
Design Philosophy for Optimizing Genetic
Algorithms Through Embedded Intelligence

Lorick Jain, Akash Basabhat, Srikanth HR
PES University

lorick.jain@gmail.com, akash.basabhat@gmail.com, srikanthhr@pes.edu

Abstract—Traditionally Genetic algorithms are thought of as
brute force approaches, aimed to arrive at solutions to problems
which do not have a specific answer. In problems where the data
is not structured for the general implementation of a specific
idea, genetic algorithms are most useful. This paper proposes to
mitigate the above problem of brute force approaches through
elucidation of procedures ranging from exploratory analysis,
followed by pattern analysis and classification. This novel
conceptualization of the scheme and design will help in arriving
at solutions through reduced iterations. Research conducted
involves dropping of poorly performing hypotheses, controlled
mutation, thereby adding a dimension of intelligence to
evolutionary algorithms. The following paper describes the
methodology used to solve the problem of addition of numbers
using evolutionary algorithms of Neural Networks, whilst
building intelligence into the system. The specific problem of
addition has been dealt with in the following paper, however the
same design philosophy can be extended for a paraphernalia of
problems. The end goal is to obtain a generation of adroit and
capable hypotheses to solve the problem in reduced number of
iterations. The solution provided is generic and can be reused, it
has been applied to a specific problem in the following paper.

I. INTRODUCTION
Genetic algorithms are considered to be brute force

algorithms that involve the application of concepts originating
from biology(crossover and mutation)[1] to solve problems and
arrive at good solutions. These algorithms are strongly
influenced by the process of natural selection depending on
processes such as selection, crossover, and mutation. They
were developed by John Holland at the University of Michigan.
GAs are more suitable for data where analytics is not easy and
modeling is difficult. GAs are also suitable for parallelization
and when the search space is large.

A lot of parallels can be drawn between genetic algorithms
and reproduction[2](the origin of the idea of evolutionary
algorithms). There are two ways in which reproduction takes
place, mitosis and meiosis. In the mitosis process of
reproduction, the cell multiplies into two, that is, a cell copies
itself into duplicates. In meiosis the cell generates four different
cells through crossover mechanisms, the idea being adapted
into GAs. During copying, there may be small changes to the
chromosome. This is called gene mutation. In each passing
generation, the chromosomes are selected based on their fitness
values and undergo mutation and crossover to produce two
chromosomes for the new generation.

In GA terminology the generation or population is a
collection of chromosomes which are basically hypotheses or

models that are candidate solutions. The constraint is that each
hypothesis must be of the same type, that is, a population can
consist only of neural networks or SVMs or any other model
for that matter. The hypotheses or chromosomes consist of
genes, which are analogous to the hyperparameters of the
model. All the possible values that these hyperparameters can
take are analogous to alleles of the genes. The fitness function
in the following implementation is a manual observation of
accuracy scores of the candidate solutions. The following
process of mimicking natural selection gives rise to good as
well as bad hypotheses. These bad hypotheses lead to an
increase in the number of iterations required to solve a
problem. This paper aims to find these bad hypotheses and
eliminate them, their progeny to prevent increased iterations.
The same idea can be extrapolated to various problems using a
different set of models/hypotheses that constitute the
population of the GAs. The neural networks or hypotheses are
trying to predict the 4th column in Fig1 taking the first 3
columns as input to the model. The file is divided into train,
validation and test and fed to each of the hypotheses, their
accuracy scores are monitored whilst collecting their
representations. The hyperparameters shown in Fig2 constitute
the representation of Neural Networks(hypotheses) that belong
to the population of the GA in that particular iteration along
with their accuracy scores. These are fed as data points to
classifiers to distinguish between good and bad hypotheses
keeping the final accuracy column as the target based on the
threshold which is explained in further sections.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

Fig. 1. Dataset for hypotheses(NNs) trying to predict 4th column. The first three
columns(A, B and C) are the inputs to the neural network whose sum is equal to
the last column(D)

Fig. 2. Hyperparameters of hypotheses that represent NN representations

Genetic algorithms take an iterative approach to arrive at a
solution as shown in Fig 3. The first step is to initialize the
population, the set of chromosomes, randomly or using
heuristics. In the next step, fitness values are calculated for
each chromosome. Based on these fitness values, chromosomes
are pushed to the future generations or they are dropped off.
These chromosomes later undergo crossover to produce new
offspring chromosomes. Hence, giving rise to a new population
of the same size as the initial population. The process is
repeated until a termination condition is reached.

