
Area-Efficient FPGA Implementation of Minimalistic
Convolutional Neural Network Using Residue

Number System

Nikolay I. Chervyakov, Pavel A. Lyakhov,
Maria V. Valueva, Georgii V. Valuev

North-Caucasus Federal University
Stavropol, Russian Federation

k-fmf-primath@stavsu.ru

Dmitrii I. Kaplun, George A. Efimenko,
Denis V. Gnezdilov

Saint Petersburg Electrotechnical University "LETI"
St. Petersburg, Russian Federation

dikaplun@etu.ru

Abstract—Convolutional Neural Networks (CNN) is the
promising tool for solving task of image recognition in computer
vision systems. However, the most known implementation of
CNNs require a significant amount of memory for storing
weights in training and work. To reduce the resource costs of
CNN implementation we propose the architecture that separated
on hardware and software parts for performance optimization.
Also we propose to use Residue Number System (RNS) arithmetic
in the hardware part which implements the convolutional layer of
CNN. Software simulation using Matlab 2017b shows that CNN
with a minimum number of layers can be quickly and
successfully trained. Hardware simulation using FPGA Kintex7
xc7k70tfbg484-2 demonstrates that using RNS in convolutional
layer of CNN allows to reduce hardware costs by 32% compared
with the traditional approach based on the binary number
system.

I. INTRODUCTION

Convolutional Neural Networks (CNN) is the promising
tool for solving task of image recognition. The idea of CNN is
based on human vision system. The brain performs
successively a number of recognition tasks, for example,
recognizing a familiar face in an unfamiliar environment.
CNN-based algorithms are widely used in embedded machine
vision systems which includes the solution of handwriting
recognition problems [1], face detection [2], locating [3] and
object recognition [4]. Neural networks have a number of
advantages that distinguish them among approaches to solving
problems of artificial intelligence. The main of them are
parallelization of information processing and self-learning
ability, i.e. creating of generalizations [4]. The most known
CNN realizations require a significant amount of memory for
storing weights in training and work [1], [5], [6]. This makes
the problem of searching for minimalistic realizations of CNN
relevant.

The idea of using artificial neural networks for visual
information processing was proposed in [1] to solve a problem
of automation of digit handwriting recognition. The
architecture proposed in this article was called the
Convolutional Neural Network (CNN) and its main feature
was union convolution layers and multilayer perceptron. The
evolution of this scientific idea and the development of
computer technology have led to the fact that at present the
theory of CNN and its practical application methods are

developing along the path of an extensive increase in the
number of layers of CNN. This leads to a high computational
complexity of the implementation of such systems. For
example, The architecture of network [7] showing the best
image recognition result of ImageNet database in 2010
consists about 650000 neurons, 60 million custom settings
and requires 27 gigabytes of disk space for training. In [8]
presents the development of Google, which showed the best
image recognition result of ImageNet in 2014. For image
recognition this CNN performs over one and a half billion
computing operations. This motivated Google to develop a
special tensor processor to optimize the performance of this
CNN [9]. In conclusion, modern CNN architectures are
resource intensive, that severely limits their wide practical
application.One of the way to improve CNN performance is
hardware implementation [10 - 13].

The promising tool for performance improvement of CNN
is the Residue Number System (RNS) arithmetic. The method
using Sobel filters in convolutional layer of CNN and its
FPGA hardware implementation by using RNS was proposed
in [14]. Authors demonstrates increasing of device speed and
reduce hardware costs compared by Binary Number System
(BNS) realization. The disadvantage of method proposed in
[14] is fixing the coefficients of the convolutional layer which
significantly slows down the training time of CNN. To
overcome the shortcomings of the approach from [14] we will
present in this paper the architecture of CNN which separated
on hardware and software parts. We propose to use RNS in the
hardware part which implements the convolutional layer of
CNN. We will demonstrate area-efficiency of the proposed
approach by hardware modeling using FPGA Xilinx.

The article should contain the following structural
components: Convolutional Neural Networks, background on
RNS, CNN architecture and training, simulation results and
conclusions.

II. CONVOLUTIONAL NEURAL NETWORKS

A CNN consists of an input and an output layer, as well as
multiple hidden layers. The hidden layers of a CNN consist of
convolutional layers, pooling layers, fully connected layers
and normalization layers. In this article we will use the feature

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254

extraction part consists of alternating spatial convolutional
layers and max pooling layers [5].

