PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

Infiniviz: Taking Quake 3 Arena on a Large-Scale
Display System to the Next Level

Rudolfs Bundulis, Guntis Arnicans

University of Latvia
Riga, Latvia
rudolfs.bundulis@lu.lv, guntis.arnicans@lu.lv

Abstract—The authors of this paper have previously
presented a large-scale display system called Infiniviz in other
publications. Infiniviz attempts to improve network bandwidth
consumption and computational performance compared to other
existing large-scale display systems. Since the previous
publications have been made in early development stages of
Infiniviz, only the overview of the software architecture and
details of hardware implementation have been presented so far.
This paper contains a real-life test of Infiniviz running Quake 3
Arena at a resolution of 9600 x 5400 at 24fps. Also, in this paper,
the authors have tried to match their results to what has been
published by other researchers to provide the foundation for the
claims of improvement.

I. INTRODUCTION

Leveraging the display limits imposed by hardware or
software limitations of a single computing system is one of the
key factors driving the research in the area of large-scale
display systems. The main focus in particular research can
differ — some systems focus on ease of collaboration, others on
maximizing the overall result regarding display resolution, fps,
and physical size. However, all of the research mainly
encounters similar problems.

Let us define a large-scale display system as a system with
two distinct components - the content producer and the content
visualizer.

The content producer can be anything from a single piece
of software or hardware (most commonly a standard PC
system) to an interconnected network of such or more complex
entities. A good example of the latter case would be a scenario
where a group of people wants to collaborate by showing the
content of their PCs on a virtualized large-scale display.

The content visualizer is a system capable of accepting
some kind of logical or rasterized representation of the content
and displaying it in high resolution (higher than what can be
achieved with a conventional GPU).

With such definition, we can also look at a standard PC
system as a large-scale display system, where the content
producer is the operating system and the content visualizer is
the GPU. In such case the system is usually limited by the
maximum performance of the GPU, the number of outputs on
the GPU and their resolutions.

Historically the visualization capabilities have been the
ones imposing the limits. Initially, this issue has been tackled
by creating more complex visualization components to be able
to handle the produced content. This indirectly imposes a need

to create logic to expose this complex display system to the
producer in a standardized and convenient way.

The second chapter of this paper covers existing research in
the large-scale display area. The authors of this paper chose the
most cited and referenced publications, thus not all existing
research is mentioned. The chapter briefly summarizes how
each of the researchers has tried to solve the complexity issues
and overcome the performance limitations.

In the third chapter, the authors present their own large-
scale display system called Infinviz. The chapter contains a
brief description of the architecture and two hardware setups
that Infiniviz has been run on so far.

The fourth and fifth chapters contain performance
measurements of Invinifiz running Quake 3 Arena at a
resolution of 9600 x 5400 and analysis of the obtained results.

The sixth chapter contains conclusions regarding the
obtained results and other published research.

II. LARGE SCALE DISPLAY SYSTEMS

To understand the key challenges present in the area of
large-scale display systems we should first look at the existing
research.

Deep View [1] was an attempt to overcome the maximum
display resolution of 1600 x 1200 pixels at that time (2002) by
creating a cluster of rendering nodes connected to a tiled
display driven by IBM’s Scalable Graphics Engine (SGE).
SGE was a custom hardware system capable of accepting data
over gigabit ethernet connections and rendering that data to a
digital signal on DVI ports. To achieve the desired
transparency to the content producer, the authors used
Chromium [2], an OpenGL implementation that is exposed as a
standard OpenGL driver to the content producer but internally
divides the workload on to a clustered set of rendering nodes to
achieve greater performance. The drawback was that this
system could only visualize data coming from compatible
content producers.

