
SPARQL Update Processing: Extracting Inserted and
Deleted Quads

Cristiano Aguzzi, Luca Roffia
University of Bologna

Bologna, Italy

{cristiano.aguzzi,luca.roffia}@unibo.it

Abstract—This short paper presents a novel algorithm to
extract the inserted and deleted quads from a SPARQL 1.1
Update operation. The aim is to enable smarter approaches in
the subscriptions processing of the SPARQL Event Processing
Architecture (SEPA). We expect that the proposed algorithm
would increase the overall SEPA performance by filtering out
not affected subscriptions and optimizing the processing of each
single subscription.

I. INTRODUCTION

In the field of Linked Data [1], dealing with the dynamicity
of data is a crucial aspect. At best of our knowledge the first
attempts to tackle and formalize this problem were published
in [2], while earlier results can be also found in [3] and [4].
In the past years, a number of technologies have emerged to
manage the changes and retrieve meaningful information in
this huge set of linked data. For example, C-SPARQL [5],
SPARQLStream [6], event processing SPARQL (EP-SPARQL)
[7] propose a time-window based processing of Resource
Descriptor Framework (RDF) streams for continuous SPARQL
queries. On the other hand, the SPARQL Event Processing
Architecture (SEPA) [8] proposes a different approach to
Linked Data dynamics. The main goal of SEPA is to build
a novel query notification mechanism on top of the standard
SPARQL 1.1 protocol and languages. SEPA offers a service
to receive streams of notifications about changes (i.e., added
and removed bindings) in a SPARQL query result set [9], [10].
The software architecture of a SEPA broker is shown in Figure
I.

Furthermore, thanks to the implemented publish-subscribe
mechanism, SEPA enables an application design pattern where
software agents can interact and synchronize to implement
interoperable, distributed and context-aware Web applications.
In order to scale at Web level, the performance of SEPA
should be increased by implementing smarter algorithms for
the subscriptions processing [11].

In this paper we propose an algorithm which enable the
extraction of inserted and deleted quads (i.e., triples within a
graph) from a SPARQL 1.1 Update [12]. This would allow
to infer changes in a query result set (i.e., in the best case,
by binding all the variables in the query) and to filter out the
subscriptions that are not affected by the modification of the
knowledge base.

The next section provides the background on which the
algorithm described in Section III is based on. Eventually,
we derive some considerations and plan future work in the
conclusion.

Fig. 1. SEPA broker software architecture. It should be noted that a new
update can processed only after all the previous notifications produced by the
previous update have been sent (EOP call). The sequential update processing
is granted by a FIFO queue.

II. BACKGROUND

The baseline algorithm implemented by SEPA is listed
in Algorithm 1. The algorithm executes all the registered
SPARQL queries (i.e., subscriptions) and for each of them it
compares the previous results with the current ones to retrieve
the added and removed bindings. It is evident that with this
algorithm, the SEPA service will not scale with respect to the
number of active subscriptions and the size of knowledge base
(i.e., number of query results).

The role played by the inserted and deleted quads on
the subscription processing can be clarified by considering a
simple example. Suppose to have two active subscriptions: S1
(see Listing 1) and S2 (see Listing 2).

PREFIX foaf : <http://xmlns.com/foaf/0.1/>
SELECT ?a
WHERE {
GRAPH ?g {

?a foaf:familyName "Rossi".
}

}

Listing 1. An example of a SPARQL subscription that is not effected by the
update in Listing 3

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



Algorithm 1 Naive algorithm to retrieve added and removed
bindings in a set of SPARQL subscriptions. The process is
executed on every update operation.

Input:
Subscriptions : list of the active subscriptions

for all S ∈ Subscriptions do
oldResults ← getPrevious(S)
subQuery ← getQuery(S)
newResults ← submit subQuery to the Endpoint
Inserted ← ∅
Deleted ← ∅
for all Q ∈ oldResults do

if Q is not in newResults then
add Q to Deleted

end if
end for
for all Q ∈ newResults do

if Q is not in oldResults then
add Q to Inserted

end if
end for
send Notification with Inserted and Deleted

end for
return

PREFIX foaf : <http://xmlns.com/foaf/0.1/>
SELECT ?a ?name
WHERE {
GRAPH ?g {
?a foaf:name ?name.

