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Abstract—The structure of online social networks such as
Facebook is continuously changing. Phenomena such as birth,
growth, contraction, split, dissolution, and merging with other
communities are issues that occur in the communities of online
social networks over time. However, characteristics of the
consecutive time slots of these networks depend on each other,
and independent investigation of each time slot is not efficient for
detecting communities in terms of execution time due to the big
size of data in each time slot. In order to detect the changes in
communities over time, there is a need for algorithms that can
detect communities incrementally with proper precision. In this
paper, we propose an unsupervised machine learning algorithm
for incremental detection of communities using the label
propagation method, called Incremental Speaker-Listener
Propagation Algorithm (ISLPA). ISLPA can detect both
overlapping and non-overlapping communities incrementally
after removing or adding a batch of nodes and edges over time.
Execution time and modularity comparison on a subset of
Facebook dataset confirm that despite the reduced computational
costs, the proposed algorithm has promising performance.

1. INTRODUCTION

Nowadays, people have an easy access to the Internet in
most areas of the world, and the usage of online social
networks has significantly increased among them. Hence, the
popularity of online social networks such as Instagram and
Facebook has attracted the attention of researchers to
investigate the users’ behavior in social media.

Understanding the structure of social networks is of great
importance when analyzing social networks. More specifically,
it is desirable to detect and track the ever-chaining user
communities in the network structure. Social network
community detection has many applications in marketing,
collaborative filtering, customer and society behavior analytics,
national security, etc. [1].

In general, social networks can be represented in form of
graphs with a set of nodes and edges. In such graphs, the nodes
and edges are considered as users and their relationships,
respectively [2]. In social networks, community structure can
be interpreted as the sets of nodes that are densely connected
internally [3].

These communities can be divided into two types of
overlapping and non-overlapping structures [4]. In overlapping
communities, one node can be a member of multiple
communities simultaneously. However, in the non-overlapping

communities, all communities must be separate, without even a
single common node.

From the other side, online social networks such as
Facebook are dynamic and their communities evolve over time
by adding or removing users and changing their relationships
[5]. Despite the growing number of community detection
algorithms, those that have been developed for analyzing static
graphs are not efficient for this purpose because they need
extended execution time. While consecutive time slots of
online social networks are dependent on each other [6], these
algorithms consider each time slot independent of the others.

In this paper, we propose an unsupervised machine
learning algorithm for incremental detection of both
overlapping and non-overlapping communities over time. The
algorithm is based on the label propagation method. In section
II, we discuss the related work in community detection. In
section III, we describe our proposed algorithm for
incremental detection of communities called Incremental
Speaker-Listener Propagation Algorithm (ISLPA). In section
IV, we compare the results of the proposed algorithm with
those of SLPA method applied to the Facebook New Orleans
networks dataset. The results are reported for both overlapping
and non-overlapping communities. Finally, we conclude this
paper in section V.

II. RELATED WORK

Early attempts for community detection were focused on
non-overlapping communities [4]. However, real-world social
network communities always overlap. For example, a person
on a social network such as Facebook can belong to two groups
of friends and family simultaneously. So, this feature in social
networks has attracted the attention of researchers, and they
have proposed different methods for detecting overlapping
communities in recent years. The algorithms that are
introduced for detecting the structure of overlapping
communities can be grouped into 5 different main categories
[7]: 1) Clique percolation, 2) Line graph and link partitioning,
3) Local expansion and optimization, 4) Fuzzy clustering, and
5) Agent-based and dynamic algorithms:

1) Clique percolation method (CPM) assume that a
community includes a set of fully connected subgraphs which
share common nodes, and it searches for adjacent cliques in
order to detect overlapping communities. CFinder [8] is one of
the algorithms implemented based on the Clique percolation
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method. The computational complexity of this method in most
real applications is polynomial and is not usually efficient for
graphs from large social networks. CPMw [9] and SCP [10]
are other methods that detect communities based on the Clique
percolation. OLCPM [11], which can incrementally detect
overlapping communities over time, is an online version of
the CPM method. This method presents a considerable
enhancement in the execution time compared with other
methods that use clique percolation techniques. In summary,
this class of methods is similar to pattern matching methods
rather than community detectors. Their goal is to find specific
and local structures in a network.