SAGE [3] allowed any software to stream pixel data to a
virtualized large-scale display by using a custom library named
SAIL (Fig. 1). It can be argued whether such approach where
each possible software that wants to use SAGE needs to
integrate with SAIL is better or worse than allowing existing
OpenGL applications to seamlessly work with a large-scale
display system like in Deep View. Also, the DXT pixel
compression used in SAGE has a fixed ratio of 6:1, which is
smaller than the compression ratio of popular image

ISSN 2305-7254

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

Tiled Display ul ul
client client
SAGE SAGE SAGE SAGE & D
Receiver Receiver Receiver Receiver %
FreeSpace
Manager
SAIL SAIL SAL | (=)
App1 App2 App3

«—— Pixel Stream <{===) SAGE Messages

SAIL : Sage Application Interface Library
Fig. 1 SAGE architecture

compression codecs like JPEG. But compared to JPEG, DXT
requires less computational power. Thus it is hard to state that
the choice of DXT was good or bad since one can always argue
whether the computational power required for the compression
is more or less important than the required network bandwidth.
Even with these points open for debate, SAGE is a very
important step in the area, since it was the first large-scale
display system with a major focus on collaboration. Since the
architecture natively allows multiple pixel sources to be plotted
on a virtualized display simultaneously, it creates a natural
environment for collaboration. This inspired and drove a
significant amount of further collaboration focused research.

The authors of CGLX [4] argued that both SAGE and
Chromium are not scalable enough because SAGE relies on a
high bandwidth network to transmit the pixel data and
Chromium due to the ineffective workload distribution due to
the sort-first approach and the logical representation of data in
the OpenGL command stream. The sort-first approach
distributes the rendering workload to rendering nodes
responsible for the tile that will display the content. However,
there are many cases where dynamic changes in content can be
handled more efficiently by splitting the rendering of the
content for a single tile to multiple parallel rendering nodes and
then reassembling it together. The paper shows significant
performance improvement over Chromium. Nevertheless,
CGLX requires applications to integrate with their client APIs,
even though as stated by the authors adapting existing OpenGL
applications is easy.

Equalizer [5] was an attempt similar to CGLX. The authors
also pointed out that the rendering workload distribution and
data representation in Chromium might not be optimal. The
provided results were again better than Chromium in the given
test cases.

The authors DisplayCluster [6] tried to prove that the
approach used by SAGE is somewhat better since it creates a
natural windowing and collaboration environment
Chromium, CGLX, and Equalizer are not limited to mostly
focus on a single content producer. Meanwhile SAGE allowed
presenting content from multiple sources in parallel on a single
homogeneous surface. DisplayCluster tried to solve the

92

Content Visualizer

' ~\

' N\ ™ ~N [R
Content | : :] I Tile
Producer [Ny : g : Z
— — : ~ " : E C N/
) = = : = SRR
: I ‘ = :
Content RN =) % 2) £ | Tile
Producer | : S | =z : = :
| £ | |22 A -
— “ = £ — N
b] :
Content |/ 2 Ny Tile
Producer | : : §
_ J | VA N ARG J
Chromium SGE
SAGE]
's -~ -
CGLX
- ~
Equalizer
| v
g \
DisplayCluster
\ J

Fig. 2 Categorization of existing large-scale display systems

bandwidth requirements of SAGE by utilizing a SIMD
accelerated JPEG compression.

The large-scale display systems mentioned above can be
categorized as seen in Fig. 2. Generally, they all either provide
their own or integrate with existing 2D / 3D drawing/rendering
APIs and provide rendering and/or windowing engine.

The main reason for mentioning this existing research in the
large-scale display system area in the context of this paper is to
point out the complexity of the content visualizer component.
In the case of Deep View, this was a network of rendering
nodes connected to the IBM’s SGE. In the case of SAGE, this
was as a system consisting of SAGE receiver nodes, a free
space manager and the SAIL driven client applications. CGLX,
Chromium, and Equalizer utilized a rendering cluster that
required efficient workload distribution algorithms and
optimized the logical representation of the content.
DisplayCluster provided its own windowing engine.

Moreover, the main need for such complexity was to
overcome the limitations of the GPUs inside the content
producers.

Currently, this balance has shifted - the GPUs are becoming
more and more powerful. In the same time, hardware evolution
and virtualization allow escaping the thought paradigm where a
display system is limited to a few GPUs. New technologies
allow moving the GPUs to the content producer component
leaving the content visualizer with the sole task to efficiently
present the content regarding FPS and bandwidth required for
the content.