}
}

Listing 2. An example of a SPARQL subscription that is effected by the
update in Listing 3

Now a client performs the update in Listing 3 which
changes the name of every person named ”Pietro to ”Mario.

PREFIX foaf : <http://xmlns.com/foaf/0.1/>
DELETE {
GRAPH ?g {

?a foaf:name "Pietro"
}

}
INSERT {
GRAPH ?g {

?a foaf:name "Mario".
}

}
WHERE {
GRAPH ?g {
?a foaf:name "Pietro".

}
}

Listing 3. A SPARQL update which updates the name of every person named
”Pietro” to ”Mario”

While the query result set of S1 would not change as
consequence of the update, the S2 subscription could bring
to a notification if the results have changed. The inserted and

removed quads would allow to filter out S1 and reduce the
complexity of the S2 query (i.e., the ?name variable would be
bind with ”Mario” and ”Pietro”).

A SPARQL update operation (see Listing 3) is always
executed on a graph store. The store is composed by a set
of named graphs and exactly one default graph. Each graph
contains a set of RDF triples and can be named trough an
IRI. Therefore the store is actually made up by a set of quads:
< graphIri, subject, predicate, object >. This collection of
elements contained in the store can be modified by SPARQL
update primitives that are divided in two categories: graph
management and graph update.

The graph management operations are those which modify
the set of graphs in the store operating on the entire graph. For
example, the MOVE operation moves the whole set of triples
from graph A to graph B and the DROP operation deletes
a named graph. Other graph management primitives can be
found in [12].

The graph update operations, on the other hand, are 
focused on triple modification within graphs. Like for example 
INSERT DATA operation which can insert a specific s et of 
triples inside a graph or INSERT/DELETE which can update 
triples that satisfy a certain query. For further details 
see [12].

III. ALGORITHM

According to the SPARQL 1.1 Protocol [13], SPARQL 
endpoints are not required to provide a detailed result of a 
SPARQL Update operation. Most of them just report if it 
was successful or not. For example Blazegraph (https://
www.blazegraph.com/) returns an HTML page with the 
timings and the status of the request. Nevertheless, this 
information could be useful for applications and services that 
use the endpoint as the main long term storage.

With reference to the SPARQL Event Processing Archi-
tecture (SEPA), as suggested by [14], the incremental changes
of the RDF data set could potentially avoid querying the
knowledge base. The algorithm here proposed is built on
top of the SPARQL 1.1 Protocol and SPARQL 1.1 Update
Language, and it is aimed to do not affect the underpinning
SPARQL endpoint implementation, neither to propose any
change in the above mentioned protocol and language. A
naive algorithm could just query the whole knowledge base
before and after an update, and then compares the results.
Of course this solution is not feasible due to the number of
quads that are typically stored inside a SPARQL endpoint (e.g.,
millions or trillions). Moreover, graph management primitives
and INSERT/DELETE operations do not declare a list of quads
to be modified, but those quads are actually computed at run
time by the SPARQL endpoint.

The algorithm here proposed exploits the SPARQL CON-
STRUCT primitive to retrieve a subset of triples that are
contained within a graph of a RDF graph store. For example,
with reference to the update in Listing 3, the triples that would
possibly be effected by the update can be obtained with two
construct queries. In Listing 4 is shown the CONSTRUCT that
could be used to create the RDF triples that would be deleted.
The same CONSTRUCT can be used to obtain the inserted

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 578 ----------------------------------------------------------------------------



triples by replacing, within the CONSTRUCT {...} statement,
”Pietro” with ”Mario”.

CONSTRUCT {
?a foaf:name "Pietro"
}

}
WHERE {

GRAPH ?g {
?a foaf:name "Pietro".

}
}

Listing 4. The CONSTRUCT query to create the triples that would be deleted
according to the update in Listing 3.

Are these triples really inserted or removed? In fact, a triple
will be really inserted if it is not present in the RDF store,
while a triple will be really deleted if it is present in the RDF
store. In the first instance, the presence of a triple in a RDF
store can be asserted using the ASK query statement.