2) Also, the idea of partitioning the edges instead of nodes
has been studied for community detection. A node is
considered as an overlapping node if it is recognized that the
connecting edges belong to different communities. Ahn et al.
[12] partitioned the edges using hierarchical clustering
according to the similarity of the edges. Evans et al. [13]
converted the network into a weighted linear graph, whose
nodes were equal to the edges of the main graph. Then, non-
overlapping community detection algorithms were used. The
partition obtained in a linear graph on the nodes makes it
possible to obtain a partition on the edges of the main graph.
CDAEO method [14] has introduced a post-processing
approach which can determine the extent of an overlap. Kim et
al. [15] extended the Map equation method for linear graphs.
This method encodes the random walk path on a linear graph
using the minimum description length.

3) The algorithms that use local expansion and
optimization method are based on the expansion of a natural or
partial community. Often, these methods have a local benefit
function which measures the quality of communities. Based on
the expansion of a partial community, Hamann et al. [16]
proposed an algorithm that detects overlapping communities
locally. This algorithm finds overlapping communities in
weighted and unweighted networks.

4) In fuzzy detection algorithms, a membership vector is
calculated for each mnode, which shows the belonging
coefficient of the node to each community. To detect
communities with fuzzy methods, one should know the
number of communities. The algorithm proposed by Nepusz et
al. [17] is based on the fuzzy detection method. This algorithm
defines the detection of overlapping communities as a
nonlinear constrained optimization problem, and simulated
annealing (SA) techniques are used to approximate the
optimization problem in this algorithm.

5) The label propagation methods are categorized in the
agent-based and dynamic algorithms category. In label
propagation methods, nodes with the same label are assigned
to the same community. It is possible to assign a node to
multiple communities and create overlapping communities as
these methods allow a node to have more than one label in its
memory. SLPA algorithm [18] is a speaker-listener based
information propagation process. This algorithm is an
extended version of the LPA algorithm [19] for detecting
overlapping communities. More precisely, both of the LPA
and SLPA algorithms have been developed as a community
detector for graphs which their nodes do not have any label at
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the start of the algorithm, so these algorithms do the
community detection and learning process in an unsupervised
manner. From the other side, the input graph may contain a
small set of labeled nodes and a large number of unlabeled
nodes at the start of the algorithm. Hence, the semi-supervised
learning process can be used for the community detection of
unlabeled nodes [20]. Based on the label propagation
techniques, Liu et al. [21] suggested a semi-supervised
algorithm in order to find communities in the large networks
statically. In this method, labels from the labeled nodes are
propagated to their unlabeled neighbors. In summary, this
class of methods excels at the running time and the output
quality compared with the other explained categories [7].

In addition to the semi-supervised and unsupervised
machine learning techniques such as label propagation, genetic
and deep learning algorithms are other artificial intelligence
methods which have been used to form an agent-based
modeling in the community detection problem. CC-GA [22],
which detects disjoint communities in static social networks,
has been implemented based on the genetic algorithm. This
algorithm produces better accuracy compared with other
methods that have been developed based on the genetic
algorithm. Also, in recent years, deep learning techniques have
been used to extract useful patterns from social networks.
Yang et al. [23] developed a nonlinear model using deep
learning, which can statically detect non-overlapping
communities in complex networks. DFuzzy algorithm [24] is a
deep learning-based method which can detect overlapped
communities. This method statically detects fuzzy clusters
with high accuracy in the large complex networks.