Fig. 3. Iterative process of GAs

Normally, through execution of GAs of Neural Networks to
solve the problem of addition of numbers, fitness scores are
generated. The good hypotheses(models that have high
accuracy for trying to predict the actual sum) are sent to the
next generation and the poorly(models with lower accuracy, the
threshold is set at 70%) performing hypotheses are dropped off.

To regenerate a population of a similar number of
chromosomes, new hypotheses are included by crossover.
From this pool of models, randomly chosen hypotheses are
mutated(hyperparameters are tweaked) and the next generation
resumes execution. This process continues until the number of
generations is reached or a generation of adroit hypotheses are
found(convergence). The novelty of this article is discussed in
the implementation phase.

In order to solve the addition of numbers problem, the
authors have taken a population of 100 neural networks. In this
scenario, each neural network is a chromosome, each
hyperparameter of the neural network is a gene and the value of
a hyperparameter is an allele. During each iteration, few of the
best, models go to the next generation and the bad ones are
dropped. The remaining chromosomes are pushed to the next
generation using a roulette wheel selector. The chromosomes
then go through controlled mutation and regeneration to keep
the size of each generation constant. This process is repeated
for the population for 10 iterations.

II. LITERATURE SURVEY
 Genetic algorithms have been used to solve or find
approximate solutions to problems for a variety of problems
such as the Travelling Salesman Problem, Sudoku and other
NP-hard problems [6]. The aim of this paper is to reduce the
number of iterations taken by GAs to arrive at a solution. The
authors of [7] and [8] tried to solve the same problem by
introducing an extended migration operator and an
immigration operator respectively. These papers try to solve
the problem in a specific fashion and a general extendable
approach is not used. However, these papers were the initial
stepping stones to solve this problem. The solution discussed
in this paper extends the above two papers for a broader range
of use cases by finding a pattern in the hypotheses generated
so that the hypotheses converge faster and generate the
solution. The immigration operator, along with other operators
is used to see difference between actual GAs and Immigration
Gas [17], however there is no concrete robust solution that was
obtained. The number of generations also did not show any
reduction, however the quality of the hypotheses obtained
were noteworthy. [9] describes a method to solve the problem
of brain connectivity using GAs by. This problem can be
solved better by using the techniques the authors have
described in the following paper as model brain connectivity is
a critical problem to solve and includes a lot of data. This
problem becomes harder to solve using ordinary
GAs. Methodology proposed in [10] is a new crossover
operator to improve the performance of GAs to solve the
Travelling Tournament problem. This paper is aiming to
provide a specific solution to optimize GAs only for the
travelling tournament problem. However, the approach used in
the following paper ushered in the ideation of the novel
scheme used in this paper. Alcohol addiction classification is
discussed in [11]. The accuracy of the classifier can be
increased by identifying a pattern and sifting the good
hypotheses from the bad hypotheses. The problem can be
solved in a less computationally intensive manner. [12] uses
GAs in a way to tune the hyperparameters of the
ELM(Extreme learning machine). This poses a problem as it

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 151 --

will be suitable to solve the problem pertaining to the ELM
generalizing the same, will be hard as this requires a lot of
manual intervention. Optimization is an important task as it
saves cost and time. The research in [13] talks about the need
for optimization and how it can be done with regard to GA.
This paper stresses the need for pattern analysis in order to
achieve better optimization. Route optimization is solved as a
brute force using regular GAs, the same can be improved by
adding intelligence to the existing system. [14] proposes a
portfolio optimization algorithm based on genetic algorithms
and affinity propagation. Pattern analysis can help in solving

the problem described in [14] in a better fashion. The
techniques described in this paper can mitigate the problems
that may arise in [14]. The specifics of [18] deal with another
interesting problem encountered with GAs and that is of
premature convergence, interesting results were obtained
regarding the same, which laid the foundation of the research
carried out in the following paper. The immigration operator
though deals with premature convergence, it randomly
introduces new members to the GA’s successive population,
this is a random heuristic solution, while the methodology
posed in this paper aims to learn patterns and not rely on
randomization to solve the problem. This may not eliminate
premature convergence as randomization is not intelligence in
the truest form, it is simply relying on the similar brute force
strategy to solve the problem at hand [17]. The ideas discussed
to use mechanisms to learn global and local patterns also
ushered to further research. However the movement of
hypotheses to subsequent populations used random selection
using the selection operator [19].

