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Abstract—Computed Tomography perfusion (CTp) is a func-
tional imaging technique with a wide application in the oncologi-
cal field. CTp allows detecting the presence of tumour abnormal
hemodynamic patterns, by analysing the tissue temporal varia-
tions occurring after the administration of the contrast medium.
This work presents a novel approach to extract meaningful
features from blood flow (BF) maps of lung cancers, which could
act as a prognostic image-based biomarker.

I. INTRODUCTION

Lung cancer is the most common malignant disease and
the leading cause of cancer death worldwide [1]. 85% of
lung cancers are non-small-cell lung cancers (NSCLCs) [2].
Despite the introduction of more advanced therapeutic strate-
gies, including antiangiogenic treatments, NSCLC remains
associated with poor prognosis and overall survival (OS) [3].
Tumour staging is recognised as the most important prognostic
factor of survival. However, heterogeneity within the same
stage grouping suggests individual factors influence survival
outcomes [4]. In this era of personalized therapy, one of the
challenges remains the identification of more effective markers
of prognosis for a better stratification of NSCLC patients [5],
with strong implications in treatment choices and consideration
of alternative therapies [6].

Several studies have focused on the analysis of the intra-
tumoral heterogeneity and the underlying biological mecha-
nisms in order to identify more accurate prognostic biomarkers
[7], [8], [9]. Indeed, NSCLC tissues are extremely heteroge-
neous both at genetic and histopatological level, reflecting the
presence of angiogenesis, hypoxia, high cell density, necrosis
and hemorrhage [10], [11]. Angiogenesis is a process involving
the chaotic proliferation of new blood vessels from pre-
existing ones [12], which may cause local reductions in BF
thus leading to hypoxia. This is a universal cancer hallmark
determining tumour response to treatment in NSCLC, reducing
radiosensitivity as well as sensitivity to some chemotherapeutic
agents [13].

The presence of the intra-tumoral heterogeneity limits the
use of invasive biopsy based on molecular assays, since small
bioptic samples could not adequately catch the whole tumour
heterogeneity properties. Instead, imaging technologies have
the potentiality to capture the intra-tumoral heterogeneity,
which can be assessed by developing algorithms able to exploit

voxel-based information and derive quantitative tumour tissue
information.

Recently, CTp has been accepted as a clinical technique in
the oncologic field, primarily for the early evaluation of tumour
response to anti-angiogenic therapies [14]. Indeed, CTp allows
capturing tumours vascular patterns through the analysis of
the time-concentration curves (TCCs), representing the tissue
density temporal variations [15], directly proportional to the
quantity of contrast medium within the tissue. One of the most
effective perfusion parameters is the BF, which proved to de-
tect the earliest functional changes on tumour vasculature even
within the first week of anti-angiogenic therapy [16]. More-
over, BF shows a high correlation with the tissue biomarker
micro-vessel density (MVD) [17], [18]. The analysis of BF
maps could permit the detection of abnormal vascular patterns
within tumour tissue. However, several factors may affect the
reliability of BF maps. Among these, respiratory and cardiac
motion artefacts, especially in abdomen and thorax studies,
partial volume artefacts as well as physics-based artefacts,
for instance, occurring in tumour located near structures with
a high concentration of contrast agent (e.g., heart and great
blood vessels) and bony regions of the chest [19]. Therefore, a
reliability analysis is needed to properly characterise the tissue
heterogeneity and, finally, to derive quantitative features [20].

In this work, we present a novel method to evaluate the
intra-tumoral heterogeneity emerging from BF maps. To this
purpose, BF maps were computed according to the Maximum-
Slope method. A proper reliability analysis of the BF maps
was performed to automatically detect and remove those
pixels and regions undergoing high computing errors due to
artefacts, which could hamper the evaluation of the tissue
micro-circulation. Two local-based statistical indexes were
developed, able to gather and exploit information owned by
the hemodynamic heterogeneity patterns at local level, and
expectedly to isolate the effects of variability due to image
artefacts and tumour size. At diagnosis, the correlation between
the feature-pair computed on BF maps and the OS of patients
affected by NSCLC was explored to assess whether these
features could work as a prognostic image-based biomarker
for NSCLC. The discrimination ability of the feature-pair was
analysed in comparison with the staging, a disease variable
commonly associated with OS. The new developed features
proved a strong correlation with OS, this suggesting a promis-
ing prognostic clinical application of CTp.
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II. MATERIALS AND METHODS