In summary, most of the existing community detection
methods have been developed for static graphs, and they aren’t
suitable for the detection of communities in the streaming
networks. Also, the best algorithms that can detect
communities over dynamic networks have the following
limitations. Fanrong et al. [25] proposed a method for the
incremental detection of overlapping communities in dynamic
networks. This method is based on the link partitioning
techniques, and it has been developed by extending the static
community detector called DBLINK. Despite its high quality in
detecting communities, this method has high computational
cost. ILCD is an algorithm based on the local expansion and
optimization method [26]. It detects overlapping communities
incrementally in dynamic networks, but this algorithm cannot
manage the node or edge deletion. LabelRankT [6] is an
algorithm  that detects non-overlapping communities
incrementally in dynamic networks via label propagation
techniques. This algorithm doesn’t consider the overlap
between communities while groups usually have common users
in social media. SALPA [27], which can detect overlapping
communities in temporal networks, is a method based on the
combination of the LPA algorithm and spreading activation
process. Although this method enhances the performance of the
LPA on dynamic networks, it doesn’t consider the direction
between the users in social networks. In other words, SALPA
only works on undirected networks. These limitations led us to
propose a method for incremental detection of communities
over time which has been described in the following
section.
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III. PROPOSED ALGORITHM

Since the proposed algorithm is based on the SLPA
algorithm, we first introduce SLPA in section III-A. Then, by
extending the SLPA in section III-B, we describe our proposed
algorithm for the incremental detection of communities in
section II-C.

A. SLPA:Speaker-Listener Label Propagation Algorithm

Often, accessing the labeled data is very limited and
expensive for analyzing the structure of social media [20]. In
practice, all data points are unlabeled in most of the available
dataset such as Facebook. Hence, the unsupervised learning is
a suitable choice for clustering a group of data points based on
their similarity when researchers have a dataset without the
ground-truth.

The most important methods for unsupervised clustering
can be grouped into 4 categories [28]: 1) Partitioning methods,
2) Hierarchical methods, 3) Graph-based methods, and 4)
Density-based approaches. Since social networks are modeled
with a graph, social media researchers have used graph-based
methods to analyze social networks in recent years. More
specifically, label propagation is a graph-based approach for
detecting communities. The LPA and SLPA are two efficient
community detectors developed based on the label propagation
techniques. The position of the SLPA algorithm has been
hierarchically shown among machine learning methods in
Fig. 1.

More precisely, the SLPA algorithm [18] is a speaker-
listener based information propagation process. This algorithm
is an extended version of the LPA algorithm which can detect
overlapping communities. In general, SLPA is presented for
detecting communities in static graphs. In summary, SLPA can
be defined in three steps:

1) Initialization;
2) Evolution; and
3) Post-processing.

Given a graph G = (V, E), there is a memory for each node
v; € V which is empty at first, i.e, M; ={} N = |V]|
represents the number of nodes and L = [ll, l,, ...,l|v|]
considered as the unique label of nodes (the ID of each node).

The first step in SLPA is initialization. In this step, the label
(ID) of each node is added to its memory, which means M; =

{u}.

In the evolution step, the labels are propagated between the
nodes based on the listening and speaking rule. The speaking
rule can be a weighted random selection among the existing
labels in the speaker's memory, and the listening rule can be a
random selection among the most received labels by the
listener node. In this step, by defining 7T as a repeat parameter,
the following steps are repeated T times:

1) The nodes of the graph are arranged in a random order and
place within a list. According to the order of nodes in the
list, steps (2) to (4) are repeated for all of the nodes.

2) One node is selected as a listener.

41

learning process

[ Supervised Unsupervised [ Semi-supervised ]
I
I T | 1
Partitioning Hierarchical Graph-hased Density-based
methods methods methods methods
Label propagtion
[ LPA [ SLPA
Fig. 1. The position of the SLPA algorithm among machine learning
techniques

3) The listener's neighbors are identified. Then, each of these
neighbors sends a label to the listener according to the
speaking rule.

4) The listener node accepts one of the labels sent by the

speakers based on the listening rule and adds this label to

its memory.

In this step, T is usually considered to be a number greater
than 20 [18].

After label propagation phase, each node v; € V is
associated with a sequence of labels M; = {I}, [, ...,I7}. The
repetition number of labels in the memory of each node
represents the node’s belonging coefficient to each community.
In the post-processing step, by defining » as a threshold
parameter, the labels whose presence probability in the
memory is less than this value are deleted from the node’s
memory. In general,  is a number between 0 and 1. To detect
overlapping communities, the value of 7 is usually set to 0.3,
and by choosing a number greater than 0.5 for r, the non-
overlapping communities are detected [18]. After post-
processing step, if more than one label exists in the node’s
memory, that node is considered as an overlapping node. The
existence of overlapping nodes is caused to form an overlap
between communities.