III. IMPLEMENTATION

The myriad phases explained in this section highlights the
implementation methodology for solving the problem of
addition of numbers. The solution is depicted as a pool of
neural networks(hypotheses), (to be precise, one thousand
neural networks, in batches of one hundred neural networks for
each generation) used to solve the problem using the concept of
evolutionary algorithms. It involves pushing the capable
hypotheses to the next generation/iteration and discarding the
ones that are poor performers. Prior to performing the above-
mentioned function, an exploratory analysis was conducted to
test if the following research could actually be feasible by
noticing possible patterns in the good and bad hypotheses
respectively. The good hypotheses are ones that perform well
and have a good accuracy score(setting the threshold at 70%)
on the dataset of addition of numbers(checking if the sum of
numbers in the columns equals the target column). The bad
hypotheses are ones that perform poorly on the same dataset(in
the same iteration) and have an accuracy score lower than 70%.
After the exploratory analysis step, pattern analysis is done, and
finally classification is done to distinguish between good and
bad hypotheses, therefore help in dropping the bad hypotheses.
To account for the dropped off hypotheses, controlled mutation
is done and new offsprings are generated to maintain the length
of each generation at 100 neural networks in the next iteration.

Overview of Techniques Used:

t-SNE: t-distributed stochastic neighbor embedding is a
machine learning algorithm developed by Laurens van der

Maaten and Geoffrey Hinton for the purpose of
visualization[3]. The algorithm is a nonlinear dimensionality
reduction technique that works well for embedding high
dimensional data into a low dimensional space of two or three
dimensions. It models each high dimensional data point in such
a way that similar data points are modeled by nearby data
points and dissimilar data points are modeled by distant data
points with high probability. In this paper, the authors have
used t-SNE to visualize the hyperparameters of the neural
networks used in each generation to verify the clusters formed
by them. The clusters are visualized in a two-dimensional
space. Apart from this, PCA(Principal Component Analysis)
was also used to visualize the clusters. t-SNE and PCA help in
pursuing exploratory analysis that is required to understand the
patterns and visualize the clusters formed by the hypotheses.
The mathematics behind t-SNE is as explained below:

t-SNE computes probabilities pij for the various data points
in a high dimensional space. These probabilities are in
proportion to data points xi and xj. ‘N’ is the number of data
points in the high dimensional space. The probabilities are
calculated as follows:

 (1)

(2)

 Classifiers to find good and bad representations of
hyperparameters(Classify hypotheses):

1) Support vector machines(SVM) [4]: SVM is a
supervised learning model that analyzes data used for
classification and regression analysis. An SVM model is a
representation of data points in space mapped in such a way
that the data points of separate categories are divided by a gap
that is as wide as possible. New data points are predicted to
belong to a category based on the side of the gap they fall
under.

2) Deep neural networks(DNN)[5]: A DNN as in [5] is an
artificial neural network(ANN) with multiple hidden layers.
DNNs can model complex non-linear relationships. The extra
layers enable composition of features from lower layers, which
makes modeling complex data with fewer units
probable than a similarly performing
shallow

B. Exploratory Analysis
The aim of the research involves a way to find a pattern

among the poor performing hypotheses so they can be dropped
off if they are regenerated by noticing the pattern that occurs in
either of the hypotheses(good or bad). The method used to test
this ideology involved visualizing the hypotheses in a two-
dimensional space and noticing if the hypotheses form distinct
clusters for the good and bad chromosomes. As explained in
earlier sections t-SNE aided in the visualization of these

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 152 --

clusters by squashing multiple features into a two-dimensional
space, and as noticed the good and bad hypotheses formed
different clusters. The other methods to visualize the same
would be PCA or SVD, but t-SNE is preferred as it involves
lossless compression, as the original data can be re-obtained
also it performs a better job than PCA as seen in the figures
below. The figures show the formation of clusters in the range
(0-30%, 30-50%,50-70% and above 70%). The figures also
show the formation of clusters for 2500 and 5000+ iterations in
different steps. T-SNE uses the concept of distance based on
the probability of the data points being similar to each other in
higher dimensions and mapping this similarity as a probability
in lower dimensions. This t-SNE visualization was
implemented using TensorBoard[15]. The hyperparameters for
the TensorBoard implementation involved, a learning rate of
0.01, a perplexity of 5, and the number of iterations that were
required for the algorithm to converge was 5000. The common
hyperparameters were- activation unit(ReLU), and mean
squared error loss. The hyperparameters generated by
300(more neural networks can be used) neural
networks(through normal execution of GAs), consisting of
various features like- number of actual layers of the neural
network, number of hidden layers of the neural network,
number of neurons of the neural network, the learning rate of
the neural network, and the optimizer used for the neural
network, were squashed by t-SNE to a two and three
dimensional space and visualized, the clusters obtained are as
shown in the figures below, form different clusters which are
proof that they must follow different patterns. If it is possible to
learn such a pattern, there will be no regeneration of the poor
performers, by discarding the poor hypotheses, learning the
pattern specific to their cluster. The clusters show how far away
the hyperparameters of good and bad hypotheses are in space
giving an idea that the patterns that these two follow might
vary to a considerable extent. Below are figures showing the
implementations of PCA and t-SNE performing the squashing
in two dimensions and their respective clusters achieved.