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

This trend can be seen in several recently developed large-
scale display systems. The Reality Deck [7] is a 1.5 gigapixel
display surface consisting of 18 hardware nodes each with 4
GPUs, most of which have 24 displays connected. Even though
Reality Deck wused Equalizer and other visualization
frameworks for sending the content over to the display nodes
from the head node it is still important that the system had no
complex, nonstandard hardware components.

The work done by Kim et al. [8] addresses the issue of
efficiently managing multiple GPUs in a large scale display
system. The main focus of the work is to address the issue of
parallel rendering operations decreasing the performance of the
GPU. Such research further enables the use of standard PC
systems with multiple GPUs to drive large-scale displays. If for
example there was a system with a GPU that could drive an
unlimited amount of displays to create a large homogeneous
display surface it could suffer from multiple client applications
drawing their separate portions with very short intervals. The
issue arises from the traditional implementation of window
managers in operating systems, where only a single GPU is
used to render content. The authors address this issue by
creating a custom client-side driver which abstracts the
underlying GPUs. This client-side driver together with a
server-side driver and a window compositor allow splitting the
content produced by the clients efficiently to the GPUs
responsible for displaying the particular area.

From the quick overview given previously, we can outline
several key challenges that have driven the research in the area
of large-scale display systems throughout the time.

Limitations imposed by the connection media. As stated
by the IBM research report [9] one of the reasons for the
development of IBMs SGE was a limitation on DVI cable
length. Thus, raw pixel data transmission over Ethernet was
deemed to be more effective. Further on SAGE tried to
optimize the needed ethernet bandwidth by using a smarter way
of representing the pixels. An alternate solution to reduce the
ethernet bandwidth was to transmit a logical representation of
the content — e.g., OpenGL texture data and rendering calls as
done by Chromium. The authors of the Equalizer found the
approach of Chromium to be suboptimal and made their own
custom representation of the content data. Citing their paper:
“The problem comes in when the OpenGL stream is large in
size, due to not only containing OpenGL calls but also the
rendered data such as geometry and image data. Only if the
geometry and textures are mostly static and can be kept in
GPU memory on the graphics card, no significant bottleneck
can be expected as then the OpenGL stream is composed of a
relatively small number of rendering instructions. However, as
it is typical in real-world visualization applications, display
and object settings are interactively manipulated, data and
parameters may change dynamically, and large data sets do
not fit statically in GPU memory but are often dynamically
loaded from out- of-core and/or multiresolution data
structures. This can lead to frequent updates not only of
commands and parameters which have to be distributed but
also of the rendered data itself (geometry and texture), thus
causing the OpenGL stream to expand dramatically.
Furthermore, this stream of function calls and data must be
packaged and broad- cast in real-time over the network to
multiple nodes for each rendered frame. This makes CPU
performance and network bandwidth a more likely limiting

93

factor. While preserving a minimally invasive API, the novel
proposed system is better aimed at scalability as the actual
data access is decentralized in the distributed rendering
clients.”

Seamless integration. Large-scale display systems which
are not able to display content from software running on
standard operating systems would require lesser their adoption.
Exposing them via standardized APIs like OpenGL instead of
custom libraries enables transparency from the point of view of
the content provider. Even though as mentioned before there
are solutions that act as an OpenGL driver most large-scale
display systems still require software integration of their
custom client libraries.

Efficient use of hardware. Initially to overcome the
performance bottlenecks of the GPUs researchers tried to use
clustered rendering systems, as shown by the Deep View and
the Reality Deck. One can argue, that such systems may suffer
from underutilization of individual nodes. In contrast, research
to allow efficient use of multiple GPUs inside a single
hardware system has been done. As a result, software solutions
that allow abstracting them and efficiently distributing the tasks
among them have been developed. Such solutions enable easily
turning existing computer systems into large-scale display
systems.

As noted earlier, limitations imposed by GPUs have been
part of the factors driving the research in the area of large-scale
display systems. However, in parallel to the scientific research,
GPU vendors have also addressed the same issue. For example,
the fact that traditionally GPUs have a fixed number of
physical display outputs and there is a limited amount of GPUs
that can be fitted into a single motherboard, the total number of
outputs for a given PC is limited. Since in most cases the
number of physical display outputs usually increases together
with the overall power and price of the GPU, in a scenario
where a large display surface with a high resolution is needed
for non-expensive rendering operations, a lot of GPU resources
may end up unutilized. Thus, GPU vendors have expanded
their products with different virtualization technologies, for
example — NVIDIA vGPU. NVIDIA vGPU is mostly targeted
to provide multiple virtual GPUs within a single physical GPU
to allow efficiently utilizing a single GPU for multiple
workstations in the form of virtual machines. Still, NVIDIA
vGPU can also be used to create a single vGPU with a large
number of virtual display outputs without actually having a
single physical display output, thus removing the hardware
limitations mentioned above.