A. Study population

This study was approved by the Institutional Review Board
that waived informed consent for the retrospective data analysis
of the patients. Between September 2010 and December 2012,
a total of 36 consecutive patients (25 men, 11 women; age
range 36-81 years) with primary NSCLC, subdivided in 28
AC, 6 SCC and 2 LCC,were enrolled for data analysis. Tumour
stage was determined in all patients according to the TNM
classification (seventh edition) of malignant tumours: 2 patients
were diagnosed stage IB, 3 patients IIIA, 4 patients IIIB and
27 patients IV tumour stage. Patients inclusion criteria were:
(a) over eighteen years old, (b) with histologically verified
NSCLC, and (c) no prior history of chemotherapy, surgery or
thoracic radiation therapy.

Exclusion criteria were: (a) clinically significant cardiovas-
cular disease, (b) pregnancy or lactation, (c) a known history
of deep vein thrombus or pulmonary embolus, (d) patients lost
to follow-up for unknown reasons (n = 8), (e) patients alive at
the time of the study (n = 4), (f) not having the longest axial
diameter of the lesion larger than 10 mm in at least one slice
(n = 3), and (g) examination severely affected by physics-
based artefact (n = 2).

The final population included 19 patients. The variable
considered as a reference for the survival prediction was the
staging. This variable was dichotomised so as to divide in
early stage patients likely receiving curative surgery or curative
chemoradiotherapy (stage I - IIIA) and advanced stage patients
(stage IIIB - IV) likely receiving non-curative chemotherapy,
radiotherapy, or molecular therapies.

Table 1 includes the previous information along with the
histological subtype (adenocarcinoma, squamous cell carci-
noma, large cell carcinoma, NSCLC not otherwise specified,
NOS) and patients overall survival (OS) data, defined as the
time interval in months between the date of baseline TC
examination and the date of death.

B. CTp protocol

At the diagnosis stage, the patients underwent axial CTp
performed on a 256-slice CT system (Brilliance iCT, Philips
Medical System, Best, The Netherlands), feet first in the
supine position. Initially, an unenhanced low-dose full-body
CT scan was performed to identify the target lesions at baseline
conditions. Then, a 50 mL intravenous bolus of contrast agent
(Iomeron, Bracco, Milan, Italy) was injected at 5 mL/s for
axial cine contrast enhanced CT. Each patient performed a
single acquisition of duration 25 seconds under breath-hold
condition. This protocol yields 20 scans, each corresponding
to different sampling instants, with 55 mm of z-coverage (11
slices × 5-mm slice thickness, 0.4-sec rotation time, at 80 kV,
250 mA). Image data are reconstructed to 220 cine images
(512 × 512 pixel, 11 slices, 350 mm × 350-mm, 5-mm slice
spacing, 1.25-sec temporal resolution).

C. Perfusion maps generation

The target lesions and the arterial input (aorta) were
selected in agreement by two radiologists on a reference slice.
For each lesion on the reference slice, the radiologists manually

TABLE I. SUMMARY OF THE HISTOLOGICAL DIAGNOSIS, TUMOUR
STAGE AND OS DATA (MONTHS) RELATIVE TO EACH PATIENT

Patient ID Diagnosis Stage OS
ID1 LCC IIIB 6
ID2 AC IV 4
ID3 SCC IB 14
ID4 AC IV 13
ID5 AC IV 5
ID6 AC IB 5
ID7 AC IV 6
ID8 AC IV 10
ID9 SCC IV 17
ID10 SCC IV 52
ID11 AC IV 6
ID12 AC IV 6
ID13 AC IV 4
ID14 AC IV 8
ID15 AC IV 12
ID16 SCC IIIB 11
ID17 AC IV 12
ID18 AC IV 0
ID19 AC IV 7

drawn the region of interest (ROI) and translated it on the
remaining slices of the reference sequence, so that the borders
of the lesion visually match. Moreover, when appropriate,
adjacent slice levels (up to two levels before and after the
reference one) were visually explored by the radiologists who
chose, for each scan, the levels which visually offer the best
match with the reference slice [21], so as to achieve the “best”
sequence as shown in Fig. 1. According to this procedure, a 3D
rigid alignment of the lesion in the reference slice is achieved.