The algorithm we proposed to extract the actually inserted
and deleted quads is detailed in Algorithm 3 and it makes
use of the following functions (i.e., functions in bold require
accessing the SPARQL endpoint):

• isGraphManagement(update): returns true if the input
update is one of the graph management SPARQL op-
erations (i.e., MOVE, COPY, ADD, CLEAR, CREATE,
DROP, LOAD).

• isDataUpdate(update): returns true if the input update
is an INSERT/DELETE DATA operation.

• extractInsQuads(update): extracts the quads defined
in the INSERT DATA statement. In this process de-
clared triples are combined with the default graph IRI
while the quads are extracted as they are.

• extractDelQuads(update): extracts the quads defined
in the DELETE DATA statement. The extraction pro-
cess is similar to extractInsQuads.

• hasGraphVariables(update): checks the presence of
graph variables inside the INSERT or DELETE state-
ments. The function returns true if at least a graph
variable is found, false otherwise.

• combine(triples,graph): transforms a list of triples
into a list of quads combining them with the input
graph.

• buildUpdate(iQuads,dQuads): creates a SPARQL
INSERT/DELETE DATA operation from two lists of
inserted (i.e., iQuads) and deleted (i.e., dQuads)
quads.

• getTargetGraph(update): returns the target graph of a
graph management update operation.

• getSourceGraph(update): returns the source graph of
a graph management update operation.

• getGraphs(update): executes a SPARQL SELECT
query selecting only graph variables defined inside
the INSERT or DELETE statement of a SPARQL
INSERT/DELETE primitive. It is used to retrieve a
list of graph IRIs.

• getInsTriples(graph,update): builds and executes a
SPARQL CONSTRUCT query. The query retrieves all
the triples effected by the INSERT statement of the
update in the specified graph.

• getDelTriples(graph,update): builds and executes a
SPARQL CONSTRUCT query. The query retrieves all
the triples affected by the DELETE statement of the
update in the specified graph.

• getTriples(graph): builds and executes a SPARQL
CONSTRUCT query. The query retrieves all the triples
affected inside the graph specified as input.

• isPresent(quad): uses a ASK query to check the
presence of a quad inside the data set. It returns true
if the quad is present, false otherwise.

• transform(update): transforms a graph management
update to a INSERT/DELETE DATA update primitive
implementing the Algorithm 2.

Since different SPARQL update operations have different
semantics, the first step of the algorithm verifies the type of
operation. On line 19, the algorithm checks if the update
is from the graph management family using the isGraph-
Management function. If yes, the update is converted into
an INSERT DATA/DELETE DATA primitive thanks to the
transform function. As shown in Algorithm 2, the conversion
is done by retrieving the triples using the getTriples function
and combining them with the corresponding graph using the
combine function.

Algorithm 2 Transform a graph management operation into
a INSERT/DELETE DATA primitive

1: Input:
2: Update : a SPARQL graph management primitive (i.e.,

MOVE, COPY, ADD, CLEAR, CREATE, DROP, LOAD)

3: Output:
4: Ret : a SPARQL INSERT/DELETE DATA primitive
5:

6: Temp:
7: Graph, InsGraph, DelGraph : IRI of graphs
8: InsTriples, DelTriples : sets of RDF triples
9: InsQuads, DelQuads : sets of RDF quads

10:

11: InsTriples ← ∅
12: DelTriples ← ∅
13: InsGraph ← ∅
14: DelGraph ← ∅
15:

16: switch (Update)
17: case CREATE:
18: Ret ← buildUpdate(∅, ∅)
19: return Ret
20: case DROP :
21: DelGraph ← getSourceGraph(Update)
22: DelTriples ← getTriples(Graph)
23: case MOV E:
24: InsGraph ← getTargetGraph(Update)
25: InsTriples ← getTriples(InsGraph)
26: DelGraph ← getSourceGraph(Update)
27: DelTriples ← getTriples(DelGraph)

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 579 ----------------------------------------------------------------------------



28: case COPY :
29: InsGraph ← getTargetGraph(Update)
30: Graph ← getSourceGraph(Update)
31: InsTriples ← getTriples(Graph)
32: DelGraph ← InsGraph
33: DelTriples ← getTriples(DelGraph)
34: case ADD:
35: InsGraph ← getTargetGraph(Update)
36: Graph ← getSourceGraph(Update)
37: InsTriples ← getTriples(Graph)
38: case CLEAR:
39: DelGraph ← getTargetGraph(Update)
40: DelTriples ← getTriples(DelGraph)
41: case LOAD:
42: InsTriples ← HTTP request to document URI
43: InsGraph ← getTargetGraph(Update)
44: end switch
45:

46: InsQuads ← combine(InsTriples, InsGraph)
47: DelQuads ← combine(DelTriples,DelGraph)
48: Ret ← buildUpdate(InsQuads,DelQuads)
49:

50: return Ret

Then, on line 23, the update type is checked again using
the isDataUpdate function. Notice that at this point the op-
eration can be only a graph update primitive. If the update
is an INSERT/DELETE DATA then the algorithm extracts the
quads defined inside the statements and inserts them into the
lists of candidate’s quads to be inserted and/or deleted (i.e.,
IQuadsTemp, DQuadsTemp).

Otherwise some extra steps are required to obtain the can-
didate quads. In fact, a SPARQL INSERT/DELETE primitive 
could include variables inside the INSERT or DELETE clause. 
The bindings of these variables will be retrieved according to 
the WHERE clause. So, the definition o f t he CONSTRUCT 
primitive is not straightforward as in the INSERT/DELETE 
DATA case. For example, the update in Listing 3 updates the 
name of all the people named ”Pietro” to ”Mario” in every 
named graph defined i n t he g raph s tore. B ut a t c ompile time, 
the IRIs of the effected graphs are unknown. As the CON-
STRUCT operation cannot contain graph variables (https://
www.w3.org/TR/sparql11-query/#construct), the IRIs of 
the graphs effected by the update must be retrieved before 
building the CONSTRUCT. This is done by the getGraphs 
function and an example of the query used to retrieve such 
IRIs is shown in Listing 5.

PREFIX foaf : <http://xmlns.com/foaf/0.1/>
SELECT ?g
WHERE {
GRAPH ?g {
?a foaf:name "Pietro".

}
}

Listing 5. A SPARQL SELECT query which retrieves the graphs effected
by the update in Listing 3

Algorithm 3 Quads extraction from a generic SPARQL 1.1
update operation, including graph management operations

1: Input:
2: Update : the SPARQL 1.1 Update
3:

4: Output:
5: IQuads: set of quads that are really inserted (i.e., they

were not present in the store)
6: DQuads: set of quads that are really removed (i.e., they

were present in the store)
7:

8: Temp:
9: IQuadsTemp: set of quads that could be inserted (i.e.,

they could be already present in the store)
10: DQuadsTemp: set of quads that could be removed (i.e.,

they could be not present in the store)
11: graphs: set of graphs URIs
12: triples: set of RDF triples
13:

14: IQuads ← ∅
15: DQuads ← ∅
16: IQuadsTemp ← ∅
17: DQuadsTemp ← ∅
18:

19: if isGraphManagement(Update) then
20: Update ← transform(Update)
21: end if
22:

23: if isDataUpdate(Update) then
24: IQuadsTemp ← extractInsQuads(Update)
25: DQuadsTemp ← extractDelQuads(Update)
26: else
27: graphs ← ”default”
28: if hasGraphVariables(Update) then
29: graphs ← getGraphs(Update)
30: end if
31:

32: for all G ∈ graphs do
33: triples ← getInsTriples(G, update)
34: IQuadsTemp ← combine(triples,G)
35: triples ← getDelTriples(G, update)
36: DQuadsTemp ← combine(triples,G)
37: end for
38: end if
39:

40: for all IQ ∈ IQuadsTemp do
41: if isPresent(IQ) then
42: Add IQ to IQuads
43: end if
44: end for
45:

46: for all DQ ∈ DQuadsTemp do
47: if not isPresent(DQ) then
48: Add DQ to DQuads
49: end if
50: end for
51:

52: return IQuads, DQuads

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 580 ----------------------------------------------------------------------------



In order to build the list of quads that are candidate to be 
inserted and/or deleted, the algorithm follows a procedure (see 
lines 32-37) similar to the one implemented by the Algorithm
2. Thanks to the getInsTriples, getDelTriples and combine
functions, the algorithm first extracts the triples from each
graph and then combines these triples with the corresponding
graph IRI.