III. INFINIVIZ

A. Introduction to Infiniviz

The authors of this paper have previously presented a large-
scale display system named Infiniviz [10][11] in their previous
publications. It differs from other systems described in the
introduction by achieving a fully seamless integration with
existing software.

Infiniviz is built upon virtualization. The architecture of
Infiniviz is given in Fig. 3. A host Windows/Linux or MacOS
operating system can run the Infiniviz software stack which
internally uses VirtualBox to run the any required operating
system that acts as the content producer. VirtualBox exposes a

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

Tiled Monitor Wall
DN # SR DN 2
Display Node S
DN 1
Renderer ; AE H—
H.264 - s —
decoder s DN 4
2
Switch
N
Y
Hardware Ethernet
H.264 encoder
K 4
Host Operating System L’

Framebuffer Manager

[TH264
"| encoder

Virtual Machine
Y

Guest Operating System

[B

A < > vlv;;;l.itor 3
lAppIication 1J IApplication 2|

»|vMonitor 1

»{vMonitor 2

Fig. 3 Infiniviz architecture [11]

virtualized GPU to the guest operating system which matches
the resolution and size of the physical tiled display surface. The
authors initially compared VirtualBox with virtualization
solutions available from the GPU vendors [12], but chose
VirtualBox due to the fact that it was open-source and provided
the largest overall resolution for the virtualized display surface.
The Infiniviz software stack splits the content rendered in the
framebuffer of the virtualized GPU into tiles corresponding to
the physical tiles of the display surface. Each of these parts is
then encoded into a video stream with the H.264 video codec
and sent over to a Raspberry Pi unit, attached to the physical
display. The Raspberry Pi unit decodes the stream and renders it
onto the physical display.

The existing publications in the area contain debates on
whether a sort-first or sort-last approach is better, and for what
use cases. Sort-first means that the image is first split to
individual workloads (usually corresponding to the tiles) and
then rendered and/or encoded. Sort-last means that the partition
of the work in workloads is based on contents (e.g, rendering an
equal amount of primitives and then combining the final image
for each tile from possibly multiple sources). Infiniviz
implements a sort-first approach, which is most suited for the
scenario where an already compressed content is sent to the
rendering nodes.

To reduce the resource consumption of the video encoding
Infiniviz utilizes hardware-accelerated video compression.
Currently, NVIDIA NVENC and Intel Quick Sync are
supported. The authors of this paper previously already

94

published research comparing hardware accelerated H.264
encoding to CPU based H.264 encoding with FFmpeg and the
algorithms used in other large-scale display — DXT (SAGE) and
JPEG (DisplayCluster) [13].

Such approach has several benefits. Due to virtualization,
Infiniviz requires no software integration. Any existing software
can be run inside the guest operating system using the native
drawing APIs. There are limitations on Direct3D and OpenGL
version support, but that is something that can be added to
VirtualBox to achieve full compatibility with any software.
Next, by using hardware accelerated H.264 encoding the
conversion of pixel data to a video stream with much lower
bandwidth does not require much CPU resources thus reducing
the computational overhead of the system and allowing the
guest operating system to claim more resources. By using RTP
protocol for the transmission, the Raspberry Pi display nodes
can be replaced with other either embedded systems or RTP
display capable TV sets. Thus, such design enables more
flexibility in deploying Infiniviz in existing environments.

B. 3D acceleration in Infiniviz

A significant amount of content that requires the use of
large-scale display systems is 3D based - various kinds of real-
time 3D simulations, CAD tools, etc. Thus, the interoperability
of the large-scale display system with industry standard 2D/3D
APIs is an important factor in its design. As already stated in
the paper, several other large-scale display systems have been
implemented as OpenGL middleware by exposing themselves
to the content provider software as a standard OpenGL driver
or advertise easy transformation of existing OpenGL based
software to their client APIs. OpenGL is popular due to its
portability across operating systems.