BF values were computed by considering the first-pass
phase only [22] and representing each voxel with a single-
compartment model, including both the intravascular and the
interstitial spaces. This allowed performing short-time exam-
inations with the effect of reducing motion artefacts, since
patients had the possibility to remain in apnoea. As shown
in Fig. 2, the model adopted is characterised by a single
inlet, the arterial input, with an arterial blood plasma temporal
concentration CA(t), and a single outlet, the venous outlet,
with a venous blood plasma temporal concentration CV (t).
CT (t) represents the TCC of the tissue. The relation between
CA(t), CV (t) and CT (t) can be expressed through the Fick’s
principle representing the conservation of mass:

dCT (t)

dt
=
BF

VT
[CA(t)− CV (t)] (1)

One immediate approximation consists in the assumption of
no venous outflow during the measurement period CV (t) � 0
(i.e., no contrast agent has reached the venous side of the
circulation yet). This is valid only if the time periods are
less than the minimum transit time, that is when the injected
contrast agent will all remain inside the tissue. Under this
assumption, Eq. (1) can be simplified as follows:

dCT (t)

dt
=
BF

VT
[CA(t)− CV (t)] � BF

VT
CA(t) (2)
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Fig. 1. Example of selection of the best sequence for a lung tumour perfusion 
study, performed to achieve the best matching with the Z levels contiguous with 
the reference slice level, represented by Z∗

This implies that the slope of the tissue curve, dCT (t)/dt,
reaches a maximum (steepest slope) when the TCC of the
arterial input, CA(t), reached is peak density [23]. Thus, the
BF, expressed in mL/min/100 g, is given by

BF

VT
� [dCT (t)

dt ]max

[CA(t)]max
(3)

This is the well-known Mullani-Gould model or single-

Fig. 2. Single-compartment model representing the tissue perfusion

compartment formulation. The simplification adopted in
Eq. (2) results in an overestimation of the denominator of
Eq. (3), and consequently in an underestimation of the BF
whether the bolus is large, or for organs with a fast vascular
transit. Accordingly, for organs characterised by a complex
microcirculation, such as kidney and spleen, this assumption
might not hold [24], but for most clinical applications this
formulation results adequate with appropriate accuracy and
precision levels [25]. BF values can be visualised through the
use of functional colorimetric maps.

In order to obtain the TCC signal for each voxel, several
approaches are proposed in the literature [26]. In this work, we
adopted a sigmoid-shape model given by the Hill Equation in
Eq. (4), able to fit the main trend of the concentration samples
in a robust manner [27]:

Y TCC(t) = E0 + (Emax − E0)
tα

(EC50 + t)α
(4)

where E0 is the baseline concentration of the tissue, that is be-
fore the arrival of the tracer, Emax is the saturation value of the
concentration reached after its arrival, EC50 is the time instant
at the half-maximum value of the concentration, and α is the
parameter which mainly affects the slope of the sigmoid curve.
The curve fitting is achieved using an in-house fitting algorithm
based on the nonlinear, least squares, Levenberg-Marquardt
minimization algorithm (lsqcurvefit, Matlab c©; MathWorks,
Natick, MA, USA).

D. Perfusion maps denoising

The analysis of tumours BF maps includes a denoising
process, consisting in detecting and excluding unreliable BF
values, a necessary step to be performed before the local
analysis and features extraction. Basically, BF values strictly
lower than 1 mL/min/100 g were automatically removed, be-
ing considered unlikely as physiological values and rather
attributable to numerical errors, as the algorithm of perfusion
computation forces the values to be positive.

The quality of the fitting has been assessed by considering
the residuals (ε) of each TCC signal, measured as the dif-
ference between the observed samples YTCC and the relative
values computed through the fitting Y TCC for each time
instant t. ε is defined as in Eq. (5):

ε(t) =
∣∣YTCC(t)− Y TCC(t)

∣∣ (5)

Being ε directly proportional to the distance between the
detected and the computed sample, it will highlight the differ-
ences among these samples. The reliability of the single TCC
has been assessed by computing the temporal mean value με of
the residual ε relative to the considered pixel. The distribution
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of this error has been used to detect those BF values underwent
high fitting errors in order to exclude them from the analysis,
since they derive from TCCs not correctly fitted.