Fig. 4. PCA Visualizing the clusters formed by accuracy scores. The Total
Variance described is 100% and PCA is approximate

Fig. 5. t-SNE for 2500 iterations in 2D space forming clusters. The parameters
used for computing t-SNE are: Perplexity was 5, Learning rate was 0.01 and
Supervise was 0. t-SNE was paused at iteration number 2507

Fig. 6. t-SNE for 2500+ iterations in 3D space forming clusters. The
parameters used for computing t-SNE are: Perplexity was 5, Learning rate was
0.01 and Supervise was 0. t-SNE was paused at iteration number 2507

Fig. 7. t-SNE for 5000 iterations in 2D space forming clusters. The parameters
used for computing t-SNE are: Perplexity was 5, Learning rate was 0.01 and
Supervise was 0. t-SNE was paused at iteration number
5007

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 153 --

Fig. 8. t-SNE for 5000 iterations in 3D space, a clear formation of 4 different
clusters in ranges(0-30%,30-50%,50-70% and above 70%). The parameters
used for computing t-SNE are: Perplexity was 5, Learning rate was 0.01 and
Supervise was 0. t-SNE was paused at iteration number 5007

C. Pattern Analysis and Classification
The crux of the problem at hand that needs to be solved

requires this phase as the most important step of the entire
process. The population length, that is, the number of
chromosomes per generation is 100 neural networks, and the
bar was set manually for 10 generations, implying that the
algorithm would stop once ten generations were generated
irrespective of the scores of the constituent chromosomes. The
data can be collected for about 200-300 neural networks to
learn a pattern, however, more data from a pool of neural
networks can be collected as well. This step involved the
collection of hyperparameters of 300 neural networks to learn
a pattern. The hyperparameters that were collected will give an
idea about the patterns that the good and bad hypotheses will
follow as changing the hyperparameters will change the
scores(performance) of these neural network hypotheses as
explained [16]. The two algorithms that were used to learn the
pattern across the hyperparameters(that were collected and
stored in a .csv file) were a Deep Neural Network(Deep
Learning) and an SVM(Support Vector Machine). After the
patterns were learned(training of the above-mentioned
models), classification was performed to see if the models
could actually classify good and bad hypotheses, therefore
these classifiers could help in identifying the good and bad
hypotheses. This would help in dropping the bad performers,
therefore ensuring that the next generation does not contain
bad hypotheses. This process was followed by controlled
mutation of the hypotheses, that involves mutating the
hyperparameters of the individual chromosomes in a range
that is representative of the hyperparameters of the good
hypotheses. This implies that the chromosomes that are
generated to maintain the length of each generation at 100
neural networks, will at least converge to perform well and
generate a good
score.

The hyperparameters of the deep neural network classifier
involved 2 hidden layers and a total of 4 layers including the
input and the output layers, 102 neurons, activation unit as
ReLU(Rectified Linear Unit), sparse categorical cross entropy

as the loss function, gradient descent optimizer adam. The
SVM classifier that was also used for learning the pattern was
compared to the deep neural network. The comparisons are
highlighted in the results section. The SVM kernel that was
employed for classification was a linear kernel.

D. Controlled Mutation
The classifier predicts which hypotheses are good and

which are bad, the bad ones are dropped and not pushed further
to the future generations, to accommodate for the dropped off
hypotheses, controlled mutation is performed and new
offsprings are generated. Controlled mutation involves
pseudorandom mutation of the hyperparameters of the
constituent chromosomes, in the range of the hyperparameters
of the good hypotheses, obtained vaguely through manual
observation. Therefore, the length of each generation is
restored to its original length of 100 neural networks and
pushed for the next generation.