Nevertheless, Direct3D is also a major API which has not
been targeted by large-scale display systems so far. Since
Infiniviz uses VirtualBox for virtualization of the guest
operating system the content provider software, it can use the
3D API virtualization capabilities built in VirtualBox.
Currently, VirtualBox supports Direct3D 8/9 and OpenGL 2.1
(given the underlying hardware supports at least OpenGL 2.1).
Both APIs are forwarded to the underlying hardware —
Direct3D by being translated to OpenGL and OpenGL - in a
direct manner. An interesting fact is that VirtualBox uses
Chromium internally to dispatch the OpenGL calls from the
virtualized GPU to the host GPU. However, again, this is
simply the current state of implementation in VirtualBox and
can be subject to change when/if better alternatives are
available.

For example, this means that Infiniviz can run Quake 3
Arena, which was also one of the features proudly presented
by the authors of the Deep View. At the time Deep View was
developed, the standard display resolution was 1600 x 1200
(1.92 Megapixels), and the Deep View allowed running Quake
3 Arena at a resolution of 3840 x 2200 (8.45 Megapixels).
Infiniviz can run Quake 3 Arena at a resolution of 9600 x 5400
(51.8 Megapixels) with an average of 24 FPS.

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

Fig. 4 LAN inter-connected Raspberry Pi devices at the back of the display wall

Fig. 5 Display wall server - Gigabyte Brix Pro mini PC

B. Infiniviz prototypes

After defining the architecture the authors proceeded to
build an actual working system, that would be able to run
Infiniviz. A tiled display wall consisting of 25 22” DELL
LCDs arranged in a 5x5 matrix was constructed. Each of the
displays was driven by a Raspberry Pi model B. All the
Raspberry Pi devices are connected with a server that runs the
Infiniviz software stack via an HP Gigabit Ethernet switch
(Fig. 4).

Initially, the authors assembled a server that was meant for
displaying mostly static content and did not require significant
investment in hardware [10]. The server running the Infiniviz
software stack was an Intel Core 17 4770R CPU (4 physical
cores or 8§ virtual cores at 3.2 GHz) with Intel Iris 5200 Pro
GPU, 12 GB of RAM and Windows 8.1 (Fig. 5). The authors
used Intel Quick Sync as the hardware accelerated video
encoder.

Authors successfully used common (e.g., Google Chrome,
PDF viewer) and domain-specific (e.g., video surveillance)
desktop software applications thus demonstrating that this
approach does not force software developers to write display
wall aware software — everything that works on a desktop PC
works the same way in the virtualized display wall. For
example, the authors used Chrome web browser to visualize
large graphs that would not fit in a standard 1920x1080
display (Fig. 6).

However, due to the limitations of Intel Quick Sync and
the fact that it shares resources with the CPU, the frame rate
was low in scenarios where the content was redrawn very

95

Fig. 6 Browser based visualization of large graphs inside a VM running on
Infiniviz

often or the software producing the content required
significant CPU resources.

Thus the authors moved on to evaluate NVIDIA NVENC,
which is an H.264 encoder running solely in the GPU. This
would prevent the video encoding from taking away CPU
resources from the virtualized OS. Authors also decided to
move away from Windows to Linux as the host platform
because of integration problems with VirtualBox found on
Windows.

Due to the massive parallelism in the Infiniviz software,
the CPUs were upgraded to support more parallel encoding
threads. The second Infiniviz server has 2 Xeon e5-2630 2.60
GHz CPUs (12 physical cores or 24 virtual cores) and two
NVIDIA Quadro P4000 GPUs used for the video encoding.
Only one of the GPUs was being used for the actual OpenGL
rendering workload. This system is used for all current
research on Infiniviz and the measurements presented further
on in this paper.

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

Iv.