High errors usually occur in the presence of noise, artefacts
(both physics and due to motion) and anatomical structures,
such as bronchi and blood vessels. Through the use of this
index, these structures usually manually removed, can be
automatically excluded from the analysis by adopting a cut-off
value. Several kind of thresholds can be adopted to exclude un-
reliable values from the analysis of the BF maps. In this work
the “triangle” method reported in [28] has been adopted. At
the end of these automatic procedures, the removed BF values
appear highlighted in the colour maps with the pink colour,
as shown in Fig. 3. As one can see, the denoising method
removes unreliable regions also including the edge ones, which
are affected by partial volume effect, still preserving a wide
range of BF values [29].

Fig. 3. BF colorimetric map of an adenocarcinoma examination (patient 
ID8). The pink colour points out unreliable BF values

E. Computation of novel local-based features

After denoising, the functional heterogeneity arising from
lesions’ BF maps was assessed using an in-house software
developed in Matlab c© (MathWorks, Natick, MA, USA).

In order to analyse the functional heterogeneity we chose
entropy (E), the first-order statistics feature commonly used
to measure image irregularity or randomness [30], which has
recently shown a huge prognostic potential in patients with
colorectal cancer [31], gliomas [32] and breast cancer [33]. E
is defined as in Eq. (6):

E = −
L∑

i=1

pi log
2
pi (6)

where pi =
hi
N is the occurrence probability for the intensity

level i with a frequency hi, in an image with N pixels and L
intensity levels.

The analysis was computed locally on denoised BF maps,
within the same ROI drawn for the perfusion map computation,

by using a window W centred on the pixel that will be replaced
with the resulting value. The choice of W, representing the
anatomical scale considered to perform the local analysis,
was first driven by the radiologists of our team, stating that
in the clinical practice patches smaller than 5 × 5 mm are
rarely considered and patches of about 1 × 1 cm are more
representative for NSCLC functional heterogeneity. On the
other hand, it is well known that CT texture features finer than
4 mm would represent noise and should not be considered
[5]. For this reason, entropy was computed locally for each
pixel of the BF map, considering a square region with side
of 15 pixels, corresponding to 1.03 cm, centred on the pixel
itself. This procedure was iteratively repeated for each pixel
within the ROI by using the sliding window W. At the end, a
local entropy (locE) map was achieved and the mean value of
locE maps, μE, was considered as a feature of the functional
heterogeneity. As an example, Fig. 4 shows the locE map
relative to the BF map in Fig. 3. As one can see, the locE
map highlights the presence of a greater heterogeneity in the
lower region of the tumour, caused by the presence of the small
areas with different tissue density characterising the BF map.

Fig. 4. locE map highlighting a high heterogeneity of the BF values in the 
lower region of the tumour (patient ID8)

The great advantage of performing a local analysis and,
then, considering the mean values of the local feature values,
is that it heavily reduces the effects of tumour size on statistical
measurements.

We also explore the clinical potentiality of the other first-
order statistics features (mean, standard deviation, median,
skewness, kurtosis, and uniformity) focusing on uniformity
(U), a feature related to the image homogeneity, showing high
values in the presence of small BF transitions in the map. U
is defined as in Eq. (7):

U =

L∑

i=1

p2i (7)

Also in this case, we considered the mean value of the
local uniformity (locU) maps, μU , as a feature of the tumour
functional heterogeneity. As an example, Fig. 5 shows the locU
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map relative to the BF map reported in Fig. 3. The high values
of the locU map in the upper region of the tumour point out
the presence of a homogeneous hypodense area. It is worth
noting that locE and locU values are inversely related but not
linearly dependent.

