinton for the purpose of 
visualization[3]. The algorithm is a nonlinear dimensionality 
reduction technique that works well for embedding high 
dimensional data into a low dimensional space of two or three 
dimensions. It models each high dimensional data point in such 
a way that similar data points are modeled by nearby data 
points and dissimilar data points are modeled by distant data 
points with high probability. In this paper, the authors have 
used t-SNE to visualize the hyperparameters of the neural 
networks used in each generation to verify the clusters formed 
by them. The clusters are visualized in a two-dimensional 
space. Apart from this, PCA(Principal Component Analysis) 
was also used to visualize the clusters. t-SNE and PCA help in 
pursuing exploratory analysis that is required to understand the 
patterns and visualize the clusters formed by the hypotheses. 
The mathematics behind t-SNE is as explained below: 

t-SNE computes probabilities pij for the various data points 
in a high dimensional space. These probabilities are in 
proportion to data points xi and xj. ‘N’ is the number of data 
points in the high dimensional space. The probabilities are 
calculated as follows: 

      (1)

(2)

 Classifiers to find good and bad representations of 
hyperparameters(Classify hypotheses): 

1) Support vector machines(SVM) [4]: SVM is a
supervised learning model that analyzes data used for 
classification and regression analysis. An SVM model is a 
representation of data points in space mapped in such a way 
that the data points of separate categories are divided by a gap 
that is as wide as possible. New data points are predicted to 
belong to a category based on the side of the gap they fall 
under. 

2) Deep neural networks(DNN)[5]: A DNN as in [5] is an
artificial neural network(ANN) with multiple hidden layers. 
DNNs can model complex non-linear relationships. The extra 
layers enable composition of features from lower layers, which 
makes modeling complex data with fewer units 
probable than a similarly performing 
shallow

B. Exploratory Analysis 
The aim of the research involves a way to find a pattern 

among the poor performing hypotheses so they can be dropped 
off if they are regenerated by noticing the pattern that occurs in 
either of the hypotheses(good or bad). The method used to test 
this ideology involved visualizing the hypotheses in a two-
dimensional space and noticing if the hypotheses form distinct 
clusters for the good and bad chromosomes. As explained in 
earlier sections t-SNE aided in the visualization of these 
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clusters by squashing multiple features into a two-dimensional 
space, and as noticed the good and bad hypotheses formed 
different clusters. The other methods to visualize the same 
would be PCA or SVD, but t-SNE is preferred as it involves 
lossless compression, as the original data can be re-obtained 
also it performs a better job than PCA as seen in the figures 
below. The figures show the formation of clusters in the range 
(0-30%, 30-50%,50-70% and above 70%). The figures also 
show the formation of clusters for 2500 and 5000+ iterations in 
different steps. T-SNE uses the concept of distance based on 
the probability of the data points being similar to each other in 
higher dimensions and mapping this similarity as a probability 
in lower dimensions. This t-SNE visualization was 
implemented using TensorBoard[15]. The hyperparameters for 
the TensorBoard implementation involved, a learning rate of 
0.01, a perplexity of 5, and the number of iterations that were 
required for the algorithm to converge was 5000. The common 
hyperparameters were- activation unit(ReLU), and mean 
squared error loss. The hyperparameters generated by 
300(more neural networks can be used) neural 
networks(through normal execution of GAs), consisting of 
various features like- number of actual layers of the neural 
network, number of hidden layers of the neural network, 
number of neurons of the neural network, the learning rate of 
the neural network, and the optimizer used for the neural 
network, were squashed by t-SNE to a two and three 
dimensional space and visualized, the clusters obtained are as 
shown in the figures below, form different clusters which are 
proof that they must follow different patterns. If it is possible to 
learn such a pattern, there will be no regeneration of the poor 
performers, by discarding the poor hypotheses, learning the 
pattern specific to their cluster. The clusters show how far away 
the hyperparameters of good and bad hypotheses are in space 
giving an idea that the patterns that these two follow might 
vary to a considerable extent. Below are figures showing the 
implementations of PCA and t-SNE performing the squashing 
in two dimensions and their respective clusters achieved. 