Suppose that the CNN input receives an image I consisting
of R rows, columns and D layers. This means that the
CNN input can be described as a three-dimensional function

),,(zyxI , where Rx0 , Cy0 and Dz0 are
spatial coordinates, and an amplitude I at any point with
coordinates),,(zyx is pixel intensity at this point. The
procedure for obtaining feature maps in the convolutional
layer can be represented in the form:

1 1 1

, ,
0 0 0

(,) (, ,)
n n D

f i j k
i j k

I x y b W I x i y j z k , (1)

where fI is the feature map, kjiW ,, are 3D-filter coefficients
for processing D two-dimensional arrays and b is bias [14].
The procedure for obtaining feature maps is shown
schematically in Fig.1.

Fig. 1. The procedure for feature maps obtaining

CNN typically use a large number of filters in the
convolutional layer. This leads to a sharp increase in the
amount of data within the network. Max pooling layer of is
used to reduce this volume. Fig. 2 shows schematically the
max pooling procedure by using m m filter mask and
stride m . The output of this layer transfers to the input of the
recognition classifier, which is organized as the traditional
multi-layer perceptron neural network.

Fig. 2. The max pooling procedure for feature map

As an experimental base, we developed a CNN for 8
patterns recognizing in the sample image database of the
University of Illinois [15]. Image classes from that dataset are

shown in Fig. 3. Fig. 4 shows example of images from one
class. The images size of database was unified to 192256
pixels using the Adobe Photoshop CS6 software by the bicubic
interpolation algorithm. 161 images from database were used
for CNN training.

Fig. 3. Image classes from database [15]

We set the main goal of minimizing the structure of the
CNN. For this purpose, we tried to use the minimum possible
number of CNN layers. In addition, we used the RNS
arithmetic instead of traditional binary arithmetic, where it was
possible.

III. BACKGROUND ON RNS
In RNS, numbers are represented in the basis of mutually

prime numbers 1,..., nm m , gcd , 1i jm m , ji called
modules. The product of all RNS modules 1 2 ... nM m m m is
called the dynamic range of the system. Any integer
0 X M can be uniquely represented in RNS as a vector

1 2, ,..., nx x x , where mod
i

i im
x X X m in accordance

with Chinese Remainder Theorem (CRT) [16].

The addition, subtraction and multiplication operations in
RNS are defined by formulas

1
1 1 ,...,

n
k km m

A B a b a b , (2)

1
1 1 ,...,

n
k km m

A B a b a b . (3)

Equalities (2) – (3) show the parallel nature of RNS, free of
bitwise shifts. Thus, the advantages of representing numbers in
RNS can be represented as follows [17].

Choosing moduli set is an important issue in RNS design.
Special type of moduli set 1 22 , 2 1,..., 2 1npp p allows to
use high-speed algorithms for addition, multiplication, forward
and reverse conversion [18], [19].

A. Binary to RNS conversion
We consider a special moduli set 1 22 , 2 1,..., 2 1npp p . It

is necessary to calculate the remainder of the division by each
of the moduli to conversion a number into RNS [16].

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 113 --

Fig. 4. Example of images belong one class from database [15]

The operation of calculating the remainder of the division
by modulo 2 p is just reading of p least significant bits of the
number. Calculating the remainder of the division by modulo
2 1p is more difficult. Let 1 2 0 .g gX X X X is an g -bits

original number. It can be divided into /s g p parts of p
bits width. To this end we complete X from the right to 0 to
the dimension 'g s p , now ' 1 ' 2 0' g gX X X X . Then

0 1 1 0,.., ,pY X X X , 1 2 1 1,.., ,p p pY X X X , ... ,

' 1 (1) 1 (1),.., ,s g s p s pY X X X are the parts of 'X . The number
'X can be represented as

2
0 1 2' 2 2 ... 2p p sp

sX Y Y Y Y . Transformations using
number-theoretic properties give the following chain of
equalities:

2
0 1 22 1 2 1

2
0 1 22 1 2 1 2 1 2 1 2 1

' 2 2 ... 2

2 2 ... 2

p p

p p p p p

p p sp
s

p p sp
s

X Y Y Y Y

Y Y Y Y

2
0 1 1 1 2 2 22 1 2 1 2 1

0 1 12 12 1 2 12 1

2
2 2 2 1 2 1 2 1

2 2 ...