B. ESLPA: Extended Speaker-Listener Label Propagation
Algorithm

Performing the label propagation for the users who have
not changed their relationships between the two consecutive
time slots increases the execution time and memory usage.
Increasing in the execution time and memory usage is sensible
when the number of these users is high. In this section, we
introduce the extended version of the SLPA which is called
ESLPA for the following purposes. The main purpose of the
ESLPA is to create a function that detects communities only
for the users who have changed their relationship compared
with the previous time slot. Consequently, due to the high
computational costs of labeling nodes, this action can
significantly reduce the execution time without the
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performance reduction. Another purpose of the ESLPA is to
propagate the information from the previous time slot to the
current time slot via boundary nodes. Due to the structural
dependency between the consecutive time slots, this action can
improve the analysis in the current time slot. In summary, we
use ESLPA as a community detector of the changed nodes in
our proposed method for incremental detection of
communities.

The SLPA algorithm consists of three input arguments: 1)
G = (V,E) as an input graph, 2) T as a stop criterion and 3) r
as a threshold. SLPA is suggested for detecting communities
in static graphs [18]. In order to detect communities
incrementally over time, SLPA can be extended as follows:

1) We added a parameter called snapshot to SLPA’s input
arguments. This parameter indicates the time slot’s number
(we can assign the sequential numbers to consecutive time
slots of the graph). Using this parameter, we can access
graph information such as detected communities and the
content of the node's memory in future time slots.

2) In SLPA, each node can be a listener or a speaker [18]. In
the extended version of SLPA, we added a parameter
called SpeakerNodes to SLPA’s input arguments. This
parameter contains a list of the nodes which can be used
only as a speaker and cannot be used as a listener. The
labels of these nodes are copied from the previous time
slot. So, information is propagated from the previous time
slot to the current time slot.

Given a graph Gsnapshot = (Vsnapshot: Esnapshot) at time
slot snapshot, there is a memory for each node
V(i, snapshot) € Vsnapsnor Which is empty at first, i.e,
M(l’, snapshot) — {} Nsnapshot = |Vsnapshot| represents the
number of nodes in the graph, NodeSgnapsnor =
[l(l, snapshot)’ l(Z, snapshot)’ ---'l(N, snapshot)] considered as
the unique label of the nodes (the ID of each node), and
SpeakerNOdeSsnapshot = [5(1, snapshot)» S(Z, snapshot)r -:+»
S(k, snapshot)] represents a list of nodes in the graph which can
be used only as a speaker and cannot be used as a listener.

The ESLPA consists of the following steps (the pseudo-
code of ESLPA is given in Algorithm 1):

1) The first step in ESLPA is initialization. In this step, the
label (ID) of each node is added to its memory, which
means M(i, snapshot) — {l(li, snapshot)}'

2) The second step is label propagation. In this step, by

defining 7T as a repeat parameter, the following steps are

repeated 7 times:

a) The nodes of the graph are arranged in a random order
and placed within a list. Steps (b) to (c) are repeated for
all of the nodes.

b) One node is selected according to its order in the created
list at step (a).
c) If  the selected node exists in the

SpeakerNodesgapsnoe list, the label of this node at
time slot 7 is copied from its label at time slot #-7. Then,
the label is added to the node’s memory. But if the
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selected node doesn’t exist in the
SpeakerNodesgnapsnoe list, it is considered as a
listener node. Then, the listener’s neighbors are
identified. Each of these neighbors sends a label to the
listener according to the speaking rule. After that, the
listener accepts one of the labels sent by the speakers
based on the listening rule and adds this label to its
memory. In this paper, the speaking rule has been
considered as a weighted random selection among the
existing labels in the speaker's memory, and the
listening rule has been considered as a random selection
among the most received labels by the listener node.

3) The last step in ESLPA is post-processing. After label
propagation step, each node v(; snapsnot) € Venapsnot 18
associated with a sequence of labels M(; snapshory =

{l(li, snapshot)’ lgi, snapshot)’ l{i, snapshot)}- In the pOSt-
processing step, by defining 7 as a threshold parameter, the
labels whose presence probability in the memory is less
than this value are deleted from the node’s memory.