Fig. 4. PCA Visualizing the clusters formed by accuracy scores. The Total 
Variance described is 100% and PCA is approximate 

Fig. 5. t-SNE for 2500 iterations in 2D space forming clusters. The parameters 
used for computing t-SNE are: Perplexity was 5, Learning rate was 0.01 and 
Supervise was 0. t-SNE was paused at iteration number 2507 

Fig. 6. t-SNE for 2500+ iterations in 3D space forming clusters. The 
parameters used for computing t-SNE are: Perplexity was 5, Learning rate was 
0.01 and Supervise was 0. t-SNE was paused at iteration number 2507 

Fig. 7. t-SNE for 5000 iterations in 2D space forming clusters. The parameters 
used for computing t-SNE are: Perplexity was 5, Learning rate was 0.01 and 
Supervise was 0. t-SNE was paused at iteration number  
5007 
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Fig. 8. t-SNE for 5000 iterations in 3D space, a clear formation of 4 different 
clusters in ranges(0-30%,30-50%,50-70% and above 70%). The parameters 
used for computing t-SNE are: Perplexity was 5, Learning rate was 0.01 and 
Supervise was 0. t-SNE was paused at iteration number 5007 

C. Pattern Analysis and Classification 
The crux of the problem at hand that needs to be solved 

requires this phase as the most important step of the entire 
process. The population length, that is, the number of 
chromosomes per generation is 100 neural networks, and the 
bar was set manually for 10 generations, implying that the 
algorithm would stop once ten generations were generated 
irrespective of the scores of the constituent chromosomes. The 
data can be collected for about 200-300 neural networks to 
learn a pattern, however, more data from a pool of neural 
networks can be collected as well. This step involved the 
collection of hyperparameters of 300 neural networks to learn 
a pattern. The hyperparameters that were collected will give an 
idea about the patterns that the good and bad hypotheses will 
follow as changing the hyperparameters will change the 
scores(performance) of these neural network hypotheses as 
explained [16]. The two algorithms that were used to learn the 
pattern across the hyperparameters(that were collected and 
stored in a .csv file) were a Deep Neural Network(Deep 
Learning) and an SVM(Support Vector Machine). After the 
patterns were learned(training of the above-mentioned 
models), classification was performed to see if the models 
could actually classify good and bad hypotheses, therefore 
these classifiers could help in identifying the good and bad 
hypotheses. This would help in dropping the bad performers, 
therefore ensuring that the next generation does not contain 
bad hypotheses. This process was followed by controlled 
mutation of the hypotheses, that involves mutating the 
hyperparameters of the individual chromosomes in a range 
that is representative of the hyperparameters of the good 
hypotheses. This implies that the chromosomes that are 
generated to maintain the length of each generation at 100 
neural networks, will at least converge to perform well and 
generate a good  
score. 

The hyperparameters of the deep neural network classifier 
involved 2 hidden layers and a total of 4 layers including the 
input and the output layers, 102 neurons, activation unit as 
ReLU(Rectified Linear Unit), sparse categorical cross entropy 

as the loss function, gradient descent optimizer adam. The 
SVM classifier that was also used for learning the pattern was 
compared to the deep neural network. The comparisons are 
highlighted in the results section. The SVM kernel that was 
employed for classification was a linear kernel. 

D. Controlled Mutation 
The classifier predicts which hypotheses are good and 

which are bad, the bad ones are dropped and not pushed further 
to the future generations, to accommodate for the dropped off 
hypotheses, controlled mutation is performed and new 
offsprings are generated. Controlled mutation involves 
pseudorandom mutation of the hyperparameters of the 
constituent chromosomes, in the range of the hyperparameters 
of the good hypotheses, obtained vaguely through manual 
observation. Therefore, the length of each generation is 
restored to its original length of 100 neural networks and 
pushed for the next generation. 

IV. THREATS TO VALIDITY 
Evolutionary algorithms that involve the mutation of 

hyperparameters may sometime result in varied results for 
different configurations of hyperparameters. This implies that 
sometimes deep networks may perform good, and sometimes 
slight variation in these deep networks may cause a sudden 
drop in performance. Similar results can be seen in smaller 
networks that perform good and bad, hence it becomes a 
problem to learn a specific pattern, and to accurately classify 
the hypotheses as good and bad. To combat the above problem 
more data will be needed to feed into the classifier(the first 
overhead), and to make the classifier a very robust 
algorithm(the second overhead), which is both complex and 
tricky. The overhead of this classifier may cause some drop in 
time improvement. This will reduce the gain that the process 
aimed to achieve at the very beginning, or provide minimal 
improvement over the existing functionality provided by 
genetic algorithms. 