Eventually, from line 40 to line 50, thanks to the isPresent
function, the algorithm checks the actual existence (or not
existence) of the quads into the quad store. Relevant quads
are then inserted into the lists of quads to be returned by the
algorithm (i.e., IQuads, DQuads).

IV. CONCLUSION AND FUTURE WORK

This article presents an algorithm that can be implemented
to extract the quads that are really inserted and deleted by a
generic SPARQL 1.1 Update operation, without effecting the
underpinning SPARQL 1.1 Protocol service implementation.
The algorithm will be implemented and evaluated as part of
the SPARQL Event Processing Architecture. This would lead
to understand if the overhead introduced by the processing of
a SPARQL update can be repaid by reducing the subscription
computational cost in terms of number of subscriptions to
be evaluated per update and processing time of a single
subscription.

ACKNOWLEDGMENT

We would like to thank the organizers of the 23nd FRUCT
Conference for asking us to submit this short paper which
provides more details on the poster we presented at the
conference.

REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So
Far,” International Journal on Semantic Web and Information Systems,
vol. 5, no. 3, pp. 1–22, 2009.

[2] T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne, and A. Hogan,
“Observing linked data dynamics,” in The Semantic Web: Semantics
and Big Data (P. Cimiano, O. Corcho, V. Presutti, L. Hollink, and
S. Rudolph, eds.), (Berlin, Heidelberg), pp. 213–227, Springer Berlin
Heidelberg, 2013.

[3] B. Norton and R. Krummenacher, “Consuming Dynamic Linked Data,”
in COLD, 2010.

[4] J. Umbrich, B. Villazón-Terrazas, and M. Hausenblas, “Dataset Dynam-
ics Compendium: A Comparative Study,” in Proceedings of the First
International Workshop on Consuming Linked Data, Shanghai, China,
November 8, 2010, 2010.

[5] D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus, “An Execution
Environment for C-SPARQL Queries,” in Proceedings of the 13th
International Conference on Extending Database Technology, EDBT
’10, (New York, NY, USA), pp. 441–452, ACM, 2010.

[6] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray, “Enabling Ontology-
Based Access to Streaming Data Sources,” in The Semantic Web – ISWC
2010 (P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z.
Pan, I. Horrocks, and B. Glimm, eds.), (Berlin, Heidelberg), pp. 96–111,
Springer Berlin Heidelberg, 2010.

[7] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “EP-SPARQL:
A Unified Language for Event Processing and Stream Reasoning,” in
Proceedings of the 20th International Conference on World Wide Web,
WWW ’11, (New York, NY, USA), pp. 635–644, ACM, 2011.

[8] L. Roffia, P. Azzoni, C. Aguzzi, F. Viola, F. Antoniazzi, and
T. Salmon Cinotti, “Dynamic Linked Data: A SPARQL Event Process-
ing Architecture,” Future Internet, vol. 10, no. 4, p. 36, 2018.

[9] C. Aguzzi, F. Antoniazzi, F. Viola, and L. Roffia, “SPARQL 1.1
Subscribe Language,” 2018. [Online; accessed 21-November-2018].

[10] A. Seaborne, “SPARQL 1.1 Query Results JSON Format.” Web: https:
//www.w3.org/TR/sparql11-results-json/, 2013. [Online; accessed 21-
November-2018].

[11] L. Roffia, F. Morandi, J. Kiljander, A. D’Elia, F. Vergari, F. Viola,
L. Bononi, and T. S. Cinotti, “A Semantic Publish-Subscribe Architec-
ture for the Internet of Things,” IEEE Internet of Things Journal, dec
2016.

[12] P. Gearon, A. Passant, and A. Polleres, “SPARQL 1.1 Update.” Web:
https://www.w3.org/TR/sparql11-update/, 2013. [Online; accessed 21-
November-2018].

[13] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres, “SPARQL
1.1 Protocol.” Web: https://www.w3.org/TR/sparql11-protocol/, 2013.
[Online; accessed 21-November-2018].

[14] F. Schmedding, “Incremental SPARQL evaluation for query answering
on linked data,” in Proceedings of the Second International Conference
on Consuming Linked Data-Volume 782, pp. 49–60, Citeseer, 2011.

______________________________________________________PROCEEDING OF THE 23RD CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 581 ----------------------------------------------------------------------------