To conclude, the ESLPA community detector is a general
function which can do the learning process in both supervised
and semi-supervised manner according to the SpeakerNodes
parameter. For more explanation, all nodes in the input graph
do not have any label at the start of the algorithm if the
SpeakerNodes list is empty. In this case, the community
detection is done in an unsupervised way such as the SLPA
algorithm. But if the SpeakerNodes list is not empty, the
nodes in this list have labels and rest of the nodes in the input
graph are unlabeled at the start of the algorithm. Consequently,
the community detection is done in a semi-supervised manner
by propagating labels from the labeled nodes to their unlabeled
neighbors.

C. ISLPA: Incemental Speaker-Listener Label Propagation
Algorithm

The structure of online social networks such as Facebook is
changing over time, but consecutive time slots of these
networks are dependent on each other. So, the independent
study of each time slot is not effective for detecting
communities in terms of the execution time. Indeed, the
network’s structure at time slot 7 is significantly dependent on
the network’s structure at time slot #-/ and does not suddenly
undergo major changes [6]. In this section, we propose an
unsupervised algorithm based on the label propagation
techniques, called Incremental Speaker-Listener Propagation
Algorithm (ISLPA). ISLPA algorithm has been developed
based on the changes between two consecutive time slots of the
graph. The general idea of the proposed method is to use the
information obtained from the graph’s analysis at time slot #-/
to improve the analysis at time slot ¢.

In general, ISLPA consists of the following steps (the
pseudo-code of the ISLPA is given in Algorithm 2):

1) Firstly, consecutive time slots of the graph are given as an
input to the ISLPA algorithm.

2) In this step, the ESLPA algorithm is used to detect
communities at the first time slot. Since the graph at the
first time slot is considered as a static graph, the
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SpeakerNodes, parameter is calculated Null in ESLPA
which means each node can be a listener or a speaker at the
first time slot.

3) The following steps are repeated upcoming time slots:

a) By comparing the two consecutive time slots 7 and ¢-/,
added or deleted edges are detected at time slot ¢
According to the deleted and added edges, the changed
nodes are identified at time slot 7.

b) All of the changed nodes are separated from the graph
with their neighbors and edges. Separated nodes and
edges are placed in a new graph called
Part—graphsnapshot‘
The nodes in Part_graphs,apsnoe that have not
changed are recognized at time slot . These nodes are
placed in a list called SpeakerNodessyapsnoc- This list
contains the nodes that can be used only as a speaker
and cannot be used as a listener. These nodes are
considered as boundary nodes that propagate their
labels obtained from time slot #-/ to their neighbors at
time slot ¢. Consequently, information is propagated
from the previous time slot to the current time slot.

¢) ESLPA parameters (Part_graphgpapshor as the input

graph, SpeakerNodeSsqpshor, T, 7, and snapshot)

are sent to the ESLPA’s input arguments. So, ESLPA is
used to detect the communities of changed nodes at

time slot 7.

d) In this step, the unchanged nodes in Ggpapsnor are
identified at time slot . The communities of these nodes
are copied from time slot #/. After this step, the
communities of all nodes have been detected completely

at time slot ¢.

To conclude, the social media datasets which are given to
the community detector algorithms are usually unlabeled. In
other words, there is no node with the specific community at
the start of the algorithm and all nodes need to be labeled.
Hence, we considered this tip for the implementation of the
ISLPA algorithm. As a result, when the ESLPA function is
called at the first time slot, it detects communities in an
unsupervised way due to the empty SpeakerNodes,list. So,
the ISLPA algorithm is an unsupervised community detector.
Also, the labels obtained from each time slot are used to assign
the labels to unlabeled nodes at the next time slot.

The communities of social networks experience different
kinds of evolution events over time [5]. We can see these
events by incremental detection of communities. For example,
we ran our proposed algorithm with parameters T = 100 and
r = 0.3 on two consecutive simple graphs, G; and G, in Figs.
2 and 3, to show the different evolution events in the
consecutive time slots. ISLPA has detected three communities
in graph G; (communities have been separated from each other
by the circle in Fig. 2). By deleting node 11 and adding
edges {1,7}, {2,8} and {9,3} graph G, has been updated as
graph G,.