Fig. 5. locU map highlighting an increased uniformity of BF values in the 
upper region of the tumour (patient ID8)

F. Statistical Analysis

The principal purpose of this work was to determine
whether local features directly extracted from denoised BF
maps could work as a surrogate prognostic biomarker. To
avoid overfitting, the features selected were analysed both
separately as well as jointly in pairs. In order to assess their
prognostic potential, the correlation between the feature-pair
and the overall survival (OS) was investigated by using the
k-means clustering algorithm. Mean survival for the entire
cohort of patients (μOS = 10.5) was used as threshold
to separate patients with highest (OS ≥ μOS) and lowest
(OS < μOS) survival expectation. k-means (k = 2) was set up
so as to automatically group patients in two different classes
(or clusters), characterised by similar features behaviour. As
similarity measure to resolve the membership of the feature-
pairs, the Squared Euclidean distance was considered. In order
to determine to what extent the feature means differ between
clusters identified by the algorithm, a multivariate analysis
of variance (MANOVA) was performed (p-value < 0.001).
Sensitivity (SE), specificity (SP), positive predictive value
(PPV), negative predictive value (NPV) and accuracy (ACC)
were calculated to quantify the discrimination ability of both
features selected and staging, which is the variable used as
reference for survival prediction. In particular, we defined as
condition true a low survival expectation and as condition
false a high survival expectation. The positive prediction is
represented by the advanced stage condition while the negative
prediction by the early stage one. Therefore, patients with
advanced stage and low survival expectation belong to the
true positive (TP), patients with early stage characterised by a
high survival expectation are the true negative (TN), while the
patients with advanced stage and a high survival expectation

are the false positive (FP), and the patients with an early stage
and a low survival expectation are the false negative (FN).

Statistical analysis was performed using Matlab c© (Math-
Works, Natick, MA, USA).

III. RESULTS

μE and μU are the features characterised by the highest
discriminatory power in distinguishing patients with differ-
ent survival expectations (SE=100%, SP=71%, PPV=86%,
NPV=100%, ACC=90%). Results in terms of μE and μU for
each patient are summarized and reported in arbitrary units
(a.u.) in Table II.

TABLE II. SUMMARY OF μE AND μU RELATIVE TO EACH

EXAMINATION (ID), REPORTED IN ARBITRARY UNITS (A.U.)

Patient ID μE [a.u.] μU (·10−2)[a.u.]
ID1 6.00 1.92
ID2 6.59 1.22
ID3 4.62 5.20
ID4 6.70 1.12
ID5 6.81 1.01
ID6 6.56 1.21
ID7 6.13 1.69
ID8 6.45 1.36
ID9 5.78 2.24
ID10 5.38 3.09
ID11 6.32 1.44
ID12 6.61 1.19
ID13 6.14 1.70
ID14 6.71 1.11
ID15 6.23 1.57
ID16 5.75 2.23
ID17 5.82 2.14
ID18 6.34 1.46
ID19 6.61 1.13

μE and μU are able to group patients with the lowest
(OS < μOS) and highest (OS ≥ μOS) survival expectation.
Cluster 1 (highlighted in red in Fig. 6), characterized by higher
μE and lower μU values, encloses all the patients with the
worst prognosis (OS < μOS), with the exception of ID4 and
ID15 pointed out in Fig. 6.

On the contrary, the samples belonging to the Cluster 2
(highlighted in blue in Fig. 6) referred to all patients charac-
terised by the best prognosis in this study (OS ≥ μOS). The
outcome of MANOVA proves that μE and μU of the two
clusters differ significantly, with a p-value = 1.2 · 10−4.

Staging (SE=92%, SP=14%, PPV=65%, NPV=50%,
ACC=63%) performed worse as survival predictor.

IV. CONCLUSION

In the last decade, quantifying the perceived features of
the intra-tumoral heterogeneity has gained a great attention,
leading to a renewed interest for statistical features and texture
analysis as essential tools in the era of personalised medicine.
First-order statistics features widely used in literature [34], [35]
do not take into account the spatial information of the images
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Fig. 6. Scatter plot of μE and μU values related to all the examinations 
are reported in arbitrary units (a.u.). 14 examinations belong to Cluster 1 (in 
red), 5 to Cluster 2 (in blue)

but just the distribution of values. Therefore, when computing
first-order features tissue heterogeneity information within an
image is almost disregarded. The local features we devised
preserve the tissue heterogeneity information within the con-
sidered ROI. Results showed that these features have a valuable
prognostic potential, proving a high correlation with OS when
computed on BF maps, where unreliable BF values have
been previously automatically removed. In particular, a greater
heterogeneity of BF values seems to be associated with a
higher tumour aggressiveness, which heavily affects the OS
parameter. It is worth noting that this approach can be easily
performed retrospectively on CT data routinely acquired in
clinical practice, without the need for additional examinations
and maximising the information that can be derived from these
studies.
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