2 2 1

2 1 ... 2 1

p p p

pp pp

p p p

p p

sp p
s s s

p sp
s s

Y Y Y Y Y Y Y

Y Y Y Y Y Y

Y Y Y Y

0 1 2 0 1 22 1 2 1 2 1 2 1 2 1
... ...p p p p psY Y Y Y Y Y Y

2 1psY . In this way we obtain

2 1
' pX 0 1 2 2 1

... psY Y Y Y . (4)

That is, the calculation of the remainder of the division by
modulo 2 1p is addition of p -bits numbers by

modulo 2 1p . To add by modulo 2 1p we use tree of end-
around-carry carry-save adders with modulo 2 1p Kogge-
Stone adder proposed in [18].

B. RNS to Binary Conversion
The most common method to achieve equivalent weighted

number from residues is using the CRT [20]. Computing
weighted number X form its RNS representation, i.e. (x1, x2,
…, xn), based on the moduli set {m1, m2, …, mn} is as follows:

1

1 i

n

i i im
i M

X M M x (5)

where /i iM M m and 1

i
i m

M is the multiplicative inversion

of iM modulo im for 1, 2, ,i n . In order to implement

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 114 --

CRT, the remainder of the division by a large number, i.e. M,
is required, and implementation of this operation in hardware
results in increase of area and delay.

The modification of the Chinese remainder theorem using
fractional values, namely approximate CRT, introduced for the
first time in [21] to perform sign-detection and division in
RNS. The effective hardware design of this approach is based
on compression technique of summands and Kogge-Stone
adder modulo 2N is proposed in [22]. We used that method to
implement the RNS to Binary converter in this article.

C. Convolution in RNS
RNS is most effective when performing calculations that

contain only operations of addition and multiplication. This
can be seen from formulas (2) and (3). Formula (1) shows that
convolution operation in CNN uses only these operations. This
means that RNS may be very effective for hardware
implementation of CNN convolutional layer. Unfortunately,
the difficulty of performing a comparison operation in RNS
does not allow to expect its successful application in max
pooling layer and multi-layer perceptron neural network parts
of CNN. This motivated us to propose an approach to
partitioning CNN architecture between hardware and software
parts. We propose to use hardware circuit for RNS realization
of CNN convolutional layer and to use software calculations in
remaining layers of CNN.

The coefficients kjiW ,, and bias b from formula (1) in the
trained CNN are constants. This means that convolution circuit
must implement multiplication by constants with the
summation of the results. Since we suggest using
modules 1 22 , 2 1,..., 2 1npp p in RNS that multiplication by
a constant can be implemented very effectively using the
technique described in [15]. We use that approach for
hardware implementation of CNN convolutional layer.

IV. CNN ARCHITECTURE AND TRAINING

We proposed to use the CNN architecture presented in Fig
5. The input of CNN is an RGB image of size 192256 , the
first two layers are responsible for identifying the features of
the image. The first two layers produce convolution operation
by 8 filters, the size of filter mask is 333 , with stride 3 .
The result of calculations of the first layer is 8 feature maps in
size 6485 . The second layer performs 22 max pooling
operation with stride 2. 8 feature maps in size 3242 are the
outputs of the second layer and connected to the inputs of the
last two layers which are responsible for the image
classification. The third layer consists of 10 neurons, and
fourth one consists of 8 neurons, each of them corresponds to
a certain class.

The convolutional operation takes most part of working
time in network. To increase speed of work we split up the
architecture of CNN on hardware and software parts. The
convolutional layer is implemented in hardware on FPGA by
using calculations in RNS. Because comparison operation and
non-lineal activation function are difficult to implement in
RNS so the max pooling layer and the fully connected network
are realized in software part.

Neural Pattern Recognition Toolbox performed the CNN
training in Matlab R2017b. Calculations were made on PC
with CPU Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz,
4.00GHz, memory of RAM volume 16,0 GB and 64-bit
operation system Windows 10. 161 images belonging to 8
different classes were used for training [15]. The neural
network was trained for 30 iterations during 57 seconds. Fig. 6
shows a graph of the learning process generated by Matlab
software. The results of work of CNN are shown in Fig. 7.

An example of filter mask from convolutional layer is
shown in Table I. For the hardware implementation, we
quantized the values by 12 bits. The obtained filter coefficients
are also given in Table I.