ISLPA has detected two communities in graph G,, i.e.,
node 1 has been detected as an overlapping node between the
two detected communities in Fig. 3 (if we setr = 0.5, node 1
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only belongs to the community, ), and we have 2 non-
overlapped communities). The community, ;) from graph G,

has been dissolved in graph G,, and its members have been
merged with the community, ), so a new community has

been created in graph G, called community, ). Also,
community , sy from Gq has grown by added node 1 to its
members in graph G,.

Algorithm 1 : ESLPA(Guupsho: » SpeakerNodes apshos T, ¥, sSnapshot)

L: Nsnupshot = IVsnapshotl

2: NOdessnapshat = [l(l, snapshot)’ l(2, snapshot)r *++» l(N, snapshat)]
3: SpeakeTNOdessnapshot = [5(1, snapshot)’ 5(2, snapshot), = +»
4:fori = 1: Ngpapsnor 40

5: | M(i, snapshot) = {}’

6: end

Step 1: Initialization:

7:fori = 1: Ngpapsnor do

S(k, snapshnt)]

8: | M(i, snapshat)-add(l%i, snapshat))§
9: end

Step 2 : Label propagation:

10: fort = 1: T+ 1do

11: Nodesgnapsnor-RandomOrder( );

12: for i = 1: Ngygpsnor do

13: if Nodes(;, snapshor) €Xists in SpeakerNodesgyapshor list do
14: lgi, snapshot) = lfi, snapshot—l);

15: M(i, snapshat)'add(l(ti, snapshot));

16: end

17: else

18: Listener = Nodes, snapshot)s

19: Speakers = Listener Neihgborsldentifier();

20: for j = 1:len(speakers) do

21: | send; = Speakers;.WeightedRandomizedSelection( ) ;
22: end

23: listen = listener. RandomizedMostReceivedLable( );
24: Miistener- add (listen);

25: end

26: end

27: end

Step 3: post-processing

28: for i = 1: Ngpapsnor dO

29: | delete labels with probability < r from Nodes;, snapshor) memory;
30: end

/I Output

31: returns the communities of Gspapshots

Algorithm 2 : ISLPA(G4, Gy, ..., Gy )

1:T = 100

2: r = 0.3 for overlapping community detection OR r = 0.5 for non-
overlapping community detection.

3: ESLPA(Gq, Null , T, r, 1),

4: for snapshot = 2:Ndo

S: DetectInsertEdges(Gsnapshot);

DetectDeleteEdges(Gsnapsnot):

DetectChangedNodes(Gnapshot);

Partfgraphsnapshot = Create_Part_graph(Gsnapshot);

9: SpeakerNodesgqpsnoe= Detect_SpeakerNodes(Part_graphgpapsnot)
10:

0 3

ESLPA(Part_graphsnapshot> SpeakerNodessnapsot » Ts 1, snapshot)
11: UnChangedNodes[Gspapsnor] = DetectUnChangedNodes(Gsnapshot)s
12: for j in UnChangedNodes[Ggpapshor] do
13: | Community, spapshory = COMMUNILY (i snapshot-1)5
14: end
15: end
// output

16: returns the communities of Ggnapshot;
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Fig. 2. G; with 11 nodes. Circles represent communities detected by ISLPA
with parameters T = 100 andr = 0.3

IV. EXPRIMENTAL RESULTS

In this section, we compare the performance of ISLPA
with that of SLPA in terms of the execution time and the
quality. This comparison is done for a subset of the Facebook
dataset. The dataset contains a list of all of the user-to-user
links from the Facebook New Orleans networks. The activity
of more than 60,000 users has been collected in the Facebook
New Orleans networks from Sep 5, 2006, to Jan 21, 2009,
ordered temporally (Data is available at
http://socialnetworks.mpi-sws.org/data-wosn2009.html). Since
this dataset is available in the static form, we separated the
users’ weekly activities in order to generate streaming data for
the purpose of incremental detection of communities. To this
end, we used the first-week information as a first time slot and
updated information weekly. Eventually, we created 122-time
slots of Facebook New Orleans networks for our test. The
number of nodes in the first time slot is 1471 with 863 edges
while the number of nodes in the last time slot is 61096 with
327458 edges.