Given the major dominance of 3D based content in the
publications presenting other large-scale display systems, the
authors of this paper chose to use Quake 3 Arena as test
benchmark. Quake 3 Arena was also chosen to support the
claim of seamless software integration — this demonstrates that
Infiniviz can run an existing desktop software without
modifications. Also, this choice should enable existing and
future research to produce comparable measurements. Since
Quake 3 Arena is OpenGL based it should be out-of-the-box
compatible with the systems exposing themselves as OpenGL
drivers. The source code of Quake 3 Arena has been released
under the GPL license by Id Software thus it can also be
modified to support the systems with custom client APIs.
Moreover, a sentiment for Deep View also played some role.

INFINIVIZ PERFORMANCE MEASUREMENTS

The test run was conducted by starting a Windows 7 guest
virtual machine with a virtualized GPU at a resolution of 9600
x 5400. This resolution matches the physical tiled display wall
available at the premises. The tiled wall consists of 25 22”
DELL LCDs arranged in a 5x5 matrix (Fig. 7).

Fig. 7 Quake 3 Arena inside a VM running on Infiniviz

The authors added profiling functionality on both the
server and the render nodes which collects data samples of
CPU usage and network bandwidth with an interval of one
second.

The actual test run, results of which are presented in the
next chapter, consisted of 1) launching the Windows 7 virtual
machine, interacting with mouse to launch Quake 3 Arena
(Fig. 8, time segment A), 2) selecting a map (Fig. 8, time
segment B), 3) playing for a short period of time (Fig. 8, time
segment C), and 3) then exiting and shutting down the
machine (Fig. 8, time segment D). A total of 170 data samples
covering around two and a half minutes were collected.

V. RESULTS

Figure 8 presents the performance measurements gathered
during the test run described in the previous chapter. Both
frame rate and resource consumption metrics are available.

The upper chart shows frame rates during the test run.
Infiniviz was configured to run at a fixed frame rate of 25
frames per second per tile. This means that if VirtualBox did

96

update a region corresponding to a single tile more frequently
than in 40ms, only the last changes would be encoded. This
configuration explains the difference between both of the lines
— in some regions of the graph the VirtualBox frame rate is
higher because the updates were more frequent than 25 frames
per second.

On the other hand, if no changes were made by
VirtualBox, no new frames were encoded to avoid wasting
bandwidth or computational resources. This explains the low
frame rates on the left side of the chart since while Windows
was loading and only mouse and keyboard interaction was
used to locate Quake 3 Arena and launch it, updates by
VirtualBox were infrequent.

Overall the fact that the lines are quite close shows that the
Infiniviz software was performing quite well in the given test.
Authors also used the built-in functionality of Quake 3 Arena
to display the frame rate from inside the game. Quake 3 Arena
reported an average of 24 frames per second. With 25 tiles to
encode the video for this would give an average of 600 frames.

The upper chart shows that the actual frame encoding rate
was quite close to this number, even though the drops and
peaks show that further stability tuning is required. In an ideal
case the line showing VirtualBox frame rate would have peaks
and drops with an average of 600 frames (since the Infiniviz
environment cannot control the software inside the virtual
machine and how often it draws), but the line showing
Infiniviz encoding rate would stay steady on 600 frames.

The lower chart shows network bandwidth (the bandwidth
required for all 25 video streams) and CPU consumption
during the test. The network bandwidth chart shows that with
static content (Windows 7 desktop environment as well as the
menu of Quake 3 Arena) the required bandwidth is low and
would fit in even a 100 Mbit ethernet network. Thus, Infiniviz
could serve as a remote collaboration environment where the
whole screen is not updated frequently. When the game starts
the rendering loop, the bandwidth raises to an average around
300 Mbps (12 Mbps per tile) with a peak at 325 Mbps. The
CPU measurements show that even more CPU consuming
software could be run inside the virtual machine since the
CPU is not fully utilized.

One of the biggest issues that prevent the authors of this
paper from a thorough comparison of the Infiniviz large-scale
display system with other published research is the lack of
diversified measurements in other published research. Even
though, as stated in the introduction, there are at least two key
factors — performance overhead and required transmission
medium bandwidth — that the other large-scale display systems
try to solve, only a few metrics are used to describe the
achieved results. For an objective comparison among the
large-scale display systems, measurements covering at least
these two factors are required. Technical specifications of
these systems should also be given precisely enough to allow
scaling and comparing the performance results.