 
Fig. 9. GAs flow using our approach 
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V. RESULTS 
The first implementation phase(t-SNE exploratory 

analysis) yielded results showing the formation of different 
clusters by the good and bad hypotheses, this showed that the 
patterns followed by the clusters would vary, as the 
configuration of the data points will vary. These figures would 
be helpful in learning patterns. The accuracy obtained by the 
pattern analysis models- Deep Neural Network, was 91.6% 
accurate(averaged for 10 runs when running for 50 epochs) 
and the highest accuracy obtained by the DNN classifier was 
92.3%. The second classifier model, the Support Vector 
Machine obtained an accuracy of 81% for classifying the 
hyperparameters of good and bad hypotheses. Evolutionary 
algorithms to generate a population of 100 good neural 
networks when executed for 10 iterations, ran in 7 hours 26 
minutes. When the same was run for to generate 100 good 
neural networks without controlled mutation, default execution 
of evolutionary algorithms(10 in each generation) for 10 
iterations, the time it took was 55 minutes with the distribution 
as shown in the graph below. The NNs show promise in 
solving the problem using this approach and speed up the 
process using the design implemented above, including the 
classifier’s overhead. As seen in the distribution the 
hypotheses in the last generation(last 10 hypotheses scores), 
are not very promising, as compared to the controlled mutation 
execution with scores for 30 neural networks(3 iterations) 
which converges in 3 iterations. The controlled mutation 
almost shows convergence in the 3rd iteration compared to 
default genetic algorithms that provide not very promising 
results in the 10th iteration as well. The figures below show 
the various graphs holding the above results. 

 
Fig. 10. Accuracy Distribution of 1000 Neural Networks 

 
Fig. 11. Without Tweaking Genetic Algorithms accuracy distribution.(100 
Neural Networks) 

 
Fig. 11. Accuracy Comparison of DNN classifier and SVM 

 
TABLE I. ACCURACY DISTRIBUTION FOR 30 NEURAL NETWORKS, COMPARING 

NORMAL AND TWEAKED GENETIC ALGORITHMS RESPECTIVELY 
 

Accuracy Accuracy 

0.64516129 0.56682028 

0.75576037   0.0875576 

0.29032258 0 

0.55299539 0.85253456 

0.19354839 0.95852534 

0.20276498 0.95852534 

0.91705069 0.29493088 

0.37788018 0.97235023 

0.51152074 0.99539171 

0 0.98156682 

0.99539171 0 

  0.1843318 0.42857143 

0.05990783 0 

0.21658986 0.97695852 

0.34232431 0 

0.17511521 0.10138249 

0.79262673   0.8156682 

0.64976959 0.28571429 

0.83870968 0.38709678 

    0.353672 0.47465438 

    0.368322 0.94356323 

0.66820277 0.91751152 

    0.122622 0.89400922 

0.05529954 0.96912442 

0.01382489 0.77465438 

0.69585254 0.94239631 

    0.256889 0.98539124 

0.56577678 0.99539171 

0.67327189 0.90967742 

0.01843318 0.98156682 
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Fig. 12. Controlled and tweaked Genetic Algorithm accuracy distribution 

 
Fig. 13. Time to generate adroit hypotheses 

CONCLUSION AND FUTURE WORK 
The results show that in a reduced number of iterations the 

algorithm was able to converge in comparison to the vanilla 
genetic algorithms and this ensured less computation,  
saving of computation(training time). The classifiers are saved 
models and hence do not contribute much to the computation 
time. Therefore, the same problem can be solved in reduced 
effort and time. However, building intelligence and tweaking 
the system of evolutionary algorithms is complex and tricky 
and this may be cumbersome in some cases. This research 
opens avenues for ways to really democratize AI(Artificial 
Intelligence), where a layman who has no idea about his/her 
data can just upload the data, and random algorithms can be 
run to test performance, and the same can be done in the least 
computationally heavy manner, giving the user interesting 
insights into which algorithm works and what configurations 
are needed for the hyperparameters of the given model that 
was used to achieve a good performance. The following 
system which is to be extended as a system for distributed 
compute service on containers/dockers is still under 
development, this would allow elastic provisioning of 
instances and provide a cloud based solution that will ensure 
automatic scaling and provide a SAAS solution to the user, 
making AI available at the fingertips. 
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