Since the SLPA algorithm detects communities statically
and does not use the information of the past time slots, all
nodes must participate in the label propagation phase to be
identified their communities in each time slot. But, the ISLPA
algorithm in the label propagation phase only reinitializes the
label distribution of the nodes which have been changed
compared with the previous time slot. The communities of the
unchanged nodes are gotten from the previous time slot.
Reducing the number of nodes and edges in the label
propagation phase can save time and memory. Fig. 4 and 5
show the number of nodes and edges from the Facebook
dataset which participate in the label propagation phase for the
static and incremental detection of communities.

Similar to SLPA, the ISLPA method generates stable
outputs for different runs when T is greater than 20 [18]. For
effective detection of overlapping communities, the value of T
is set to 100 and the value of r is set to 0.3. By choosing a
number greater than 0.5 for », ISLPA can also detect non-
overlapping communities.
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Fig. 3. G, with 10 nodes that changed from G, by dissolving, merging and
growing. Node 1 has been detected as an overlapping node between the two
communities by ISLPA with parameters T = 100 andr = 0.3
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Fig. 4. The number of nodes from the 122-time slots of the Facebook New
Orleans networks which are used in the label propagation phase for static
(Input_graph) and incremental (Part_graph) detection of communities.
Also, SpeakerNodes represents the number of nodes which are used only as a
speaker and cannot be used as a listener in the incremental detection of
communities.
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Fig. 5. The number of edges from the 122-time slots of the Facebook New
Orleans networks which are used in the label propagation phase for static
(Input_graph) and incremental (Part_graph) detection of communities.




PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

In section IV-A, we compare the execution time of ISLPA
with that of SLPA for 122-time slots of Facebook New
Orleans networks. Also, modularity comparison is reported
between ISLPA and SLPA for our experimental dataset in
section IV-B. Moreover, execution time and modularity results
are reported for both overlapping and non-overlapping
detection of communities.

A. Execution time Comparison

The time complexity between two consecutive time slots in
ISLPA can be calculated as follows. Each of lines (5) to (9) in
Algorithm 2, can be executed in O(1). The worst case of time
complexity for the line (10) is when all of the nodes are
changed in the input graph. In this case, the time complexity is
0(Te), which T is a small constant (In this paper, we set T to
100), and e is the total number of edges. Also, line (11) can be
executed in O(1). Finally, O(n) is a time complexity of the
lines (12) to (14), which n is the number of the unchanged
nodes at time slot ¢. Thus, the overall time complexity of
ISLPA between two consecutive time slots is O(7e) in the
worst case, implying O(e) in general.

Also, the time complexity of SLPA is O(7m) [18], which T
is a Stop Criterion, and m is the total number of edges.

We implemented both SLPA and ISLPA algorithms in
Node.js platform. We used Windows 7 with 16 GB RAM and
Intel i5-3210M (2.5 GHz) CPU for this implementation.

By setting parameter values as T=100 and r=0.3, the
execution time results have been compared between two
SLPA and ISLPA algorithms for the detection of overlapping
communities in each time slot. Fig. 6 shows this comparison
for 122-time slots of the Facebook New Orleans networks.
SLPA detects communities statically in each time slot while
ISLPA detects communities incrementally over time.
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Fig. 6. Execution time comparison between SLPA and ISLPA for 122-time
slots of the Facebook New Orleans networks. The parameter values are set to

T =100 and r = 0.3, the execution time results have been reported for the
detection of overlapping communities.

45

The execution time results have been compared for the
detection of non-overlapping communities for 122-time slots of
the Facebook New Orleans networks by setting parameters
T =100 and r =0.5. Fig. 7 shows the execution time
comparison between SLPA and ISLPA for our experimental
dataset.