Fig. 5. The proposed CNN architecture

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 115 --

Fig. 6. The CNN training report from Matlab software

Fig. 7. Results of work of CNN

VI. SIMULATION RESULTS OF CONVOLUTIONAL LAYER
HARDWARE IMPLEMENTATION

Hardware simulation was implemented on FPGA Kintex7
xc7k70tfbg484-2 in Xilinx Vivado 16.3. We used “High
Performance Optimized” modeling parameter for simulations.
The goal of simulation was comparison the usage of BNS and
RNS.

The convolution operation was simulated by different
modules of the form 2 p and 2 1p . The results are presented

in Table II and Fig. 8. and shows that circuit delay varies from
8,721 ns to 16,035 ns.

Taking into account the values of the quantized filter
coefficients, and the need to represent negative numbers in
RNS we obtained the condition 278970M for RNS
dynamic range. Use of this condition as well as data from
Table 2 allowed us to choose two moduli sets 5 6 82 1, 2 1, 2
and 3 4 5 72 1, 2 1, 2 1, 2 for simulation of full RNS system
containing Binary to RNS converter, RNS convolution and
RNS to Binary converter.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 116 --

TABLE I. AN EXAMPLE OF 3D-FILTER MASK FROM CONVOLUTIONAL LAYER
OF TRAINED CNN

Layer Filter mask Quantized filter
mask

R

0.008708132 -0.01040934 0.00319623

0.01531038 -0.01347609 0.006832784

0.02441053 0.003114703 0.008579108

36 -42 14
63 -55 28

100 13 36

G

-0.008610572 -0.01240873 -0.00146828

0.006109328 -0.005821416 -0.0116995

0.001523695 0.01010766 -0.02120716

-35 -50 -6
26 -23 -47
7 42 -86

B

-0.00484508 0.0003131653 0.003700315

0.00084957 -0.01582666 -0.02015062

-0.00416168 -0.004977863 0.003042456

-19 2 16
4 -64 -82

-17 -20 13

Bias -0.000331978 -1

Fig. 8. Delay of convolution operation for different moduli values

TABLE II. DELAY OF CONVOLUTION OPERATION FOR DIFFERENT MODULI

Moduli Delay, ns

22 1 8.721
32 1 9.378
42 1 12.983
52 1 14.496
62 1 14.917
72 1 16.035

72 12.960
82 14.994

Taking into account the values of the quantized filter
coefficients, and the need to represent negative numbers in
RNS we obtained the condition 278970M for RNS
dynamic range. Use of this condition as well as data from
Table 2 allowed us to choose two moduli sets 5 6 82 1, 2 1, 2

and 3 4 5 72 1, 2 1, 2 1, 2 for simulation of full RNS system
containing Binary to RNS converter, RNS convolution and
RNS to Binary converter.

Simulation results obtained by using BNS and RNS are
presented in Fig. 9. Simulation shows that using RNS with
moduli set 5 6 82 1, 2 1, 2 allow to reduce hardware costs

by 32% and using moduli set 3 4 5 72 1, 2 1, 2 1, 2 by
29.5% compare with BNS. This allows us to conclude that the
use of RNS for CNN convolutional layer hardware
implementation is more effective in area compared to BNS
implementation.

Fig. 9. Simulation results of convolutional layer hardware realization: (a) delay; (b) number of occupied LUTs.

VII. CONCLUSIONS

The paper presents a method of hardware implementation
of CNN for pattern recognition using computations in RNS.
The minimalistic CNN configuration includes the
convolutional layer, the max pooling layer and the recognition
classifier, which is organized as the traditional multi-layer
perceptron neural network. The hardware simulation of
convolution operation showed that using the proposed method

based on RNS with special moduli allows to reduce hardware
costs by 32% in comparison with BNS implementation. A
generalization of this result to cases of large filter masks
requires further practical investigations. The research results
may be applied in the area-efficient development of video
surveillance systems, for recognition of handwriting, faces,
objects and location.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 117 --

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio and P. Haffiner “Gradient-based
learning applied to document recognition,” Proc. of the IEEE, Vol.86.
No. 11, 1998, pp.2278-2324.

[2] M. Sankaradas, V. Jakkula, S. Gadami, S. Chakradhar, I. Duranovic,
E. Cosatto and H.P. Graf “A massively parallel coprocessor for
convolutional neural networks,” 20th IEEE International Conference
on Application-specific Systems, Architectures and Processors
(ASAP2009), 2009, pp.53-60.

[3] M. Peemen, A.A.A. Setio, B. Mesman and H. “Corporal memory
centric accelerator design for convolutional neural networks,” 31st
International Conference on Computer Design (ICCD2013), 2013,
pp.13-19.