IV. THREATS TO VALIDITY
Evolutionary algorithms that involve the mutation of

hyperparameters may sometime result in varied results for
different configurations of hyperparameters. This implies that
sometimes deep networks may perform good, and sometimes
slight variation in these deep networks may cause a sudden
drop in performance. Similar results can be seen in smaller
networks that perform good and bad, hence it becomes a
problem to learn a specific pattern, and to accurately classify
the hypotheses as good and bad. To combat the above problem
more data will be needed to feed into the classifier(the first
overhead), and to make the classifier a very robust
algorithm(the second overhead), which is both complex and
tricky. The overhead of this classifier may cause some drop in
time improvement. This will reduce the gain that the process
aimed to achieve at the very beginning, or provide minimal
improvement over the existing functionality provided by
genetic algorithms.

Fig. 9. GAs flow using our approach

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 154 --

V. RESULTS
The first implementation phase(t-SNE exploratory

analysis) yielded results showing the formation of different
clusters by the good and bad hypotheses, this showed that the
patterns followed by the clusters would vary, as the
configuration of the data points will vary. These figures would
be helpful in learning patterns. The accuracy obtained by the
pattern analysis models- Deep Neural Network, was 91.6%
accurate(averaged for 10 runs when running for 50 epochs)
and the highest accuracy obtained by the DNN classifier was
92.3%. The second classifier model, the Support Vector
Machine obtained an accuracy of 81% for classifying the
hyperparameters of good and bad hypotheses. Evolutionary
algorithms to generate a population of 100 good neural
networks when executed for 10 iterations, ran in 7 hours 26
minutes. When the same was run for to generate 100 good
neural networks without controlled mutation, default execution
of evolutionary algorithms(10 in each generation) for 10
iterations, the time it took was 55 minutes with the distribution
as shown in the graph below. The NNs show promise in
solving the problem using this approach and speed up the
process using the design implemented above, including the
classifier’s overhead. As seen in the distribution the
hypotheses in the last generation(last 10 hypotheses scores),
are not very promising, as compared to the controlled mutation
execution with scores for 30 neural networks(3 iterations)
which converges in 3 iterations. The controlled mutation
almost shows convergence in the 3rd iteration compared to
default genetic algorithms that provide not very promising
results in the 10th iteration as well. The figures below show
the various graphs holding the above results.

Fig. 10. Accuracy Distribution of 1000 Neural Networks

Fig. 11. Without Tweaking Genetic Algorithms accuracy distribution.(100
Neural Networks)

Fig. 11. Accuracy Comparison of DNN classifier and SVM

TABLE I. ACCURACY DISTRIBUTION FOR 30 NEURAL NETWORKS, COMPARING

NORMAL AND TWEAKED GENETIC ALGORITHMS RESPECTIVELY

Accuracy Accuracy

0.64516129 0.56682028

0.75576037 0.0875576

0.29032258 0

0.55299539 0.85253456

0.19354839 0.95852534

0.20276498 0.95852534

0.91705069 0.29493088

0.37788018 0.97235023

0.51152074 0.99539171

0 0.98156682

0.99539171 0

 0.1843318 0.42857143

0.05990783 0

0.21658986 0.97695852

0.34232431 0

0.17511521 0.10138249

0.79262673 0.8156682

0.64976959 0.28571429

0.83870968 0.38709678

 0.353672 0.47465438

 0.368322 0.94356323

0.66820277 0.91751152

 0.122622 0.89400922

0.05529954 0.96912442

0.01382489 0.77465438

0.69585254 0.94239631

 0.256889 0.98539124

0.56577678 0.99539171

0.67327189 0.90967742

0.01843318 0.98156682

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 155 --

Fig. 12. Controlled and tweaked Genetic Algorithm accuracy distribution

Fig. 13. Time to generate adroit hypotheses

CONCLUSION AND FUTURE WORK
The results show that in a reduced number of iterations the

algorithm was able to converge in comparison to the vanilla
genetic algorithms and this ensured less computation,
saving of computation(training time). The classifiers are saved
models and hence do not contribute much to the computation
time. Therefore, the same problem can be solved in reduced
effort and time. However, building intelligence and tweaking
the system of evolutionary algorithms is complex and tricky
and this may be cumbersome in some cases. This research
opens avenues for ways to really democratize AI(Artificial
Intelligence), where a layman who has no idea about his/her
data can just upload the data, and random algorithms can be
run to test performance, and the same can be done in the least
computationally heavy manner, giving the user interesting
insights into which algorithm works and what configurations
are needed for the hyperparameters of the given model that
was used to achieve a good performance. The following
system which is to be extended as a system for distributed
compute service on containers/dockers is still under
development, this would allow elastic provisioning of
instances and provide a cloud based solution that will ensure
automatic scaling and provide a SAAS solution to the user,
making AI available at the fingertips.