Another issue is the lack of a portable test environment. As
mentioned in the introduction, while some of the large-scale
systems act as drivers for the popular OpenGL API others
require client software to integrate with their API libraries to

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

Frame updates from VirtualBox vs frames encoded by Infiniviz server

800

Zzz ,‘,vl"\\',""l,'\l-/\/\/
500 !

400
300
200

100

Number of frames

20 40 60 | 80

Number bf frames updated by \j/irtuaIBox

350 |
300
250 |
2 200
s
S 150 |
100 | ; -
50 ‘

- Notatn, !
exlonas L !
P ~ (Y

"
i)

40 60’ 80

A

Fig. 8 Performance measurements

be able to present the content. Since OpenGL is a cross-
platform API, a fixed test scene/software can be used to
compare OpenGL compatible solutions on different platforms.
Still, some authors prefer using browser-based WebGL tests,
which make the comparison harder. Even though WebGL is a
web browser-based abstraction over OpenGL, web browsers
have implementation differences among them and even among
several versions of the same browser. Thus, a very precise
description of the test setup must be given for others to be able
to produce comparable measurements.

Even if these constraints are met, it is not possible to
compare such results with large-scale display systems with
custom client API libraries. Thus, a mixed test environment
that would be able to produce constant test content for
OpenGL and the custom API libraries should be available. The
authors of this paper will put further effort into developing a
test environment able to cover as many of the published large-
scale display systems as possible. Because currently, the lack
of published performance results, is one of the main results to

Seconds

Arna =N N e AN T

Infiniviz server netwr;Jrk throughput (Mbps)

97

)
“\ I N ;’
-\I-\,\\\I\"

LTV
v v

100 120 140 160

Number of frames encoded by Infiniviz

Newtork bandwidt?h and CPU consumption in the Infiniviz server

100

80

60

40

% of CPU usage

e

20

100 120 160

140

Seconds

make strong arguments in favor of the Infiniviz architecture
and its benefits in comparison with other large-scale display
systems.

VL

In this paper the authors have presented through
measurements of Infiniviz by running Quake 3 Arena demo
with an averaged 24 FPS at a resolution of 9600 x 5400 inside
a Windows 7 virtual machine in VirtualBox. Both CPU usage
and network bandwidth usage during the test run have been
provided. During the test run the authors sampled the CPU and
network bandwidth usage data once per second on both the
server running VirtualBox and encoding the video streams and
on the Raspberry Pi systems rendering the streams once per
second. The test run includes a full lifecycle of the virtualized
operating system - startup, running Quake 3 and shutdown.
This data should enable other researchers to perform further
comparisons of their systems to Infiniviz.

CONCLUSION

PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

One of the few systems that have enough published
research data for the authors of Infiniviz to make the
comparison is DisplayCluster. The system was built in 2008
and research was published in 2012. The authors of the
publication stressed the vast improvement over SAGE
regarding the required network bandwidth. This was mainly
due to using lossy JPEG compression (DisplayCluster used
SIMD accelerated libjpeg-turbo). In comparison, SAGE uses a
lossy pixel based DXT compression algorithm with a fixed
compression ratio 6:1 that was originally developed by S3
Graphics. Even though the authors of DisplayCluster have not
published the test scenes or data used, they have provided
network bandwidth requirements for given frame rates. The
published results show that DisplayCluster was able to stream
12.5 FPS at a resolution of 48 megapixels with a network
bandwidth of around 20 MB/s and 10.4 FPS at a resolution of
64 megapixels with a network bandwidth of around 26 MB/s.