Finally, the average execution time of both SLPA and
ISLPA algorithms for each time slot has been reported in Fig.
8. This report shows the results of both overlapping and non-
overlapping community detection cases. The results show that
for static detection of communities by SLPA algorithm, about
75 seconds is averagely consumed for each time slot while for
incremental detection of communities by ISLPA algorithm,
about 37 seconds is consumed for each time slot averagely.
Thus, ISLPA has detected both overlapping and non-
overlapping communities about 2 times faster than SLPA.
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Fig. 7. Execution time comparison between SLPA and ISLPA for 122-time
slots of the Facebook New Orleans networks. The parameter values are set to

T =100 andr = 0.5, the execution time results have been reported for the
detection of non-overlapping communities.
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Fig. 8. The average execution time for each time slot of the Facebook New
Orleans networks. Results have been reported for both overlapping and non-
overlapping community detection by SLPA and ISLPA algorithms.
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B. Modularity Comparison

Modularity is a metric which is used to measure the quality
of the detected communities in graphs. The modularity value
lies in the range [-1, 1]. More precisely, 1 means the highest
algorithm productivity and -1 the lowest. The function
introduced by Newman [29] is used to measure the quality of
the detected non-overlapping communities. This function is
defined as follows:

2|E|Z i 2|E|]§(C“C’

where E represents the number of edges in the graph, A is the
adjacency matrix, ¢ represents the node’s commumity, and K is
the node’s degree. If node i and node j place in the same
community s(¢;, ¢;) is equal to 1 and otherwise, it is 0.

ey

Newman's modularity is used to measure the quality of the
detected non-overlapping communities. However, in social
networks nodes can belong to more than one community.
Nicossia et al. [30] has extended Newman’s modularity based
on the edges which can measure the quality of the detected
overlapping communities. This extension is defined as follows:

K; K;
ov 2|E| [rl]C ij — Sijc

2|E|
ceCi,jec

] ()

where each community ¢ is a member of C, which is the set of
all the communities. Also, the belonging coefficient of edge
e = (i,j) to community c is calculated as follows:

1
(14 e fl@cdym+ e f@ic)y

F(ai.c » e ) = 3)

Tije =

where a;.and aj.show the belonging coefficient of nodes
iand j to community c. Also, f(a;.) is a simple linear
function which is computed as follows:

f(x) =2px—p,p €R (€))

In papers that detect overlapping communities [31], [32], p
has considered to be 30. Also, s;;cin (2) is defined as
follows:

Z kev F(ai,c » Ae,c ) Z kev F(ak,c ’ aj,c )
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where V represents the number of nodes in the graph.

(5)

Sije =

In order to compare, first we set parameters T = 100 and
r=0.5. We used (1) to measure the modularity of the
detected non-overlapping communities in our experimental
dataset. Next, by setting T = 100 and r = 0.3, we used (2) to
calculate the modularity of the detected overlapping
communities over 122-time slots of the Facebook New
Orleans networks. Modularity comparison between two SLPA
and ISLPA algorithms have been reported in Fig. 9. Test
results show that ISLPA can detect both overlapping and non-
overlapping communities with the accuracy close to the
SLPA’s accuracy over 122-time slots. As a result, despite the
reduced computational costs, the ISLPA has promising
performance.
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Fig. 9. Modularity comparison between SLAP and ISLPA for 122-time slots

of the Facebook New Orleans networks. By setting T = 100 and r = 0.5,
modularity has been reported for the detection of non-overlapping
communities. Also, by setting T = 100 and r = 0.3, modularity has been
reported for the detection of overlapping communities.

V. CONCLUSION

Community detection is one of the important issues in
social network analysis. The consecutive time slots of social
networks such as Facebook are highly correlated with each
other in terms of the structure. Thus, the independent study of
each time slot is not efficient for detecting communities in
terms of the execution time and memory usage. In this paper,
we introduced an unsupervised machine learning algorithm for
incremental detection of communities using the label
propagation method, called ISLPA. ISLPA can detect both
overlapping and non-overlapping communities on directed and
undirected networks over time.

Test results such as execution time and modularity on the
122-time slots of the Facebook New Orleans networks showed
that ISLPA can detect both overlapping and non-overlapping
communities about 2 times faster than SLPA with the
modularity accuracy close to the SLPA’s modularity accuracy.
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