REFERENCES
[1] Man, Kim-Fung, Kit-Sang Tang, and Sam Kwong. "Genetic

algorithms: concepts and applications [in engineering design]." IEEE
transactions on Industrial Electronics 43.5 (1996): 519-534.J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, 1892, pp.68–73.

[2] Mitchell, Melanie. An introduction to genetic algorithms. MIT press,
1998.

[3] Maaten, Laurens van der, and Geoffrey Hinton. "Visualizing data
using t-SNE." Journal of machine learning research9.Nov (2008):
2579-2605.

[4] Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks."
Machine learning 20.3 (1995): 273-297.

[5] Goodfellow, Ian, et al. Deep learning. Vol. 1. Cambridge: MIT press,
2016.

[6] “Applications of Genetic Algorithms” [online]. Available:
“https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/tcw2/article1
.html”

[7] Moed, Michael C., Charles V. Stewart, and Robert B. Kelly.
"Reducing the search time of a steady state genetic algorithm using
the immigration operator." Tools for Artificial Intelligence, 1991.
TAI'91., Third International Conference on. IEEE, 1991.

[8] Gladwin, Dan, Paul Stewart, and Jill Stewart. "A controlled migration
genetic algorithm operator for hardware-in-the-loop
experimentation." Engineering Applications of Artificial Intelligence
24.4 (2011): 586-594.

[9] Nariyoshi, Pedro C., J. R. Deller, and Jinyao Yan. "Modified genetic
crossover and mutation operators for sparse regressor selection in
NARMAX brain connectivity modeling." Neural Engineering (NER),
2017 8th International IEEE/EMBS Conference on. IEEE,
2017.

[10] Khelifa, Meriem, Dalila Boughaci, and Esma Aïmeur. "An enhanced
genetic algorithm with a new crossover operator for the traveling
tournament problem." Control, Decision and Information
Technologies (CoDIT), 2017 4th International Conference on. IEEE,
2017.

[11] Saddam, Muhammad, Handayani Tjandrasa, and Dini Adni
Navastara. "Classification of alcoholic EEG using wavelet packet
decomposition, principal component analysis, and combination of
genetic algorithm and neural network." Information &
Communication Technology and System (ICTS), 2017 11th
International Conference on. IEEE, 2017.

[12] Yu, Zhiheng, and Chengli Zhao. "A Combination Forecasting Model
of Extreme Learning Machine Based on Genetic Algorithm
Optimization." Computing Intelligence and Information System
(CIIS), 2017 International Conference on. IEEE, 2017.

[13] Tian, Zhiyuan. "Analysis of Route Optimization Based on Genetic
Algorithm." Industrial Informatics-Computing Technology,
Intelligent Technology, Industrial Information Integration (ICIICII),
2017 International Conference on. IEEE, 2017.

[14] Liu, Chong, Wenyan Gan, and Yutian Chen. "Research on Portfolio
Optimization Based on Affinity Propagation and Genetic Algorithm."
Web Information Systems and Applications Conference (WISA), 2017
14th. IEEE, 2017.

[15] “Tensorboard Visualizing, Learning| Tensorflow” [online].
Available:https://www.tensorflow.org/programmers_guide/summarie
s_and_tensorboard

[16] Probst, Philipp, Bernd Bischl, and Anne-Laure Boulesteix.
"Tunability: Importance of hyperparameters of machine learning
algorithms." arXiv preprint arXiv:1802.09596 (2018).

[17] Ornelas, Francisco, et al. "Genetic algorithm with immigration like
strategies of diversification." Artificial Intelligence (MICAI), 2010
Ninth Mexican International Conference on. IEEE,
2010.

[18] Potts, J. Craig, Terri D. Giddens, and Surya B. Yadav. "The
development and evaluation of an improved genetic algorithm based
on migration and artificial selection." IEEE transactions on systems,
man, and cybernetics 24.1 (1994): 73-86.

[19] Wang, Gai-Ge, Bao Chang, and Zhaojun Zhang. "A multi-swarm bat
algorithm for global optimization." Evolutionary Computation
(CEC), 2015 IEEE Congress on. IEEE, 2015.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 156 --