[4] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun and E.
Culurciello “Hardware accelerated convolutional neural networks for
synthetic vision systems,” Int’l Symp. on Circuits and Systems
(ISCAS2010), 2010, pp.257-260.

[5] H. Nakahara and T. Sasao “A deep convolutional neural network
based on nested residue number system,” 2015 25th International
Conference on Field Programmable Logic and Applications (FPL),
London, 2015, pp.1-6.

[6] J. Fan, W. Xu and Y. Wu “Human Tracking Using Convolutional
Neural Networks,” IEEE Transactions on Neural Networks, VOL. 21,
NO. 10, OCTOBER 2010, pp.1610 -1623.

[7] A. Krizhevsky, I. Sutskever, G.E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Advances in neural
information processing systems 25 (2), 2012.

[8] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, 2015, pp. 1-9.

[9] N. Jouppi, C. Young, N. Patil and D. Patterson, "Motivation for and
Evaluation of the First Tensor Processing Unit," in IEEE Micro, vol.
38, no. 3, pp. 10-19, May./Jun. 2018.

[10] E. Köse and M. E. Yalçın, "Emulating CNN with template learning
on FPGA," 2017 European Conference on Circuit Theory and Design
(ECCTD), Catania, 2017, pp. 1-4.

[11] Gan Feng, Zuyi Hu, Song Chen and Feng Wu, "Energy-efficient and
high-throughput FPGA-based accelerator for Convolutional Neural
Networks," 2016 13th IEEE International Conference on Solid-State
and Integrated Circuit Technology (ICSICT), Hangzhou, 2016, pp.
624-626.

[12] M. Bettoni, G. Urgese, Y. Kobayashi, E. Macii and A. Acquaviva, "A
Convolutional Neural Network Fully Implemented on FPGA for
Embedded Platforms," 2017 New Generation of CAS (NGCAS),
Genova, 2017, pp. 49-52.

[13] T. Manabe, Y. Shibata and K. Oguri, "FPGA implementation of a
real-time super-resolution system with a CNN based on a residue
number system," 2017 International Conference on Field
Programmable Technology (ICFPT), Melbourne, VIC, 2017, pp.
299-300.

[14] Chervyakov, N.I., Lyakhov, P. A., Valueva, M. V. "Increasing of
Convolutional Neural Network Performance Using Residue Number
System" International Multi-Conference on Engineering, Computer
and Information Sciences (SIBIRCON), 18-22 September 2017, pp.
135-140.

[15] F. Rothganger, S. Lazebnik, C. Schmid and J. Ponce “Object
Recognition Database” [Electronic resource] – Access mode:
http://www-cvr.ai.uiuc.edu/ponce_grp/data/objects.

[16] A. Omondi, B. Premkumar “Residue Number Systems: Theory and
Implementation,” Imperial College Press., 2007, pp. 296.

[17] G.C. Cardarilli, A. Nannarelli and M. Re “Residue number system for
low-power DSP applications” // Proc. 41st Asilomar Conf. Signals,
Syst., Comput. 2007.pp. 1412 - 1416.

[18] H.T. Vergos, G. Dimitrakopoulos “On Modulo 2^n+1 Adder
Design,” IEEE Transactions on Computers, Vol 61, No.2, 2012, pp
173-186.

[19] P.M. Kogge, H.S. Stone “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations” IEEE
Transaction on computers, Vol. C-22, No. 8, 1973, pp 786-793.

[20] Chervyakov N.I., Molahosseini A.S., Lyakhov P.A., Babenko M.G.,
Deryabin M.A. “Residue-to binary conversion for general moduli sets
based on approximate Chinese remainder theorem,” International
journal of computer mathematics, Vol. 94, No. 9, pp. 1833–1849,
2017.

[21] C.Y. Hung and B. Parhami, “An approximate sign detection method
for residue numbers and its application to RNS division,” Computers
and Mathematics with Applications, vol. 27, no. 4, pp. 23-25, 1994.

[22] R. de Matos, R. Paludo, N. Chervyakov, P. A. Lyakhov and H.
Pettenghi, “Efficient implementation of modular multiplication by
constants applied to RNS reverse converters,” 2017 IEEE
International Symposium on Circuits and Systems (ISCAS),
Baltimore, MD, 2017, pp. 1-4.

__PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

-- 118 --