The results presented in this paper cannot be directly
compared to DisplayCluster since the resolutions do not match
directly. However, if an approximation is used, Infiniviz
shows better performance, since Infiniviz was able to display
52 megapixels with an average of 24 FPS under a 3D
rendering load from Quake 3 Arena. Taking the 12.5 and 20
FPS values for 48 and 64 megapixels from DisplayCluster and
approximating the value for 52 megapixels at 14.3 FPS yields
better performance for Infiniviz. To perform correct
bandwidth comparisons, a fixed test environment would be
needed, since the size of the compressed video stream varies
depending on the content. As can be seen from the
measurement graphs (Fig. 8), the bandwidth required for all 25
compressed video streams from the Infiniviz server varies a lot
depending on the content. The total consumed bandwidth
ranges from around 50 Mbps (6.25 MB/s) when only
Windows desktop and static windowed content is present to
325 Mbps (~40 MB/s) under 3D content from Quake 3 Arena.
On the other hand, the results from DisplayCluster include
only fixed bandwidth measurements per each resolution,
which seems strange, since DisplayCluster is using lossy JPEG
compression, thus intuitively the compressed stream size
should also vary, similar to Infiniviz. Also, PSNR value
measurements would be needed to evaluate two systems that
employ lossy video compression like Infiniviz and
DisplayCluster to perform the comparison at an equal picture
quality level. Otherwise, pure bandwidth numbers are
incomparable, since they could differ only due to changes in
the picture quality.

98

ACKNOWLEDGMENT
The research was developed under the University of Latvia
contract no. AAP2016/B032 “Innovative information
technologies”.
REFERENCES

[1] J. T. Klosowski, T. James, J. Valuyeva, and G. Abram, “Deep
view: high-resolution reality,” IEEE Comput. Graph. Appl., vol. 22,
no. 3, pp. 12-15, 2002.

G. Humphreys, M. Houston, R. Frank, J. T. Klosowski, S. Ahern,
and P. D. Kirchner, “Chromium : A Stream-Processing Framework
for Interactive Rendering on Clusters,” ACM Trans. Graph., vol.
21, no. 3, pp. 693-702, 2002.

R. Luc et al, “SAGE: the Scalable Adaptive Graphics
Environment,” in Proceedings of WACE 2004, 2004.
K. U. Doerr and F. Kuester, “CGLX: A scalable, high-performance
visualization framework for networked display environments,”
IEEE Trans. Vis. Comput. Graph., vol. 17, no. 3, pp. 320-332,
2011.

S. Eilemann, R. Pajarola, and M. Makhinya, “The Equalizer
Parallel Rendering Framework,” IEEE Trans. Vis. Comput. Graph.,
vol. 15, no. 3, 2009.

G. P. Johnson, G. D. Abram, B. Westing, P. Navratil, and K.
Gaither, “DisplayCluster: An interactive visualization environment
for tiled displays,” Proc. - 2012 IEEE Int. Conf. Clust. Comput.
Clust. 2012, no. Figure 1, pp. 239-247, 2012.

C. Papadopoulos, S. Member, K. Petkov, A. E. Kaufman, A. E.
Kaufman, and K. Mueller, “The Reality Deck - Immersive
Gigapixel Display,” IEEE Comput. Graph. Appl., vol. 35, no. 1, pp.
33-45,2015.

I. Kim, J. Kim, J. Park, and Y. I. Eom, “Software-based Single-
node Multi-GPU Systems for Interactive Display Wall,” IEEE
Trans. Consum. Electron., vol. 63, no. 2, pp. 101-108, 2017.
I. B. M. F. D. Technology, S. L. Wright, and Y. Heights, “IBM 9.2-
Megapixel Flat-panel Display: Technology and Infrastructure,”
2002.
R. Bundulis and G. Arnicans, “Concept of virtual machine based
high resolution display wall,” in 2014 IEEE 2nd Workshop on
Advances in Information, Electronic and Electrical Engineering
(AIEEE), 2014.

R. Bundulis and G. Arnicans, “Infiniviz — Virtual Machine Based
High-Resolution Display Wall System,” in Databases and
Information Systems IX: Selected Papers from the Twelfth
International Baltic ~ Conference, ~DB&IS 2016, 2016,
pp. 225-238.

R. Bundulis and G. Arnicans, “Virtual Machine Based High-
Resolution Display Wall : Experiments on Proof of Concept,” Balt.
J. Mod. Comput., vol. 5, no. 4, pp. 379-390,
2017.

R. Bundulis and G. Arnicans, “Use of H.264 real-Time video
encoding to reduce display wall system bandwidth consumption,”
in Advances in Information, Electronic and Electrical Engineering,
AIEEE 2015 - Proceedings of the 2015 IEEE 3rd Workshop,
2015.

B3]
[4]

[3]

[7]

[8]

[10]

[11]

[12]

[13]

